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Quantum Fisher information maximization in an unbalanced interferometer

Stefan Ataman *

Extreme Light Infrastructure - Nuclear Physics (ELI-NP), “Horia Hulubei” National R&D Institute for Physics and Nuclear Engineering
(IFIN-HH), 30 Reactorului Street, 077125 Bucharest-Măgurele, Romania
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In this paper we provide the answer to the following question: given an arbitrary pure input state and a general,
unbalanced, Mach-Zehnder interferometer, what transmission coefficient of the first beam splitter maximizes the
quantum Fisher information (QFI)? We consider this question for both single- and two-parameter QFI, or, in
other words, with or without having access to an external phase reference. We give analytical results for all
involved scenarios. It turns out that, for a large class of input states, the balanced (50:50) scenario yields the
optimal two-parameter QFI; however, this is far from being a universal truth. When it comes to the single-
parameter QFI, the balanced scenario is rarely the optimal one and an unbalanced interferometer can bring a
significant advantage over the balanced case. We also state the condition imposed upon the input state so that no
metrological advantage can be exploited via an external phase reference. Finally, we illustrate and discuss our
assertions through a number of examples, including both Gaussian and non-Gaussian input states.
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I. INTRODUCTION

Improving the interferometric phase sensitivity is both
a classical and a quantum problem. The opportunity to
surpass the classical shot-noise limit, and enter what is com-
monly called quantum or sub-shot-noise regime [1], is due
to quantum metrology [2]. The boost of this field in recent
years is correlated with the exponential growth of quantum
technologies [3]; however, it benefits from additional mo-
mentum from the gravitational wave astronomy community
[4], quantum-enhanced dark matter searches [5], and QED
(quantum electrodynamics) vacuum phenomena [6,7].

The classical phase sensitivity limit �ϕSQL ∼ 1/
√

N̄ [also
called standard quantum limit (SQL), where N̄ denotes the
average number of input photons] is a bound one gets with
classical input states. However, by employing nonclassical
states of light [1], the theoretically attainable limit shifts from
SQL to �ϕHL ∼ 1/N̄ , also known as the Heisenberg limit
(HL) [2].

Among the available types of interferometric schemes
we limit our discussion to the Mach-Zehnder interferometer
(MZI) [8]; nonetheless the whole discussion can be adapted to
other types of interferometers [9]. The balanced (50:50) MZI
is usually discussed in the literature [10–14] and this scenario
often yields simple expressions for the phase sensitivity. Be-
sides, it is the optimal setup for a number of input states and
detection schemes [10–13,15].

The question of optimal phase sensitivity for an interferom-
eter arises, since one would like to optimize for all possible
estimators and for all detection schemes. The elegant solu-
tion to this optimization problem is found by employing the
quantum version of the classical Fisher information, namely
the quantum Fisher information (QFI) [16–18]. Indeed,
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possessing the QFI, F , allows one to employ the quantum
Cramér-Rao bound (QCRB), �ϕQCRB = 1/

√
F [19,20]. Thus

the phase sensitivity achievable by any realistic detection
scheme �ϕdet is bound to be �ϕdet � �ϕQCRB.

Before moving on, one must mention other noteworthy
approaches for optimal parameter estimation, including the
Bayesian method [9,21] or boson-sampling inspired strategies
[22].

The realization that employing the QFI as defined above
yields overly optimistic results [23] allowed one to refine
the analysis. Following Jarzyna and Demkowicz-Dobrzański
[23], we associate the asymmetric single-parameter QFI de-
noted by F (i) to the scenario when a single phase shift ϕ

is applied inside the interferometer. For the scenario com-
prising two ±ϕ/2 phase shifts (see Fig. 3) we associate the
symmetric single-parameter QFI as F (ii). Finally, by employ-
ing a two-parameter QFI we are able to denote the relevant
difference-difference QFI denoted by F (2p) [24]. Employing
the two-parameter QFI guarantees that no external references
are taken into account in the process of phase sensitivity
evaluation.

As already discussed in the literature, the balanced case
is not always optimal [24,25] and unbalancing the inter-
ferometer can actually be beneficial [24–26]. When the
interferometer is unbalanced, two supplementary parameters
appear, namely the transmission coefficients of the first (T )
and second (T ′) beam splitters (BS).

As we will emphasize in this paper, optimizing the trans-
mission coefficient of the first BS is enough to ensure the
maximization of the QFI. This is due to the fact that the second
BS has no effect whatsoever on the QFI calculation [26]. The
statement remains true for both single- and two-parameter
QFI scenarios, in other words, with or without an external
phase reference. Thus the question we set to answer in this
work is what transmission coefficient T optimizes each of the
aforementioned QFIs, given a general input state, |ψin〉.
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While optimum transmission coefficients for an unbal-
anced interferometer have been reported for some given
constraints [26,27] or for specific input states [24], no uni-
versal solution to this problem was proposed, to the best of
our knowledge. Moreover, in the previous studies [26,27], a
specific QFI was considered only, namely the two-parameter
QFI F (2p).

In this paper we consider a general pure input state and an
interferometric setup with or without external phase reference.
We employ F (i), F (ii), and F (2p) and each time we obtain an
optimal beam splitter transmission coefficient. We show that
the value of the optimal beam splitter transmission coefficient
can always be analytically found.

Although not a central topic in this paper, the input phase-
matching conditions (PMC) [14,24,27] will be be discussed
due to their connection to our optimization problem. We will
show that different choices of QFI will point towards different
optimal input PMCs.

After introducing the formal part, we go on to discuss two
noteworthy scenarios. The first one deals with the conditions
to be fulfilled by the input state in order to yield no quantum
metrological advantage if an external phase reference is avail-
able. The second one involves an interformeter with one input
in the vacuum state [28].

Finally, for a number of input states [14,24,25,29–34],
we obtain the optimum transmission coefficient, Topt, and
thoroughly discuss the QFI performance for each scenario.
Whenever possible, we compare our findings with previously
reported ones in the literature.

Among the Gaussian input states, the squeezed-coherent
plus squeezed-coherent input state was discussed previously
for a balanced interferometer [14,32,35]. The same input state
however employing the two-parameter QFI was considered
at length in Ref. [14], the discussion including the PMCs
optimizing the two-parameter QFI as well as the performance
of realistic detection schemes. Three input PMCs were sin-
gled out, each one maximizing F (2p) in a certain regime. In
Refs. [32,35] the authors employed the asymmetric single-
parameter QFI and considered only the balanced case with an
input PMC with all phases set to zero, except for one. As we
will show in this paper, this PMC setting is not necessarily op-
timal, especially for the single-parameter QFI. To the best of
our knowledge, there has been no discussion in the literature
about the squeezed-coherent plus squeezed-coherent input
state applied to a nonbalanced interferometer. We address this
topic in this work and show that, similar to other Gaussian
states [24], using an unbalanced interferometer and having
access to an external phase reference can bring a substantial
increase in the QFI.

This paper is structured as follows. In Sec. II we give the
quantum optical description of our interferometer, introduce
some notations, and make some conventions. The Fisher ma-
trix and the two-parameter QFI are both introduced in Sec. III.
The two considered single-parameter QFIs are introduced in
Sec. IV. The BS transmission coefficient maximizing each
considered QFI is given in Sec. V, with all cases and sub-cases
detailed. In Sec. VI we consider two noteworthy scenarios.
Thoroughly discussed examples start in Sec. VII, where both
Gaussian and non-Gaussian input states are evaluated. The

FIG. 1. Typical unbalanced Mach-Zehnder interferometric setup.
In the general case we consider two independent phase shifts (ϕ1 and
ϕ2) so that the effect of an eventual external phase reference can be
revealed. When evaluating the QFI we call this setup “closed,” as
opposed to the one from Fig. 2

paper ends with a short discussion in Sec. VIII followed by
the conclusions from Sec. IX.

II. QUANTUM OPTICAL DESCRIPTION OF AN
UNBALANCED MZI

In an interferometric setup one usually knows the input
state vector |ψin〉 and wishes to determine the output one. If
we consider more specifically a Mach-Zehnder interferometer
(see Fig. 1), the output state |ψout〉 can be formally written as

|ψout〉 = ÛBS(ϑ ′)ÛϕÛBS(ϑ ) |ψin〉 . (1)

We can model each beam splitter via the unitary operator

ÛBS(� ) = ei� Ĵx , (2)

where � ∈ {ϑ, ϑ ′}. If one wishes to connect the abstract
angle ϑ to the more common beam splitter transmission co-
efficient, T , we can use the relation ϑ = 2 arccos |T | and,
similarly for BS2, ϑ ′ = 2 arccos |T ′| [29,36]. Ĵx denotes the
first Schwinger angular momentum operator [29,36],

Ĵx = â†
0â1 + â0â†

1

2
, (3)

the other two being

Ĵy = â†
0â1 − â0â†

1

2i
(4)

and

Ĵz = â†
0â0 − â†

1â1

2
, (5)

where âl (â†
l ) denotes the usual annihilation (creation) oper-

ator for the input modes l = 0, 1 [37]. We also introduce the
input total photon number operator,

N̂ = n̂0 + n̂1, (6)

where n̂m = â†
mâm denotes the usual number operator

for a mode m. The three Schwinger angular momentum
operators {Ĵn|n ∈ {x, y, z}} form a SU(2) Lie algebra (i.e.,
[Ĵx, Ĵy] = iĴz, etc.) and the Casimir element of the group is

Ĵ
2 = N̂/2(N̂/2 + 1) [29]. Please note that N̂ commutes with
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all {Ĵn|n ∈ {x, y, z}} operators, a result that will be used in the
following.

We allow two phase shifts in our MZI (see Fig. 1)—ϕ1

(ϕ2) in the upper (lower) arm of the interferometer. We also
introduce the phase sum and difference, i.e., ϕs = ϕ1 + ϕ2

and ϕd = ϕ1 − ϕ2 variables. The effect of these phase shifts
is modeled via the unitary operator

Ûϕ = e−ϕ1n̂2 e−iϕ2 n̂3 = e−ϕs
N̂
2 e−iϕd Ĵz . (7)

Most authors prefer to add a fixed phase shift and thus model
the effect of the MZI via |ψout〉 = Û †

BS(ϑ ′)ÛϕÛBS(ϑ ) |ψin〉.
This is especially advantageous in the balanced case (ϑ =
ϑ ′ = π/2) because the output state can be simply written as
[27,38,39]

|ψout〉 = e−ϕd Ĵy |ψin〉. (8)

For the general, nonbalanced case, one can use the Euler-
Rodrigues relations to simplify Eq. (1) (see, e.g., Ref. [29] or
Appendix A in Ref. [38]). As we will show in the following,
for the sole purpose of QFI evaluation, these relations are not
be needed.

III. FISHER MATRIX AND THE TWO-PARAMETER
QUANTUM FISHER INFORMATION

Before evaluating any QFI we remark that F being a
measure of information is additive [18]; thus repeating the
same experiment N times implies F → NF . The implied
QCRB accordingly becomes �ϕQCRB = 1/

√
NF . For sim-

plicity, throughout this work, we consider N = 1.

A. Field operator transformations

The annihilation field operators after the beam splitter BS1

can be written as the⎧⎪⎨⎪⎩
â2 = Û †

BS(ϑ )â0ÛBS(ϑ ) = cos
ϑ

2
â0 + i sin

ϑ

2
â1,

â3 = Û †
BS(ϑ )â1ÛBS(ϑ ) = i sin

ϑ

2
â0 + cos

ϑ

2
â1,

(9)

relation that can be easily proven using the Baker-Hausdorf
lemma [37]. If we use the parametrization T = |T | = cos ϑ/2
and R = i|R| = i sin ϑ/2 we get the usual field operator trans-
formations for a symmetrical or “thin-film” beam splitter [8],

{
â2 = T â0 + Râ1,

â3 = Râ0 + T â1,
(10)

where T (R) denotes the transmission (reflection) of BS1. For
generic T and R, energy conservation imposes the constraints
|T |2 + |R|2 = 1 and T R∗ + T ∗R = 0 [8,37]. Since the last
relation implies (T ∗R)2 = −|T R|2, a sign convention has to
be made (i.e., T ∗R = ±i|T R|). From our parametrization we
took the convention

iT ∗R = −|T R| (11)

and it will be used throughout this work. In some opti-
mizations we will use |T R| as variable; we thus employ the

FIG. 2. “Open” MZI setup considered when evaluating the QFI.
The QFI evaluation is performed immediately after the two phase
shifts.

replacement⎧⎪⎪⎨⎪⎪⎩
|T |2 = 1 −

√
1 − 4|T R|2

2
if |T |2 � 1

2
,

|T |2 = 1 +
√

1 − 4|T R|2
2

if |T |2 >
1

2
,

(12)

and the corresponding |R|2 coefficients can be immediately
deduced.

B. Fisher matrix elements

We begin by discussing the two-parameter QFI. As pointed
out previously in the literature [10,23], if one wishes to dis-
charge any additional resources that potentially come from
an external phase reference, a setup including two phase
shifts must be discussed. The wave vector we consider, |ψ〉 =
Ûϕ |ψ23〉 (see Fig. 2), can be expressed with respect to the sum
and difference phase shifts using Eq. (7); therefore,

|ψ〉 = e−iĜd ϕd e−iĜsϕs |ψ23〉, (13)

where the generators are Ĝd = Ĵz = (n̂2 − n̂3)/2 and Ĝs =
N̂/2 = (n̂2 + n̂3)/2. We define the Fisher matrix elements
[10,23] (see also Appendix E),

Fi j = 4 Re{〈∂iψ |∂ jψ〉 − 〈∂iψ |ψ〉〈ψ |∂ jψ〉}, (14)

where i, j ∈ {s, d}, Re denotes the real part, and we denote
|∂ jψ〉 = ∂|ψ〉/∂ϕ j . The choice of the above definition of the
QFI (i.e., excluding BS2) is justified in Appendix F, where it
is shown that the effect of BS2 on the QFI is null.

The first Fisher matrix element we consider is the so-called
“sum-sum” coefficient and recalling that [Ĵx, N̂] = 0 we im-
mediately have (see also Appendix A)

Fss = 〈ψin|N̂2|ψin〉 − 〈ψin|N̂ |ψin〉2 = �2N̂ (15)

and, by employing the appropriate shorthand notations from
Appendix B, it reads

Fss = V+ + Vcov. (16)

The “difference-difference” Fisher matrix coefficient Fdd is
found to be (see Appendix C)

Fdd = 4(cos2 ϑ�2Ĵz + sin2 ϑ�2Ĵy − sin 2ϑ ĉov(Ĵz, Ĵy)),
(17)
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where the symmetrized covariance is defined by

ĉov(Ĵz, Ĵy ) = 〈ĴzĴy〉 + 〈ĴyĴz〉
2

− 〈Ĵy〉 〈Ĵz〉 . (18)

Employing the appropriate shorthand notations from
Appendix B, we are led to

Fdd = V+ − Vcov + |T R|2[A − 4(V+ − Vcov)]

− 2|T R|(|T |2 − |R|2)S+. (19)

The “sum-difference” Fisher matrix element Fsd is found to
be

Fsd = 2 cos ϑ cov(N̂, Ĵz ) − 2 sin ϑ cov(N̂, Ĵy ), (20)

where the covariance of two operators Â and B̂ is defined by

cov(Â, B̂) = 〈ÂB̂〉 − 〈Â〉〈B̂〉 (21)

and details on the calculation of Fsd are given in Appendix
D. Using again the shorthand notations from Appendix B, we
can write Eq. (20) as

Fsd = (|T |2 − |R|2)V− − |T R|(P + S−). (22)

The fourth matrix element, Fds, is not needed, since Fds =
Fsd .

C. Two-parameter difference-difference QFI

We introduce now the quantum Fisher information relevant
for a phase difference detection sensitivity [10,14,23,24] (see
also Appendix E),

F (2p) = Fdd − F2
sd

Fss
(23)

and this QFI implies the difference-difference QCRB,

�ϕ
(2p)
QCRB = 1√

F (2p)
. (24)

We recall that this is the “true” interferometric phase sensitiv-
ity for a MZI with a detection scheme not having access to an
external phase reference [23,24]. When considering balanced
interferometers with a given input state some authors take
Fsd = 0; thus F (2p) = Fdd [10,11]. Since our focus is on
nonbalanced scenarios, we will use the complete expression
(23) throughout this work.

IV. QFI FOR THE SINGLE-PARAMETER CASES

A. Asymmetric single-parameter QFI, F (i)

In this scenario we assume a single phase shift ϕ2 = ϕ and
consequently ϕ1 = 0 (see Fig. 2). We have the phase-shift
generator Ĝ = n̂3 and thus the implied QFI can be simply
expressed as [18]

F (i) = 4�2n̂3. (25)

The QFI F (i) implies the QCRB

�ϕ
(i)
QCRB = 1√

F (i)
(26)

and this scenario corresponds to the phase sensitivity when an
external phase reference is available [23,24].

FIG. 3. Mach-Zehnder interferometric setup with symmetrical
±ϕ/2 phase shifts. The QFI evaluating the performance of this setup
is F (ii).

The calculation can be done by employing the field opera-
tor transformations (9) and the result is given in Appendix G.
An alternative method to calculate F (i) is to take advantage of
the relation connecting the assymetric single-parameter QFI
F (i) to the Fisher matrix coefficients [24],

F (i) = Fss + Fdd − 2Fsd . (27)

Since not all authors consider the phase shift in the lower
arm of the interferometer, we briefly consider the other pos-
sible convention for the asymmetric single-parameter QFI in
Appendix H.

B. Symmetric single-parameter QFI F (ii)

If we assume ϕ1 = ϕ/2 and ϕ2 = −ϕ/2, we have the ex-
perimental setup depicted in Fig. 3. We have now1 |ψ〉 =
e−i ϕ

2 (n̂2−n̂3 )|ψ23〉; the QFI is thus given by

F (ii) = �2(n̂2 − n̂3) = 〈(n̂2 − n̂3)2〉 − 〈n̂2 − n̂3〉2 (28)

and this is actually the Fisher matrix element Fdd , already
computed in Eq. (17). The achievable phase sensitivity in this
scenario is lower bounded by the QCRB:

�ϕ
(ii)
QCRB = 1√

F (ii)
. (29)

V. OPTIMUM TRANSMISSION COEFFICIENT

We are ready now to deduce the optimal transmission
coefficient (Topt) of the first beam splitter in the sense of
maximizing each considered QFI. In order to lay bare the T
dependence of each QFI we introduce some coefficients that
will allow an extremely compact writing of each expression.

A. Two-parameter difference-difference QFI

We start our discussion with the two-parameter QFI, F (2p).
From definition (23) and the use of the appropriate expression
for each Fisher matrix element we arrive at

F (2p) = C0 + C1|T R|2 + C2|T R|(|T |2 − |R|2), (30)

where the C coefficients are given in Appendix I.

1If we take the opposite convention, i.e., |ψ〉 = ei ϕ
2 (n̂2−n̂3 )|ψ23〉, the

QFI from Eq. (28) remains obviously unchanged.
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TABLE I. Optimal transmission coefficient T (2p)
opt and the cor-

responding maximum two-parameter QFI F (2p)
max in all discussed

scenarios.

Constraints obeyed by the C coefficients

C1 = 0 C1 
= 0 C2 = 0
C2 = 0 C2 
= 0 C1 > 0 C1 < 0

T (2p)
opt Irrelevant

√
1+sgn(C2 )

√
1
2 − sgn(C1 )|C1 |

2
√

C2
1 +4C2

2

2
1√
2

0/1

F (2p)
max C0 C0 + C1

8 +
√

C2
1 +4C2

2
8 C0 + C1

4 C0

We can discuss now the maximization of F (2p) as a func-
tion of |T |. For simplicity, we consider T real in the remainder
of this section.

(A) The case C1 = C2 = 0 implies a constant QFI, i.e.,
F (2p) = C0, and the value of T becomes irrelevant.

(B) The simple case when C1 
= 0 but C2 = 0 implies the
following two scenarios.

(i) If C1 > 0, then F (2p) is maximized in the balanced case,
i.e.,

T (2p)
opt = 1√

2
. (31)

This happens for a number of input states, and it is the most
commonly discussed scenario in the literature [10,11,38,40].

(ii) If C1 < 0, F (2p) is maximized in the degenerate case
(i.e., T = 0/1). While not very common, this scenario can
happen even for the coherent plus squeezed vacuum [25] and
squeezed-coherent plus squeezed vacuum [24] inputs, given
some input parameter choices.

(C) In the most general case when C1 
= 0 and C2 
=
0, we arrive at the optimal transmission coefficient (see
Appendix I),

T (2p)
opt =

√√√√√1 + sgn(C2)
√

1
2 − sgn(C1 )|C1|

2
√

C2
1 +4C2

2

2
, (32)

yielding the maximum two-parameter QFI

F (2p)
max = C0 + C1

8
+

√
C2

1 + 4C2
2

8
, (33)

where sgn denotes the signum function, i.e.,
sgn : R → {−1, 0, 1}, sgn(x) = −1 if x < 0, sgn(x) = +1 if
x > 0, and sgn(x) = 0 if x = 0.

All results from this section are summarized in Table I.

B. Asymmetric single-parameter QFI, F (i)

The single-parameter QFI (25) can be written as

F (i) = C′
0 + |T R|2C′

1 + |T R|(|T |2 − |R|2)C′
2

+ (|T |2 − |R|2)C′
3 + |T R|C′

4, (34)

where the C′ coefficients are given in Appendix J.

We start the optimality discussion with a less general case,
however, comprising a large number of input states.2

We thus assume 〈â0〉 = 0 and from Eq. (B2) we have S± =
P = 0 implying

C′
2 = C′

4 = 0. (35)

(A) If C′
3 = 0, too, then we have the following scenarios.

(i) If C′
1 < 0, then the optimum is in the degenerate case,

i.e., T (i)
opt = 0/1 and F (i)

max = C′
0.

(ii) If C′
1 > 0, then the optimum is again in the balanced

case, i.e., T (i)
opt = 1/

√
2 and

F (i)
max = C′

0 + C′
1

4
. (36)

(B) For the general case with {C′
1, C′

3} 
= 0, we have the
following scenarios.

(i) If the constraints{
A � 8[�2n̂1 − cov(n̂0, n̂1)],

A � 8[�2n̂0 − cov(n̂0, n̂1)],
(37)

are met, then 0 � T (i)
opt � 1 exists and its value is

T (i)
opt =

√
1

2
+ C′

3

C′
1

(38)

yielding the maximum QFI,

F (i)
max = C′

0 + C′
1

(
1

4
+ C′

3
2

C′
1

2

)
. (39)

(ii) If the conditions{
A � 8[�2n̂1 − cov(n̂0, n̂1)],

A < 8[�2n̂0 − cov(n̂0, n̂1)],
(40)

are met then the optimal transmission coefficient is in the
degenerate case (T (i)

opt = 0) and

F (i)
max = C′

0 − C′
3 = 4[�2n̂0 + cov(n̂0, n̂1)]. (41)

(iii) If the conditions{
A < 8[�2n̂1 − cov(n̂0, n̂1)],

A � 8[�2n̂0 − cov(n̂0, n̂1)],
(42)

are met, then the optimal transmission coefficient is again in
the degenerate case (T (i)

opt = 1) and

F (i)
max = C′

0 + C′
3 = 4[�2n̂1 + cov(n̂0, n̂1)]. (43)

(iv) Finally, if{
A < 8[�2n̂1 − cov(n̂0, n̂1)],

A < 8[�2n̂0 − cov(n̂0, n̂1)],
(44)

2Among them, we mention the coherent plus squeezed vacuum
[24,25], squeezed-coherent plus squeezed vacuum [24] (see also
Sec. VII A), and the coherent plus Fock (see also Sec. VII C) input
states.
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TABLE II. Optimal transmission coefficient and the corresponding maximum asymmetric single-parameter QFI in the discussed scenarios.

Constraints obeyed by the C′ coefficients

C′
2 = C′

3 = C′
4 = 0 C′

2 = C′
4 = 0, C′

3 
= 0 C′
1 = C′

2 = 0
C′

1 < 0 C′
1 > 0 Eq. (37) Eq. (40) Eq. (42) Eq. (44), C′

3 < 0 Eq. (44), C′
3 > 0 C′

4 > 0 C′
4 < 0

T (i)
opt 0/1 1

2

√
1
2 + C′

3
C′

1
0 1 0 1

√
1
2 + |C′

3|sgn(C′
3 )√

4(C′
3 )2+(C′

4 )2
0/1

F (i)
max C′

0 C′
0 + C′

1
4 C′

0 + C′
1

(
1
4 + C′

3
2

C′
1

2

)
C′

0 − C′
3 C′

0 + C′
3 C′

0 − C′
3 C′

0 + C′
3 C′

0 +
√

4(C′
3 )2+(C′

4 )2

2 C′
0 ± C′

3

then the optimal transmission coefficient is in the degenerate
yielding T (i)

opt = 0 if C′
3 < 0 and T (i)

opt = 1 if C′
3 > 0.

The second easily solvable scenario happens when C′
1 =

C′
2 = 0 (relevant, for example, for a double coherent input)

and we get

T (i)
opt =

√
1

2
+ |C′

3|sgn(C′
3)√

4(C′
3)2 + (C′

4)2
, (45)

valid if C′
4 > 0, and the maximum QFI is given by

F (i)
max = C′

0 +
√

4(C′
3)2 + (C′

4)2

2
. (46)

For C′
4 < 0 we have the optimum QFI in degenerate case with

T (i)
opt =

{
0 if C′

3 < 0,

1 if C′
3 > 0.

(47)

The optimal transmission coefficient in the general case (when
none of the C′ coefficients are assumed null) can be found in
the form

T (i)
opt =

√√√√1 ±
√

1 − 4χ2
sol

2
, (48)

where χsol are those solutions of the quartic equation (J3)
that obey χsol ∈ R and |χ2

sol| � 0.5. More details are found
in Appendix J. The results from this section are summarized
in Table II.

C. Symmetric single-parameter QFI F (ii)

The symmetric single-parameter QFI (28) can be written
as

F (ii) = C′′
0 + C′′

1 |T R|2 + C′′
2 |T R|(|T |2 − |R|2) (49)

and the coefficients are given by⎧⎨⎩C′′
0 = V+ − Vcov,

C′′
1 = A − 4(V+ − Vcov),

C′′
2 = −2S+.

(50)

Since F (ii) from Eq. (49) is formally identical to F (2p) from
Eq. (30), in the following we will employ the solutions from
Sec. III C by simply replacing the C coefficients with the
corresponding C′′ ones.

All results from this section are summarized in Table III.

VI. TWO NOTEWORTHY SCENARIOS

Before discussing the applications of the previous results
to some interesting input states, we focus on two special
situations.

A. Condition for no metrological advantage of an external
phase reference

From Eq. (27) [or Eq. (H2) as a matter of fact] we can
immediately obtain F (i) � F (2p) and the condition F (ii) �
F (2p) is also straightforward from Eqs. (23) and (28). In other
words, from a quantum metrological point of view, having ac-
cess to an external phase reference can only be beneficial. Thus
an interesting question to answer would be the following:
what input states render the availability of this external phase
reference useless, irrespective of the transmission coefficient,
T ?

We start our discussion with the asymmetric single-
parameter QFI. The condition for having no metrological
advantage with an external phase reference translates into
F (i) = F (2p), an equality that must be valid for any value of
T . From Eqs. (30) and (34) we immediately have⎧⎪⎨⎪⎩

V+ + Vcov = 0,

V− = 0,

S− + P = 0,

(51)

and, if the input state is separable, the first two conditions
morph into

�2n̂0 = �2n̂1 = 0. (52)

In the case of the symmetric single-parameter QFI, the
condition for no metrological advantage while having access
to an external phase reference translates into F (ii) = F (2p),
implying immediately Fsd = 0. From Eq. (D2) this condition

TABLE III. Optimal transmission coefficient T (ii)
opt and the cor-

responding maximum symmetric single-parameter QFI F (ii)
max in all

discussed scenarios.

Constraints obeyed by the C′′ coefficients

C′′
1 = 0 C′′

1 
= 0 C′′
2 = 0

C′′
2 = 0 C′′

2 
= 0 C′′
1 > 0 C′′

1 < 0

T (ii)
opt Irrelevant

√
1+sgn(C′′

2 )

√
1
2 − sgn(C′′

1 )|C′′
1 |

2
√

C′′
1

2+4C′′
2

2

2
1√
2

0/1

F (ii)
max C′′

0 C′′
0 + C′′

1
8 +

√
C′′

1
2+4C′′

2
2

8 C′′
0 + C′′

1
4 C′′

0
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imposes {
V− = 0,

S− + P = 0.
(53)

This time the first condition (equally valid for entangled and
separable input states) implies �2n̂0 − �2n̂1 = 0, a much
weaker constraint with respect to Eq. (52).

We remark that, if F (i) = F2p, then necessarily F (ii) =
F2p, too. The converse is obviously not true.

As a first example we consider the twin-Fock input state,

|ψin〉 = |n1m0〉 = (â†
1)n

√
n!

(â†
0)m

√
m!

|0〉 (54)

and if we set m = n it is also called a Holland-Burnett state
[41]. Since the constraints (51) are fulfilled, we have

F (2p) = F (i) = F (ii) = 4|T R|2(n + m + 2mn) (55)

and there is no metrological advantage in having an external
phase reference for both single-parameter QFI scenarios.

As a second example, we consider the rather popular co-
herent plus squeezed vacuum input,

|ψin〉 = |α1ξ0〉, (56)

where the coherent state in port 1, |α1〉 = D̂1(α) |01〉, is ob-
tained by applying the displacement or Glauber operator
[37,42,43],

D̂1(α) = eαâ†
1−α∗â1 , (57)

with α = |α|eiθα . The squeezed vacuum in port 0 is obtained
by applying the squeezing operator [37,44]

Ŝ0(ξ ) = e
1
2 [ξ∗â2

0−ξ (â†
0 )2] (58)

to the vacuum state, i.e., |ξ0〉 = Ŝ0(ξ )|00〉. Here ξ = r eiθ .
Usually r ∈ R+ is called the squeezing factor and θ denotes
the phase of the squeezed state.

Since the constraints (52) are impossible to satisfy with the
input state from Eq. (56), we can try to satisfy the weaker
constraints (53). Indeed if we choose now |α| and r so that

|α| = sinh 2r√
2

, (59)

the constraints from Eq. (53) are satisfied. This scenario is
depicted in Fig. 4 for the parameter r = 1.9. Although the
QFI implied by the input state (56) is heavily PMC dependent
[13,24], when condition (59) is fulfilled, there is no metrolog-
ical advantage for F (ii), regardless of the input PMC.

B. Optimal phase sensitivity with one input in the vacuum state

Another interesting scenario arises with an interferometer
having one input in the vacuum state [28]. Without loss of
generality we choose the input port 0 as “dark,” i.e., 〈n̂0〉 =
�2n̂0 = 0. From definitions (B2) we have⎧⎨⎩V± = ±�2n̂1,

A = 4〈n̂1〉,
S± = P = 0.

(60)

FIG. 4. Three QFIs for a coherent plus squeezed vacuum input.
Since our parameters obey the conditions (53), there is no metro-
logical advantage in having an external phase reference for F (ii). It
is noteworthy that the equality F (2p) = F (ii) remains valid for any
value of the the input PMC, 2θα − θ . Parameters used: r = 1.9 and
|α| = sinh 2r/

√
2.

We thus get the Fisher matrix elements⎧⎨⎩Fss = �2n̂1,

Fdd = �2n̂1 + 4|T R|2(〈n̂1〉 − �2n̂1),
Fsd = −(|T |2 − |R|2)�2n̂1.

(61)

The two parameter QFI (23) becomes

F (2p) = 4|T R|2〈n̂1〉 (62)

and two conclusions are immediate: (i) the QFI F (2p) is max-
imal in the balanced case and (ii) the phase sensitivity cannot
surpass the SQL [28].

In the case of the asymmetric single-parameter QFI we get
C′

0 = C′
3 = 2�2n̂1, C′

1 = 4(〈n̂1〉 − �2n̂1), and C′
2 = C′

4 = 0,
implying

F (i) = 4〈n̂1〉|T |2 − 4(〈n̂1〉 − �2n̂1)|T |4. (63)

Once again we consider T real and conclude the following.
(i) For �2n̂1 � 〈n̂1〉

2 the optimal transmission coefficient is
T (i)

opt = 1, yielding the maximal QFI F (i) = 4�2n̂1.

(ii) For �2n̂1 <
〈n̂1〉

2 the optimal transmission coefficient is

T (i)
opt =

√
〈n̂1〉

2(〈n̂1〉 − �2n̂1)
(64)

and it implies the maximum QFI

F (i)
max = 〈n̂1〉2

〈n̂1〉 − �2n̂1
. (65)

We remark that the above-mentioned limit (�2n̂1 < 〈n̂1〉/2) is
simply the existence condition (37) for T (i)

opt adapted when port
0 is in the vacuum state.

For the symmetric single-parameter QFI F (ii) = Fdd

and from Eq. (61) we have the coefficients C′′
0 = �2n̂1,
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STEFAN ATAMAN PHYSICAL REVIEW A 105, 012604 (2022)

C′′
1 = 4(〈n̂1〉 − �2n̂1), and C′′

2 = 0. The optimum transmis-
sion coefficient maximizing this QFI is

T (ii)
opt =

⎧⎨⎩
0/1 if 〈n̂1〉 < �2n̂1,

irrelevant if 〈n̂1〉 = �2n̂1,
1√
2

if 〈n̂1〉 > �2n̂1,
(66)

and we considered T ∈ R again for simplicity. Thus, if the
input state at port 1 has a Poissonian statistics, Topt is irrelevant
since the QFI is constant, F (ii) = �2n̂1 = 〈n̂1〉. This results
carries on even if both inputs have Poissonian statistics [24].

We provide in the following three examples of growing
complexity allowing us to apply all aforementioned results.
As a first example we employ the single Fock input state, i.e.,
Eq. (54) with m = 0,

|ψin〉 = |n100〉. (67)

From Eq. (55), the two-parameter QFI (see the discussion in
Appendix K) is

F (2p) = 4|T R|n. (68)

Since the conditions from Eq. (51) are satisfied we have

F (2p) = F (i) = F (ii) = 4|T R|n. (69)

Thus T (2p)
opt = T (i)

opt = T (ii)
opt = 1/

√
2 and F (2p)

max = F (i)
max =

F (ii)
max = n. The fact that there is no metrological advantage in

having an external phase reference for a single Fock input can
be seen as a quantum metrological proof that Fock states do
not have a well defined phase [37].

As a second example we consider the single coherent input,
|ψin〉 = |α100〉. Since this scenario was already discussed in
Ref. [24], we simply connect the results to the formalism of
this paper. In the two-parameter scenario we have T (2p)

opt =
1/

√
2 and F (2p)

max = |α|2. Since �2n̂1 > 〈n̂1〉 /2, for the asym-
metric single parameter QFI we have optimality for T (i)

opt = 1
and F (i)

max = 4|α|2. For the symmetric single parameter QFI,
from Eq. (66) we get that T (ii)

opt is irrelevant and F (ii)
max = |α|2.

For the asymmetric single-parameter QFI we always have
F (i) � F (2p)

max . Finally, for the symmetric single parameter QFI
we have F (ii) > F (2p) for any T 
= 1/

√
2. Thus having access

to an external phase reference brings a clear advantage for
both F (i) and F (ii).

A final and more complex input state that can depict all
scenarios described at the beginning of this section is the
squeezed-coherent plus vacuum input state,

|ψin〉 = |(αζ )100〉, (70)

where |(αζ )1〉 = D̂1(α)Ŝ1(ζ )|01〉 and ζ = z eiφ . We have an
average number of input photons

〈n̂1〉 = |α|2 + sinh2 z (71)

and a variance

�2n̂1 = sinh2 2z

2
+ |α|2[cosh 2z

− sinh 2z cos (2θα − φ)], (72)

adjustable via the input PMC, 2θα − φ. Indeed, setting
2θα − φ = 0 implies �2n̂1 = sinh2 2z/2 + |α|2e−2z and this
is the minimum variance one can achieve with this input

FIG. 5. Three QFIs for a squeezed-coherent state applied to input
port 1 with the second input port in vacuum for two phase-matching
conditions. Parameters used: |α| = 10 and z = 0.6. The circles mark
the maxima for the two F (i) curves.

state. On the contrary, setting 2θα − φ = ±π yields �2n̂1 =
sinh2 2z/2 + |α|2e2z and this time the input state (70) yields
its maximal variance.

In Fig. 5 we depict two scenarios when �2n̂1 � 〈n̂1〉 /2.
The two-parameter QFI F (2p) (blue solid curve) having no
dependence on �2n̂1 implies that the two-parameter QFI is
invariant with respect to the input PMC. Thus, for both scenar-
ios, F (2p) reaches its maximum F (2p)

max = 〈n̂1〉 for the balanced
case, with this statement remaining true for the two scenarios
depicted in Fig. 6.

The other two solid lines from Fig. 5 depict F (i) and
F (ii) for the input PMC 2θα − φ = 0. Since �2n̂1 < 〈n̂1〉, the

FIG. 6. Three QFIs for a squeezed-coherent state applied to input
port 1 with the second input port in vacuum for two phase-matching
conditions. Parameters used: |α| = 10 and z = 0.6. The circle marks
the maximum for the F (2p) curve.
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single-parameter symmetric QFI F (ii) is maximized in the bal-
anced case, while F (i) peaks at T (i)

opt given by Eq. (64). Given
the parameters used (see the caption of Fig. 5) the optimum
transmission coefficient (64) is found to be T (i)

opt ≈ √
0.72. The

second scenario depicted in Fig. 5 (red dotted line) still obeys
�2n̂1 � 〈n̂1〉 /2; however, this time the inequality is barely
satisfied. Indeed, with the PMC 2θα − φ = 0.15π we find
T (i)

opt = √
0.95 ≈ 1 and thus F (i)

max ≈ 4�2n̂1. Since �2n̂1 <

〈n̂1〉 the single-parameter symmetric QFI is maximized in the
balanced case.

In Fig. 6 we depict two situations when condition �2n̂1 �
〈n̂1〉 /2 is no longer satisfied. Thus the optimum transmission
coefficient for the asymmetric single parameter QFI is T (i)

opt =
1 and F (i)

max = 4�2n̂1 for both PMCs (red solid and, respec-
tively, dotted curve). For input the PMC θα − φ = 0.3π F (ii)

(green solid curve), although still peaked for T (ii)
opt = 1/

√
2, is

almost flat, making the very notion of optimal transmission
coefficient less relevant.

For the input PMC θα − φ = 0.5π we have �2n̂1 > 〈n̂1〉
and from Eq. (66) we find T (ii)

opt = 0/1, with the symmetric
single-parameter QFI, F (ii) (green dotted curve), being thus
maximized in the degenerate case.

VII. GAUSSIAN AND NON-GAUSSIAN INPUT STATE
EXAMPLES

A plethora of quantum states have been shown to have a
quantum metrological interest [1,14,30–33,45–51]. The dis-
cussions, however, were carried out in the balanced case only,
with few exceptions [24–26]. In this section we rediscuss a
number of these states in the nonbalanced scenario for all
three QFIs.

A. Squeezed-coherent plus squeezed vacuum input

Consider the squeezed-coherent plus squeezed vacuum in-
put state [24,25,30],

|ψin〉 = |(αζ )1ξ0〉, (73)

and we recall the notations for the two squeezers: ξ = r eiθ

and ζ = z eiφ . All QFIs are maximized if we impose the input
PMC [24], {

2θα − θ = 0,

2θα − φ = ±π.
(74)

Calculations are detailed in Appendix L. Since C1 > 0 (due
to the PMC choice) and C2 = 0, Eq. (32) immediately implies
that for the two-parameter QFI the optimum is found in the
balanced case. For the asymmetric single-parameter QFI, the
optimum transmission coefficient T (i)

opt is found via Eqs. (J1)

and (L1). If one imposes the optimal input PMC (74), T (i)
opt

simplifies to the expression given in Eq. (L1). In the ex-
perimentally interesting high-intensity coherent regime, i.e.,
|α|2 � {sinh2 r, sinh2 z}, from Eq. (L1) we can approximate
[24]

T (i)
opt ≈

√
1

2(1 − e2(z−r) )
(75)

FIG. 7. Three QFIs for a squeezed-coherent plus squeezed vac-
uum input state. Parameters used: |α| = 103, r = 1, PMC 2θα − θ =
0, and 2θα − φ = π . The squeezing in port 1 is z = 0.1 (dashed lines)
and z = 0.6 (solid lines). The circles mark the maximum value for
each curve.

and one can select an optimum transmission coefficient by
adjusting the ratio of the squeezing factors. Since C′′

1 > 0 and
C′′

2 = 0, the symmetric single parameter QFI is optimized for
in the balanced case, too; thus T (ii)

opt = 1/
√

2.
In Fig. 7 we depict the three QFIs for a squeezed-coherent

plus squeezed vacuum input state in the high-coherent regime
(see figure caption for the parameters used). The dotted and
dashed lines depict the case z = 0.1 and the solid ones z =
0.6. While the QFIs F (2p) and F (ii) are maximized in the
balanced case (irrespective on the value of z), this is not true
for F (i). Increasing the squeezing factor z has a notable effect
on F (i), and, remarkably, this advantage does not vanish in
the experimentally interesting high-coherent regime, |α|2 �
{sinh2 r, sinh2 z}.

We conclude that the input state (73) shows a metrolog-
ical advantage if an external phase reference is available.
In Ref. [24] it has been shown that the theoretically pre-
dicted QFI F (i) can be approached via a balanced homodyne
detection technique, by suitably adjusting the transmission
coefficient of the second beam splitter, BS2.

B. Squeezed-coherent plus squeezed-coherent input

We consider now the squeezed-coherent plus squeezed-
coherent input state [14],

|ψin〉 = |(αζ )1(βξ )0〉, (76)

where for port 0 we have |(βξ )0〉 = D̂0(β )Ŝ0(ξ )|0〉 and β =
|β|eiθβ . Calculations are detailed in Appendix M. We remark
that, since this state does not necessarily imply C2 = 0, the op-
timum for the two-parameter QFI is not always in the balanced
case. Unless a reduced scenario is possible, the optimum
transmission coefficient T (i)

opt is obtained from Eq. (48).
In Ref. [14], the two-parameter QFI for squeezed-coherent

plus squeezed-coherent input state was thoroughly discussed
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FIG. 8. Three QFIs for a squeezed-coherent plus squeezed-
coherent input state. The addition of the second coherent source
brings no noticeable advantage. Parameters used: |α| = 103, r = 1,
z = 0.6, PMC 2θα − θ = 0, 2θα − φ = π , and θα − θβ = 0. The cir-
cles mark the maximum for each curve.

in the balanced case. Among the input PMCs that maximize
F (2p), the first, denoted by (PMC1), involved the constraints
from Eq. (74) plus the supplementary condition

θα − θβ = 0 (77)

for the second coherent source. From Eq. (M6) we can imme-
diately deduce C2 = 0 and C′′

2 = 0, with the QFIs F (2p) and
F (ii) being thus maximized in the balanced case. Since S± =
P = 0, we can use the first reduced scenario from Sec. V B to
find T (i)

opt . In Fig. 8 we plot this scenario. We basically keep the
same parameters used in Fig. 7 (the z = 0.6 case is selected)
and start increasing the coherent amplitude |β| in port 1, while
obeying the PMC (77). As seen from Fig. 8, the incrementa-
tion of the second coherent source from |β| = 20 to |β| = 500
brings an irrelevant increase for all QFIs. Further increasing
|β| � |α| still yields a minimal increase for all considered
QFIs. We conclude that with the PMC (77) all energy put into
the coherent beam from port 0 is simply wasted.

The second scenario, denoted (PMC2) [14],⎧⎪⎨⎪⎩
2θα − θ = 0,

2θα − φ = 0,

θα − θβ = 0,

(78)

was shown to be adapted to the high-coherent regime
({|α|2, |β|2} � {sinh2 r, sinh2 z}), at least as far as F (2p) is
concerned. We extend now this scenario for all three QFIs.
Since again from Eqs. (M7) we find C2 = C′′

2 = 0, we have
T (2p)

opt = T (ii)
opt = 1/

√
2. Finding again S± = P = 0, we can use

the first reduced scenario from Sec. V B to find T (i)
opt . We

depict this scenario in Fig. 9. The same input parameters from
Fig. 8 are employed, except for the input PMCs. While F (2p)

and F (ii) show a relative enhancement as |β| increases, the
performance of F (i) remains modest, well below the results

FIG. 9. Three QFIs for a squeezed-coherent plus squeezed-
coherent input state. The addition of the second coherent source
brings some increase for F (2p) and F (ii) in the case of F (i). Parame-
ters used: |α| = 103, r = 1, z = 0.6, PMC 2θα − θ = 0, 2θα − φ =
0, and θα − θβ = 0. Each circle marks the maximum of the corre-
sponding curve.

from Fig. 8. We conclude that (PMC2) is, too, a rather poor
choice as far as the maximization of F (i) is concerned.

We discuss now the last scenario, implying the PMCs from
Eq. (74) plus the condition

θα − θβ = π

2
(79)

and we denote these combined constraints by (PMC3). In
Ref. [14], employing the two-parameter QFI, F (2p), (PMC3)
has been shown to be optimal in the low coherent regime
({|α|2, |β|2}  {sinh2 r, sinh2 z}). We will use it nonetheless
in the high-coherent regime and show that, surprisingly, it can
actually bring a substantial metrological advantage, however,
not for F (2p), but for the single-parameter QFI, F (i). From
Eqs. (M8) it becomes obvious that, for this scenario, none of
the involved QFIs are necessarily optimized in the balanced
case.

The results for (PMC3) are depicted in Fig. 10. Even for
a small coherent amplitude in port 0, i.e., |β| = 20 (|β|2 
|α|2), its effect is noticeable when it comes to the single-
parameter QFI, F (i). Contrary to (PMC1) and (PMC2), F (i)

max
rapidly increases with |β| and the (PMC3) scenario simply
outperforms the previously discussed ones.

We conclude that employing the PMCs (74) and (79) for a
squeezed-coherent plus squeezed-coherent input state is more
than justified if an external phase reference is available. In
this case, it can bring a real gain even for small values of the
coherent amplitude |β|. Even more interestingly, this advan-
tage remains intact in the experimentally interesting scenario
where |α|2 � {sinh2 r, sinh2 z} and |β|2 � {sinh2 r, sinh2 z}.

In Ref. [32] the input state (76) with a single-parameter
QFI F (i) was employed and the authors concluded that “Un-
balanced devices may be also considered, which however
lead to inferior performances”. As we showed in this section,
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FIG. 10. Three QFIs for a squeezed-coherent plus squeezed-
coherent input state. The addition of the second coherent source
brings a hefty increase in the case of F (i). Parameters used: |α| =
103, r = 1, z = 0.6, PMC 2θα − θ = 0, 2θα − φ = π , and θα − θβ =
π/2. Each circle marks the maximum of the corresponding curve.
The gray curves are given as reference and correspond to the ones
from Fig. 7, i.e., for β = 0.

some input parameters and PMCs confirm their assessment;
however, others contradict it.

C. Coherent plus Fock input

Consider the coherent plus Fock input state,

|ψin〉 = |α1n0〉, (80)

and from Eq. (B2) we have⎧⎨⎩V± = ±|α|2,
A = 4(n + |α|2 + 2n|α|2),
S± = P = 0.

(81)

The C coefficients C0 = C2 = 0 and C1 = 4(n + 2n|α|2) are
immediately obtained from Eq. (I4); the two-parameter QFI
is thus found to be

F (2p) = |α|2 + 4|T R|2(n + 2n|α|2). (82)

Since C1 > 0 (C1 = 0 only if α = 0 and n = 0, i.e., the input
is the vacuum state) the optimum transmission coefficient is
T (2p)

opt = 1/
√

2 and in this case we get the maximum two-
parameter QFI

F (2p)
max = |α|2 + n(1 + 2|α|2), (83)

a result also reported in Ref. [34]. The C′ coefficients are
found to be ⎧⎪⎨⎪⎩

C′
0 = C′

3 = 2|α|2,
C′

1 = 4n(1 + 2|α|2),

C′
2 = C′

4 = 0.

(84)

Consequently the asymmetric single-parameter QFI reads

F (i) = 2|α|2 + 4n(1 + 2|α|2)|T R|2 + 2|α|2(|T |2 − |R|2).
(85)

Imposing a balanced interferometer yields

F (i) = 2|α|2 + n(1 + 2|α|2). (86)

However, this value is not optimal.3 The optimum transmis-
sion coefficient T (i)

opt is given by Eq. (38) and for this scenario
is found to be

T (i)
opt =

√
1

2
+ |α|2

2n(1 + 2|α|2)
, (87)

a result that is valid4 for n 
= 0. Inserting this value into
Eq. (85) yields the maximum QFI,

F (i)
max = 2|α|2 + n(1 + 2|α|2) + |α|4

n(1 + 2|α|2)
. (88)

For the high coherent input regime (|α|2 � n, |α|2 � 1) we
can approximate

F (i)
max ≈ 2|α|2(n + 1). (89)

The symmetric single-parameter QFI (49) is found to be

F (ii) = |α|2 + 4n(1 + 2|α|2)|T R|2 (90)

and it is obviously maximal in the balanced case when
we have F (ii)

max = F (2p)
max = |α|2 + n(1 + 2|α|2), a result5 also

found in Ref. [52].
What is truly remarkable about the input state (80) is the

total absence of an input PMC, regardless of the QFI consid-
ered. Once again, we can argue that this is due to the Fock
states having no well-defined phase [37].

In Fig. 11 we depict the effect of adding n = 1 and n = 2
photons at input port 0, while having a coherent state at input
port 1. We voluntarily used the high-intensity regime (|α|2 �
1) in order to show that the effect of a single photon in port 0
is having a significant impact on all three QFIs in this regime.
Adding more photons in port 0 enhances the effect, while also
displacing T (i)

opt towards the balanced case. This result could
have been also anticipated from Eq. (87), since, for |α|2 � 1,

T (i)
opt ≈

√
1

2
+ 1

4n
. (91)

While the results from Fig. 11 might seem impressive, it
would be more useful to compare them with, e.g., the coherent
plus squeezed vacuum input state (56) under the constraint of

3In Ref. [33] the value reported for the QFI is F (i) = 4[|α|2 +
n(1 + 2|α|2) cos ϕ] and, curiously, their result depends on the inter-
nal phase shift, ϕ, although being the result of the unitary generator
Ĝ = Ĵz, it should not [18]. If we consider the best case scenario, i.e.,
ϕ → 0, we still get four times F (2p) from Eq. (83), not F (i) from
Eq. (86).

4For n = 0 the input state (80) degenerates into a single coherent
input state (67) and the discussion from Sec. VI B applies.

5In Ref. [52] the authors consider a slightly more complex input
state, namely the separable density-matrix input state (some nota-
tions have been adapted) ρ̂in = ρ̂1 ⊗ |n0〉 〈n0|. They find the QFI
F (ii) = 2 〈n̂1〉 n + 〈n̂1〉 + n. For a coherent state at input port 1 we
have 〈n̂1〉 = |α|2, implying the result from Eq. (90) in the balanced
case.
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FIG. 11. Coherent plus Fock state input for n = 0, 1, 2 and |α| =
103. The Fock states can be seen as a “boost” to the coherent source
in terms of QFI. Each circle marks the maximum of the correspond-
ing curve.

having the same average number of input photons, i.e., n =
sinh2r.

We thus keep the same coherent amplitude from Fig. 11
and choose n = 1. In order to have a fair comparison we
choose for the squeezed vacuum r ≈ 0.88; thus 〈n0〉 =
1.02 ≈ 1.

In Fig. 12 we plot both scenarios for the same average
number of input photons N̄ = 106 + 1 ≈ 106. The coherent
plus squeezed vacuum input state outperforms the coherent
plus Fock input for all three considered QFIs, with a factor
of roughly 2. This tendency continues and for n � 1 we

FIG. 12. Coherent plus Fock input state versus the coherent plus
squeezed vacuum input state. Parameters used: |α| = 103, n = 1 for
the Fock input and r = 0.88 (sinh2 r ≈ 1) with the PMC 2θα − θ = 0
for the squeezed vacuum input. Each circle marks the maximum of
the corresponding curve.

can easily estimate the ratio of the maximum QFIs, e.g.,
F (i)

max|coh-sqz/F (i)
max|coh-Fock. The optimal QFI F (i) for a coherent

plus squeezed vacuum input state in the high-coherent regime
can be approximated as [24]

F (i)
max|coh-sqz ≈ |α|2e2r ≈ 4|α|2

√
n(n + 1), (92)

while from Eq. (88) we have F (i)
max|coh-Fock ≈ 2n|α|2. We end

up with the ratio of the maximum QFIs,

F (i)
max|coh-sqz

F (i)
max|coh-Fock

≈ 2

√
n

n + 1
. (93)

In conclusion, both input states display a similar scaling with
the average number of input photons, with the coherent plus
squeezed vacuum input showing a better scaling coefficient.
However, this advantage comes only at a cost, namely by
precisely obeying the input PMC condition 2θα − θ = 0.

D. Two-mode squeezed vacuum input

As a last example we consider the two-mode squeezed
vacuum (TMSV) [31,37] input state,

|ψin〉 =
∞∑

n=0

(−1)n

cosh r
(eiθ tanh r)n |n1n0〉, (94)

also called the twin-beam state. This state can be elegantly
obtained as |ψin〉 = Ŝtm(ξ ) |0100〉, where the operator Ŝtm(ξ )
is defined by [37]

Ŝtm(ξ ) = eξ∗â0 â1−ξ â†
0 â†

1 (95)

and can be seen as a two-mode analog of the squeezing oper-
ator (58). Calculations are detailed in Appendix N and for the
two-parameter QFI we find

F (2p) = 16|T R|2 sinh2 r(1 + sinh2 r). (96)

Thus T (2p)
opt = 1/

√
2 and F (2p)

max = 4 sinh2 r(1 + sinh2 r). The
asymmetric single-parameter QFI F (i) is found to be

F (i) = sinh2 2r + 16|T R|2 sinh2 r(1 + sinh2 r) (97)

and the optimum transmission coefficient T (i)
opt is found in the

balanced case, too, yielding F (i)
max = 8 sinh2 r(1 + sinh2 r).

Finally, the symmetric single-parameter QFI F (ii) is

F (ii) = 16|T R|2 sinh2 r(1 + sinh2 r) (98)

and T (ii)
opt = 1/

√
2. We immediately remark that in the case of

F (ii) there is no metrological advantage in having access to an
external phase reference. At a second glance this should come
as no surprise since the constraints (53) are satisfied.

We can compare our results with previously reported ones.
The total average number of input photons for TMSV is N̄ =
2 sinh2 r; thus our previous results read

F (2p) = F (ii) = 4|T R|2N̄ (N̄ + 2). (99)

The optimum QFI is found in the balanced case, yielding
F (2p) = F (ii) = N̄ (N̄ + 2) and this is indeed the result re-
ported in Ref. [31]. In Ref. [53] the authors report F (ii) = 0
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FIG. 13. TMSV input state versus the coherent plus squeezed
vacuum input state. Parameters used for TMSV: r = 2 (sinh2 r ≈ 13)
and θ = 0. For the coherent plus squeezed vacuum input we used the
same r, |α| = sinh r, and the PMC 2θα − θ = 0. Each circle marks
the maximum of the corresponding curve.

(see Table I) for TMSV and a balanced interferometer; how-
ever, they seem to have confused the quantum states before
and after BS1.

We compare now the TMSV with a coherent plus squeezed
vacuum input state (56). We impose the same total average
photon number for both states N̄ = 2 sinh2 r; we thus choose
|α| = sinh r with the PMC 2θα − θ = 0, a configuration that
yields the optimum performance [12,13] for the input state
(56).

In Fig. 13 we depict the performance of both input
states. Since condition (40) is satisfied, for the coherent plus
squeezed vacuum input state T (i)

opt = 0 and

F (i)
max = 4�2n̂0 = 2N̄ (N̄ + 2). (100)

Thus both input states yield the same maximum single-
parameter QFI, F (i)

max, with the difference that, while the
TMSV reaches this value in the balanced case, the coherent
plus squeezed vacuum attains it in the degenerate T = 0 case.
Another advantage of TMSV is its lower immunity with re-
spect to the value of T , with its QFI F (i) varying between
F (i)

max/2 and F (i)
max.

When it comes to the two-parameter QFI the performances
of both input states are nearly identical, with an optimum
transmission coefficient in the balanced case, T (2p)

opt = 1/
√

2.
Finally, for the symmetrical single-parameter QFI, F (ii), the
performances are nearly identical with an insignificant advan-
tage for the coherent plus squeezed vacuum input state for
values of T far from the balanced case.

VIII. DISCUSSION

In this work we considered the QFI maximization for
an unbalanced interferometer with a generic pure input
state. However, since most reported works in the literature
consider the balanced interferometric scenario, we briefly

give now the conditions to have the maximum QFI in this
case.

For the two-parameter QFI the necessary and sufficient
condition for T (2p)

opt = 1/
√

2 is C2 = 0 and C1 > 0. For many
input states this translates into well chosen input PMCs plus
the condition that at least one of 〈â0〉 = 0 or 〈â1〉 = 0 must
be satisfied. The same remarks apply to the symmetric single-
parameter QFI, F (ii). Thus, for the single-coherent, coherent
plus squeezed vacuum, squeezed-coherent plus squeezed vac-
uum, twin-Fock, coherent plus Fock, and TMSV, to name
just a few, the maximum for both F (2p) and F (ii) is in the
balanced scenario, with the appropriate input PMC (when
applicable).

In the case of the asymmetric single-parameter QFI, F (i),
the conditions for having T (i)

opt = 1/
√

2 are more elaborate. For
example, if C′

2 = C′
4 = 0 and C′

1 > 0 (roughly equivalent to
the previous conditions) one must also add C′

3 = 0 implying
�2n̂1 = �2n̂0. The same condition (C′

3 = 0) must be imposed
to the input states yielding C′

1 = C′
2 = 0. Thus, e.g., for the

twin Fock and TMSV the optimum QFI F (i)
max is achieved for

a balanced interferometer.
This paper addressed the maximization of the QFI and this

was done by choosing the appropriate transmission coefficient
(T ) for the first beam splitter. As discussed in Appendix F,
the transmission coefficient of the second BS (T ′) had no
influence whatsoever on the QFI. However, this is not true
when one considers a given detection scheme. Indeed, when
optimizing the interferometric phase sensitivity for a specific
detection scheme, �ϕdet, besides the input state, both T and T ′
come into play. For some input states, analytic formulas for T ′
that optimize a specific input state and detection scheme can
be found [24,25], but no general solution has been reported, to
the best of our knowledge. We will address the optimization of
T ′ for a generic input state and for a number of given detection
schemes in a future work.

IX. CONCLUSIONS

In this paper we addressed the problem of finding the
optimum transmission coefficient of the first beam splitter
in a Mach-Zehnder interferometric setup in the sense of
maximizing the quantum Fisher information. We addressed
both the single- and two-parameter quantum Fisher infor-
mation cases and gave closed-form analytical expressions
for the optimum transmission coefficient for all discussed
scenarios.

We also found the conditions needed to be fulfilled by the
input state in order to render the availability of an external
phase reference useless, irrespective of the value of the beam
splitter transmission coefficient.

A number of input states were discussed and the T
dependence of each QFI assessed. Whenever possible, we
compared our findings with the ones already reported in the
literature. Among the considered input states, the squeezed-
coherent plus squeezed-coherent input was shown to yield a
significantly higher performance for the asymmetric single-
parameter QFI, F (i), than its two-parameter counterpart,
F (2p), if one uses the appropriate input phase-matching
conditions.
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Possible evolutions of this work include the generalization
to nonpure input states and taking into account losses.
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APPENDIX A: FISHER MATRIX COEFFICIENT Fss

From Eq. (15) and using the fact that |∂ϕsψ〉 = −iĜs|ψ〉,
the sum-sum Fisher matrix element yields

Fss = �2n̂0 + �2n̂1 + 2 cov(n̂0, n̂1) (A1)

and, remarkably, Fss is the only Fisher matrix coeffi-
cient that does not have a T dependence. For a separable
input state cov(n̂0, n̂1) = 0 Eq. (A1) thus simplifies to
Fss = �2n̂0 + �2n̂1.

APPENDIX B: SHORTHAND NOTATIONS

In order to improve readability, we introduce the following shorthand notations. For an entangled input state, we define⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V± = �2n̂0 ± �2n̂1,

Vcov = 2 cov(n̂0, n̂1),

A = 4[〈n̂0〉 + 〈n̂1〉 + 2(〈n̂0n̂1〉 − |〈â†
0â1〉|2 − Re{〈(â†

0)2â2
1〉 − 〈â†

0â1〉2})],

S± = 4 Im{〈â†
0n̂0â1〉 − 〈n̂0〉〈â†

0â1〉} ± 4 Im{〈â0â†
1n̂1〉 − 〈n̂1〉〈â0â†

1〉},
P = 4 Im{〈â†

0â1〉},

(B1)

where Im denotes the imaginary part. For a separable input state we have⎧⎪⎪⎨⎪⎪⎩
V± = �2n̂0 ± �2n̂1,

A = 4[〈n̂0〉 + 〈n̂1〉 + 2(〈n̂0〉〈n̂1〉 − |〈â0〉〈â1〉|2 − Re{〈(â†
0)2〉〈â2

1〉 − 〈â†
0〉2〈â1〉2})],

S± = 4 Im{(〈â†
0n̂0〉 − 〈â†

0〉〈n̂0〉)〈â1〉} ± 4 Im{〈â0〉(〈â†
1n̂1〉 − 〈n̂1〉〈â†

1〉)},
P = 4 Im{〈â†

0〉〈â1〉}.
(B2)

APPENDIX C: FISHER MATRIX COEFFICIENT Fdd

From Eq. (14) and using the fact that |∂ϕd ψ〉 = −iĜd |ψ〉 = −iĴz|ψ〉, we have Fdd = 4�2Ĵz. We employ now the relation

e−iϑ Ĵx Ĵze
iϑ Ĵx = cos ϑ Ĵz − sin ϑ Ĵy (C1)

to Eqs. (F4) and (F5). After some straightforward algebra we are led to the result from Eq. (17). We also find by direct calculation⎧⎪⎪⎨⎪⎪⎩
�2Ĵz = 1

4

[
�2n̂0 + �2n̂1 − 2 cov(n̂0, n̂1)

]
,

�2Ĵy = 1
4 [2(〈n̂0n̂1〉 − 〈â†

0â1〉 〈â0â†
1〉) + 〈n̂0〉 + 〈n̂1〉 − 2 Re{〈(â†

0)2â2
1〉 − 〈â†

0â1〉2}],
ĉov(Ĵz, Ĵy) = 1

2 Im{〈â†
0n̂0â1〉 − 〈n̂0〉 〈â†

0â1〉} + 1
2 Im{〈â0â†

1n̂1〉 − 〈n̂1〉 〈â0â†
1〉},

(C2)

and, since we parametrized T = |T | = cos ϑ
2 and R = i

√
1 − |T |2, we have cos2 ϑ = (|T |2 − |R|2)2, sin2 ϑ = 4|T R|2, and

sin 2ϑ = 2|T R|(|T |2 − |R|2). Thus the difference-difference Fisher matrix coefficient Fdd for an unbalanced interferometer
is found to be

Fdd = (|T |2 − |R|2)2[�2n̂0 + �2n̂1 − 2 cov(n̂0, n̂1)]

+ 4|T R|2[〈n̂1〉 + 〈n̂0〉 + 2(〈n̂0n̂1〉 − |〈â†
0â1〉|2 − Re{〈(â†

0)2â2
1〉 − 〈â†

0â1〉2})]

− 8|T R|(|T |2 − |R|2)(Im{〈â†
0n̂0â1〉 − 〈â†

0â1〉〈n̂0〉} + Im{〈â0â†
1n̂1〉 − 〈â0â†

1〉〈n̂1〉}). (C3)

If we assume a separable input state, Eq. (C3) simplifies to [24]

Fdd = (|T |2 − |R|2)2(�2n̂0 + �2n̂1)

+ 4|T R|2[〈n̂0〉 + 〈n̂1〉 + 2(〈n̂0〉〈n̂1〉 − |〈â0〉〈â1〉|2 − Re{〈(â†
0)2〉〈â2

1〉 − 〈â†
0〉2〈â1〉2})]

− 8|T R|(|T |2 − |R|2)[Im{(〈â†
0n̂0〉 − 〈â†

0〉〈n̂0〉)〈â1〉 + 〈â0〉(〈â†
1n̂1〉 − 〈n̂1〉〈â†

1〉)}] (C4)

and with respect to the cited reference we grouped some terms in order to make the T dependence more obvious. Regardless if
the input state is separable or entangled, the Fdd Fisher matrix element can be written in shorthand notations (30) by using the
identity (|T |2 − |R|2)2 = 1 − 4|T R|2, where in the case of an entangled input state the notations from Eq. (B1) are employed,
while in the case of a separable input state, the ones from (B2) should be used. If, moreover, we assume a balanced interferometer,

012604-14



QUANTUM FISHER INFORMATION MAXIMIZATION IN AN … PHYSICAL REVIEW A 105, 012604 (2022)

Fdd reduces to

Fdd = A = 〈n̂0〉 + 〈n̂1〉 + 2
(〈n̂0〉〈n̂1〉 − |〈â0〉〈â1〉|2 − Re{〈(â†

0)2〉〈â2
1

〉 − 〈â†
0〉2〈â1〉2}) (C5)

and this expression is found in the literature [11,14], sometimes with supplementary simplifying assumptions [e.g., 〈â0〉 = 0
yielding Eq. (3) from Ref. [27] or Eq. (13) from Ref. [10] when assuming a coherent input state in port 1].

APPENDIX D: FISHER MATRIX COEFFICIENT Fsd

Employing relation (C1), after some straightforward algebra we are led to the result from Eq. (20). Please note that we used
the covariance (21) and not the symmetrized covariance (18) because N̂ commutes with both Ĵy and Ĵz. By direct calculation one
finds {

cov(N̂, Ĵz ) = 1
2 (�2n̂0 − �2n̂1),

cov(N̂, Ĵy) = Im{〈â†
0n̂0â1〉 − 〈n̂0〉 〈â†

0â1〉} − Im{〈â0â†
1n̂1〉 − 〈â0â†

1〉 〈n̂1〉} + Im{〈â†
0â1〉}. (D1)

Thus, with respect to the input field operators, the “sum-difference” Fisher matrix element is found to be

Fsd = (|T |2 − |R|2)(�2n̂0 − �2n̂1) − 4|T R|Im{〈â†
0â1〉}

+ 4|T R|(Im{〈â0â†
1n̂1〉 − 〈â0â†

1〉〈n̂1〉} − Im{〈â†
0n̂0â1〉 − 〈â†

0â1〉〈n̂0〉}). (D2)

For a separable input state we have the result [24]

Fsd = (|T |2 − |R|2)(�2〈n̂0〉 − �2〈n̂1〉) − 4|T R|Im{〈â†
0〉〈â1〉}

− 4|T R|Im{(〈â†
0n̂0〉 − 〈â†

0〉〈n̂0〉)〈â1〉} + 4|T R|Im{〈â0〉(〈â†
1n̂1〉 − 〈â†

1〉〈n̂1〉)}. (D3)

APPENDIX E: TWO-PARAMETER QFI AND THE FISHER MATRIX

Since we have a two-parameter estimation problem (ϕd and ϕs) we are compelled to use the Fisher matrix [23]. Definition
(14) allows one to construct the 2 × 2 Fisher information matrix [10,11,18]

F =
[
Fss Fsd

Fds Fdd

]
(E1)

and the quantum Cramér-Rao bound inequality implies [10,38][
�2ϕs cov(ϕs, ϕd )

cov(ϕs, ϕd ) �2ϕd

]
= � � F−1 = 1

FssFdd − FsdFds

[
Fdd −Fsd

−Fds Fss

]
. (E2)

Generally, this matrix inequality, i.e., � � F−1, cannot be saturated for all components. However, we are solely interested in
the difference-difference phase estimator, �ϕd ; thus the only inequality we are interested in saturating is

�2ϕd � (F−1)dd = Fss

FssFdd − FsdFds
(E3)

and in order to simplify the writing we were led to introduce the definition from Eq. (23).

APPENDIX F: OPEN VERSUS CLOSED MZI

When it comes to estimating the QFI in a Mach-Zehnder interferometric setup, most authors simply disregard the second beam
splitter [10,11,23,28] and consider the quantum state |ψ〉 (see Fig. 2) when applying the QFI definition (14). Other authors,
though, consider the full interferometer (see Fig. 1), some in the case of the classical Fisher information [12] (see also the
Supplemental Material of [10]), but mostly in the case of QFI [27,38,39]. Indeed, in the balanced case, starting from Eq. (8) and
due to the exponential form of the generator (i.e., Ûϕ = eiϕĜ; see Ref. [18]) the QFI is simply [27,38,39,50,52]

F = 4�2Ĵy = 4(〈ψout|Ĵ2
y |ψout〉 − 〈ψout|Ĵy|ψout〉2

). (F1)

In the following, we will show that, when it comes to estimating the QFI, ignoring the second BS is justified. This assertion
remains true even in the nonbalanced case, with beam splitters having different transmission coefficients (i.e., ϑ ′ 
= ϑ). This
remark is not true for the classical Fisher information, since one starts from the output conditional probabilities [18].

We focus on the difference-difference Fisher matrix element (see Sec. III B), but all other evaluations pursue an identical
route. From definition (14) we have

Fdd = 4(〈∂ϕd ψout|∂ϕd ψout〉 − | 〈ψout|∂ϕd ψout〉 |2). (F2)
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Evaluating |∂ϕd ψout〉 = ∂ |ψout〉 /∂ϕd and considering the first term from Eq. (F2) takes us to

〈∂ϕd ψout|∂ϕd ψout〉 = 〈ψin| Û †
BS(ϑ )Û †

ϕ ĴzÛBS(ϑ ′)Û †
BS(ϑ ′)ĴzÛϕÛBS(ϑ ) |ψin〉 (F3)

and unitarity implies Û †
BS(ϑ ′)ÛBS(ϑ ′) = I; thus Eq. (F3) simplifies to

〈∂ϕd ψout|∂ϕd ψout〉 = 〈ψin| Û †
BS(ϑ )Ĵ2

z ÛBS(ϑ )|ψin〉. (F4)

In this last expression we used the fact that Ûϕ commutes with both Ĵz and N̂ . A similar simplification applies to the second term
of Fdd ,

〈ψout|∂ϕd ψout〉 = 〈ψin| Û †
BS(ϑ )ĴzÛBS(ϑ )|ψin〉 (F5)

and the operator ÛBS(ϑ ′) modeling the second BS does not appear in the final expression of Fdd . This remark equally applies
to the partial derivatives in respect with ϕs. This is why starting from Sec. III B we excluded BS2 from our setup, arriving at the
scheme usually found in the literature, namely Fig. 2.

APPENDIX G: SINGLE-PARAMETER ASYMMETRIC QFI F (i)

From Eq. (9) we obtain the field operator transformation

n̂3 = N̂

2
− cos ϑ Ĵz + sin ϑ Ĵy (G1)

and by applying it to the definition (25) we are led to

F (i) = �2N̂ + 4 cos2 ϑ�2Ĵz + 4 sin2 ϑ�2Ĵy − 4 sin 2ϑ ĉov(Ĵz, Ĵy) − 4 cos ϑ cov(N̂, Ĵz ) + 4 sin ϑ cov(N̂, Ĵy). (G2)

By comparing the above expression with Eqs. (15), (17), and (20), the relation (27) connecting F (i) to the Fisher matrix
coefficients is immediate. By replacing the variance and covariance terms via Eqs. (C2) and (D1) we obtain

F (i) = 4|R|4�2n̂0 + 4|T |4�2n̂1

+ 4|T R|2[〈n̂0〉 + 〈n̂1〉 + 2(cov(n̂0, n̂1) + (〈n̂0n̂1〉 − |〈â†
0â1〉|2) − Re{〈(â†

0)2â2
1〉 − 〈â†

0â1〉2})
]

+ 16|T R||R|2Im{(〈â†
0n̂0â1〉 − 〈n̂0〉〈â†

0â1〉)} − 16|T R||T |2Im{(〈â0â†
1n̂1〉 − 〈n̂1〉〈â0â†

1〉)} + 8|T R|Im{〈â†
0â1〉}. (G3)

If the input state is separable, we have the result [24]

F (i) = 4|R|4�2n̂0 + 4|T |4�2n̂1 + 4|T R|2[〈n̂0〉 + 〈n̂1〉 + 2
(〈n̂0〉〈n̂1〉 − |〈â0〉|2|〈â1〉|2 − Re

{〈(â†
0)2〉〈â2

1

〉 − 〈â†
0〉2〈â1〉2})]

+ 8|T R|Im{〈â†
0〉〈â1〉} + 16|T R||R|2Im{(〈â†

0n̂0〉 − 〈â†
0〉〈n̂0〉)〈â1〉} − 16|T R||T |2Im{〈â0〉(〈â†

1n̂1〉 − 〈â†
1〉〈n̂1〉)}. (G4)

We can use the identity 4|T |2�2n̂1 + 4|R|2�2n̂0 = 2(|T |2 − |R|2)(�2n̂1 − �2n̂0) + 2(�2n̂1 + �2n̂0) in order to write the above
expressions in the form suitable for Eq. (34).

APPENDIX H: SINGLE-PARAMETER ASYMMETRIC QFI F (i) WITH THE PHASE SHIFT IN THE UPPER MZI ARM

In all our calculations from Sec. IV A we considered our phase shift in the lower arm of our MZI, i.e., ϕ1 = 0 and ϕ2 = ϕ in
Fig. 2. Other authors might take the opposite setup with ϕ1 = ϕ and ϕ2 = 0. This implies the modification of the definition of
the QFI to F (i)

(n̂2 ) = 4�2n̂2. Using the field operator transformation n̂2 = N̂/2 + cos ϑ Ĵz − sin ϑ Ĵy we are led to

F (i)
(n̂2 ) = �2N̂ + 4 cos2 ϑ�2Ĵz + 4 sin2 ϑ�2Ĵy − 4 sin 2ϑ ĉov(Ĵz, Ĵy) + 4 cos ϑ cov(N̂, Ĵz ) − 4 sin ϑ cov(N̂, Ĵy) (H1)

and this time the relation connecting F (i)
(n̂2 ) to the Fisher matrix elements is

F (i)
(n̂2 ) = Fss + Fdd + 2Fsd . (H2)

The results in terms of maximal QFI remain unchanged, only the input PMCs have to be adapted.

APPENDIX I: CALCULATIONS FOR THE TWO-PARAMETER QFI

For an entangled input state, the Fisher matrix coefficient Fdd from Eq. (C3) can be put in the form

Fdd = V+ − Vcov + |T R|2[A − 4(V+ − Vcov)] + |T R|(|T |2 − |R|2)S+ (I1)

and we employed the shorthand notations (B1). If the input state is separable (Vcov = 0) the above expression simplifies to

Fdd = V+ + |T R|2(A − 4V+) + |T R|(|T |2 − |R|2)S+. (I2)
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For both entangled and separable input states Fsd from
Eq. (22) can be put in the form

Fsd = (|T |2 − |R|2)V− − |T R|(P + S−). (I3)

Combining the appropriate Fss, Fdd , and Fsd coefficients in
shorthand notation allows us to write F (2p) from Eq. (30)
where, for an entangled input state, the coefficients are given
by ⎧⎪⎪⎪⎨⎪⎪⎪⎩

C0 = V+ − Vcov − V 2
−

V++Vcov
,

C1 = A − 4(V+ − Vcov) + 4 V 2
−

V++Vcov
− (P+S− )2

V++Vcov
,

C2 = 2
(−S+ + (P+S− )V−

V++Vcov

)
,

(I4)

while for a separable input state they simplify to⎧⎪⎪⎨⎪⎪⎩
C0 = 4 �2 n̂0�

2 n̂1
V+

,

C1 = A − 16�2 n̂0�
2 n̂1

V+
− (P+S− )2

V+
,

C2 = 2
(−S+ + (P+S− )V−

V+

)
.

(I5)

In order to find the optimum transmission coefficient, Topt, we
use Eq. (12) to write |T |2 − |R|2 = ±

√
1 − 4|T R|2 (“+” if

|T | > |R|); thus Eq. (30) becomes

F (2p) = C0 + C1|T R|2 ± C2|T R|
√

1 − 4|T R|2. (I6)

We seek the extrema of this function and find the solutions

|T R|2sol = 1

8
± |C1|

8
√

C2
1 + 4C2

2

. (I7)

By solving the equation |T |2 − |T |4 = |T R|2sol we have a
double ± indeterminacy. Replacing the found solutions into
Eq. (I6) and using some simple arguments we eliminate the
nondesired solutions ending up with the result from Eq. (32).

APPENDIX J: CALCULATIONS FOR THE
SINGLE-PARAMETER QFI F (i)

Applying the notations from Eq. (B1) to the QFI (G3)
yields the coefficients⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C′
0 = 2V+,

C′
1 = A − 4(V+ − Vcov),

C′
2 = −2S+,

C′
3 = −2V−,

C′
4 = 2(P + S−).

(J1)

If the input state is separable, we employ the notations from
(B2) to the QFI (G4) and the result is formally identical to the
above one except that Vcov = 0.

In order to find the optimum transmission coefficient in the
most general case, we apply the replacement (12) to Eq. (34)
arriving at the result

F (i) = C′
0 + |T R|2C′

1 ∓ |T R|
√

1 − 4|T R|2C′
2

∓
√

1 − 4|T R|2C′
3 + |T R|C′

4. (J2)

We consider now |T R| as our variable and impose
∂F (i)/∂|T R| = 0. After some simple algebra we get the quar-
tic equation

Aχ4 + Bχ3 + Cχ2 + Dχ + E = 0, (J3)

where for readability we denote |T R| = χ and the coefficients
are ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A = 16
(
C′

1
2 + 4C′

2
2)

,

B = 16(4C′
2C

′
3 + C′

1C
′
4),

C = 4
(
4C′

3
2 − 4C′

2
2 − C′

1
2 + C′

4
2)

,

D = −4(2C′
2C

′
3 + C′

1C
′
4),

E = C′
2

2 − C′
4

2
.

(J4)

Equation (J3) is analytically solvable [54,55]. After finding
the four solutions χsol, it is likely that some results can be
immediately removed by the conditions χsol ∈ R and χsol �
0.5 (equivalent to |T | � 1). For the remaining ones we have
to solve |T R|2 = χ2

sol and using the identity |R|2 = 1 − |T |2
we immediately arrive at Eq. (48).

APPENDIX K: TWO-PARAMETER QFI FOR THE SINGLE
FOCK INPUT

One can argue that F (2p) from Eq. (68) is meaningless
because Fss and Fsd for the input state (67) are null; we are
thus in a 0 : 0 situation while applying definition (23). We can
avoid this inconvenience by assuming an input state slightly
different from Eq. (67), namely by applying a small coherent
amplitude in port 0,

|ψin〉 = |n1β0〉. (K1)

This is actually the scenario discussed in Sec. VII C, however,
with the input ports inverted. We have the result F (2p) =
4|T R|(n + |β|2 + 2n|β|2) and by applying the limit β → 0
Eq. (68) is immediate.

APPENDIX L: CALCULATIONS FOR THE
SQUEEZED-COHERENT PLUS SQUEEZED

VACUUM INPUT

Using the previously found results from Eqs. (71) and (72)
we find the shorthand notations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V± = sinh2 2r
2 ± sinh2 2z

2

±|α|2[cosh 2z − sinh 2z cos (2θα − φ)],

A = 4

(
|α|2[cosh 2r + sinh 2r cos(2θα − θ )]

+ cosh 2r cosh 2z+sinh 2r sinh 2z cos(θ−φ)−1
2

)
,

S± = P = 0.

Since C2 = 0, the optimum for the two-parameter QFI occurs
in a balanced interferometer. For the single-parameter QFI, we
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insert the above results into (J1) to get the C′ coefficients. If
we impose the optimum input PMC (74) we find the optimum
BS1 transmission coefficient [24],(
T (i)

opt

)2 = 1

2
+1

4

sinh2 2z− sinh2 2r+2|α|2e2z

|α|2(e2r − e2z )− sinh2(r + z) cosh 2(r − z)
.

(L1)

APPENDIX M: CALCULATIONS FOR THE
SQUEEZED-COHERENT PLUS

SQUEEZED-COHERENT INPUT

In order to compute the shorthand notations (B2) for a
squeezed-coherent plus squeezed-coherent input state we first
need to assess some terms appearing in these expressions. The
variance for a squeezed-coherent state in input port 1 was
already given in Eq. (72). Similar calculations for a squeezed-
coherent state in input port 0 can be easily done [14] and
combining these results gives

V± = sinh2 2r

2
+ |β|2[cosh 2r − sinh 2r cos(2θβ − θ )]

± sinh2 2z

2
± |α|2[cosh 2z − sinh 2z cos (2θα − φ)].

(M1)

For the second term, after some calculations we find

A = |β|2[cosh 2z + sinh 2z cos(2θβ − φ)]

+ |α|2[cosh 2r + sinh 2r cos(2θα − θ )]

+ cosh 2r cosh 2z − sinh 2r sinh 2z cos(θ − φ) − 1

2
.

(M2)

We also have the results [14]{〈n̂1â1〉 − 〈n̂1〉〈â1〉 = α sinh2 z − α∗
2 sinh 2z eiφ,

〈n̂0â0〉 − 〈n̂0〉〈â0〉 = β sinh2 r − β∗
2 sinh 2r eiθ .

(M3)

Thus

S± = 2| αβ|[2(sinh2 r ∓ sinh2 z) sin(θα − θβ )

− sinh 2r sin(θα + θβ − θ )

∓ sinh 2z sin(θα + θβ − φ)]. (M4)

Finally, we find

P = 4|αβ| sin(θα − θβ ). (M5)

If we impose (PMC1), i.e., Eqs. (74) and (77), the shorthand
notations read⎧⎪⎨⎪⎩

V± = sinh2 2r
2 + |β|2e−2r ± sinh2 2z

2 ± |α|2e2z,

A = 4[|β|2e−2z + |α|2e2r + sinh2(r + z)],

S± = P = 0,

(M6)

and we immediately have C2 = C′′
2 = 0 implying that both

F (2p) and F (ii) are optimized in the balanced case under the
constraints C1 > 0 and, respectively, C′′

1 > 0. If we assume

(PMC2) from Eq. (78) we end up with the coefficients

⎧⎪⎨⎪⎩
V± = sinh2 2r

2 + |β|2e−2r ± sinh2 2z
2 ± |α|2e−2z,

A = 4[|β|2e2z + |α|2e2r + sinh2(r − z)],

S± = P = 0,

(M7)

and, again, since C2 = C′′
2 = 0 both F (2p) and F (ii) are op-

timized in the balanced case if the constraints C1 > 0 and,
respectively, C′′

1 > 0 are met.
Finally, if we assume (PMC3) we find the coefficients

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V± = sinh2 2r

2 + |β|2e2r ± sinh2 2z
2 ± |α|2e2z,

A = 4[|β|2e2z + |α|2e2r + sinh2(r + z)],

S± = 2|αβ|[2(sinh2 r ∓ sinh2 z) + sinh 2r ± sinh 2z],

P = 4|αβ|,
(M8)

and this time none of the QFIs is necessarily maximized in the
balanced case.

APPENDIX N: CALCULATIONS FOR THE TWO-MODE
SQUEEZED VACUUM INPUT

We recall the fundamental relations needed to work with
TMSV states [37],

{
Ŝ†

tm(ξ )â0Ŝtm(ξ ) = cosh râ0 − sinh r eiθ â†
1,

Ŝ†
tm(ξ )â1Ŝtm(ξ ) = cosh râ1 − sinh r e−iθ â†

0.
(N1)

Since the input state is entangled we use now Eqs. (B1) as
definitions and get

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V+ = sinh2 2r
2 ,

V− = 0,

Vcov = sinh2 2r
2 ,

A = 16 sinh2 r cosh2 r,

S+ = S− = P = 0.

(N2)

Through straightforward calculations we find the averages

〈n̂0〉 = 〈n̂1〉 = sinh2 r (N3)

and the variances

�2n̂0 = �2n̂1 = sinh2 2r

4
. (N4)

Since this input state is entangled, we expect cov(n̂0, n̂1) 
= 0.
We find by direct calculation

〈n̂0n̂1〉 = (cosh2 r + sinh2 r) sinh2 r (N5)
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and by employing Eq. (N3) the covariance is found to be

cov(n̂0, n̂1) = sinh2 2r

4
. (N6)

For the two-parameter QFI we compute the C coefficients
from Eq. (I4) and have⎧⎪⎨⎪⎩

C0 = 0,

C1 = 16 sinh2 r cosh2 r,

C2 = 0,

(N7)

and we immediately get the result from Eq. (96). Inserting
the shorthand notations (N2) into Eq. (J1) takes us to the C′

coefficients ⎧⎪⎨⎪⎩
C′

0 = sinh2 2r,

C′
1 = 16 sinh2 r cosh2 r,

C′
2 = C′

3 = C′
4 = 0.

(N8)

We thus find F (i) from Eq. (97). Finally, from Eq. (50) we
have ⎧⎪⎨⎪⎩

C′′
0 = 0,

C′′
1 = 16 sinh2 r cosh2 r,

C′′
2 = 0,

(N9)

yielding the symmetric single-parameter QFI from Eq. (98).
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