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Entangling power of symmetric two-qubit quantum gates and three-level operations
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The capacity of a quantum gate to produce entangled states on a bipartite system is quantified in terms of
the entangling power. This quantity is defined as the average of the linear entropy of entanglement of the states
produced after applying a quantum gate over the whole set of separable states. Here we focus on symmetric
two-qubit quantum gates, acting on the symmetric two-qubit space, and calculate the entangling power in terms
of the appropriate local invariant. A geometric description of the local equivalence classes of gates is given
in terms of the su(3) Lie algebra root vectors. These vectors define a primitive cell with hexagonal symmetry
on a plane, and through the Weyl group the minimum area on the plane containing the whole set of locally
equivalent quantum gates is identified. We give conditions to determine when a given quantum gate produces
maximally entangled states from separable ones (perfect entanglers). We find that these gates correspond to
one-fourth of the whole set of locally distinct quantum gates. The formalism developed here is applicable to
general three-level systems. Via the Majorana representation, qutrit transformations can be regarded as having
entangling power and hence classified as perfect and nonperfect entanglers and be grouped into local-equivalence
classes of the associated symmetric two-qubit space. The results are illustrated by an anisotropic Heisenberg
model, the Lipkin-Meshkov-Glick model, and two coupled quantized oscillators with cross-Kerr interaction,
which we use to obtain three-level gates relevant in qutrit quantum computation.
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I. INTRODUCTION

Entanglement is a purely quantum-mechanical phe-
nomenon that is essential to achieving universal quantum
computation based on interacting qubits systems [1]. Quan-
tum logic gates are the building blocks to perform quantum
algorithms, where the generation of entangled states from a
separable set of states is mandatory to achieve the desired
results [2].

Most of the proposed quantum computer architectures are
based on multiqubit processors. Nevertheless, there are also
proposals that use higher-dimensional systems called qudits,
which have the advantage of reducing the number of physical
entities required to perform calculations [3]. Among these
are three-level systems, called qutrits, which are the smallest
systems that may exhibit purely quantum correlations such
as contextuality [4], and they have been used to construct
three-level quantum gates [5,6]. Qutrits may be emulated by
a two-qubit system symmetric under particle exchange. This
allows us to think of many three-level transformations in terms
of operations on the symmetric two-qubit symmetric space.

Within the Majorana representation [7,8], symmetric two-
qubit states appear as two points (“stars”) on the unit sphere.
It can be shown that the distance between the two stars maps
bijectively to the concurrence [9]. States with maximally sep-
arated stars correspond to Bell states, while states with stars
at the same position are separable. This allows one to think
of any transformation between these kinds of states as rigid
or nonrigid motion of the associated Majorana constellation,
where the latter (former) does (does not) change the entangle-

ment of states. Whenever there is no possibility for confusion,
we will refer to a two-qubit symmetric state (space) as a
symmetric state (space) only.

Since many transformations on symmetric (three-level)
spaces involve changing the entanglement (distance between
the Majorana stars), it is important to quantify the capacity
of quantum gates to generate it. Such a quantity is called the
entangling power [10]. It is defined as the average linear en-
tropy of the states produced by a quantum gate V̂ acting on the
manifold of all separable states. For general two-qubit quan-
tum gates (TQQGs) the entangling power can be compactly
written in terms of a two-qubit gate local invariant [11] and
sets values to classify TQQGs as perfect entanglers [11,12],
that is to say, a quantum gate that at least produces a Bell
state out of the set of separable states. Nevertheless, these
expressions do not quantify the entangling power of gates act-
ing irreducibly on the symmetric subspace, called symmetric
quantum gates (SQGs), because they involve a contribution
from separable nonsymmetric states. Here we will derive the
appropriate expression of the entangling power for SQGs and
find an onset value above which they can be classified as
perfect entanglers.

As noted by Zhang et al. [13], distinct TQQGs can
be put together into sets whose elements differ by local
transformations, called local equivalence classes (LECs). By
group-theoretic methods, the authors were able to represent
all LECs of TQQG classes on a tetrahedron and showed that
half of its volume is occupied by perfect entanglers. Motivated
by Ref. [13], we develop a geometric description of the LECs
of symmetric gates. We find that these are characterized by a
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periodic set of points on a plane, displaying hexagonal sym-
metry with lattice vectors determined by the su(3) algebra root
vectors. This allows us to identify a minimum extension where
all inequivalent LECs of SQGs are located, known as the Weyl
chamber, and to show that one-fourth of it is occupied by
perfect entanglers.

This geometric approach and the entangling power con-
cept are relevant to study operations in general three-level
systems. This is a major motivation for the present work.
For example, a natural question that arises in a qutrit-based
quantum computation protocol is whether a set of quantum
gates can transform the basis kets into each other [5]. As will
be explained in the next section, this is only possible as long as
the qutrit operations at hand have the ability to generate Bell-
type states from separable states in the associated symmetric
space. Three-level quantum gates with such a property need
to forcefully have a minimum entangling power that will be
determined later and can be located at a special zone in the
Weyl chamber. The theoretical development presented here
provides further understanding of general three-level transfor-
mations. These are of fundamental importance, for example,
in the study of coherent population transfer [14–16] and the
dynamics of spin-1 Bose-Einstein condensates [17–19] and
might be useful for implementing quantum computation or
information tasks based on qutrit processors, which are an
active research field [20–25].

This paper is organized as follows. In Secs. II and III we
present brief descriptions of the Majorana representation and
of the Cartan decomposition of TQQGs and how it is related to
SQGs, respectively. In Sec. IV the appropriate local invariant
for SQGs is defined. Section V is devoted to analyzing the
entangling power and using it to classify SQGs as perfect
entanglers. In Sec. VI the developed formalism is applied to
some example models involving two interacting spins [26],
the three-level Lipkin-Meshkov-Glick (LMG) model from
nuclear physics [27], and two coupled quantized oscillators
through the cross-Kerr effect of quantum optics [28]. Sec-
tion VII is devoted to conclusions. Appendix A includes the
derivation of the entangling power formula and Appendix B
contains a theorem which allows us to classify SQGs as per-
fect entanglers.

II. MAJORANA STELLAR REPRESENTATION

The Majorana representation is a geometric depiction of
quantum states contained in a finite Hilbert space, which can
give insight into their entangling properties [9]. The idea
behind its construction is to obtain a complex polynomial
out of the probability amplitudes that define a state for some
fixed basis. The roots of such a polynomial can be represented
by points in the Argand diagram and mapped into a sphere
by stereographic projection [7,9]. For a quantum state |ψ〉 =∑

ak |k〉 in an n-dimensional Hilbert space, the Majorana
polynomial is given by

n∑
k=1

(−1)kak√
(n − k)!k!

zn−k = 0. (1)

The solutions {zk} lie on the complex plane and their projec-
tion onto the Riemann sphere is made by the association zk =

FIG. 1. Action of a quantum gate on a separable initial state (with
concurrence C = 0) which ends up as a Bell state (C = 1) on the
Majorana sphere. A quantum gate with this property is referred to as
a perfect entangler

tan(θk/2)eiφk . Each root zk is called a Majorana star, while the
whole set of roots is referred to as the Majorana constellation
of the quantum state |ψ〉. In fact, any two quantum states with
the same constellation are equivalent, up to a global phase,
which makes this representation a good description of their
projective space.

The (n + 1)-dimensional Hilbert space has a bijection onto
the space of n qubits with particle permutation symmetry. This
implies that symmetric qubit states have associated Majorana
constellations. The zk roots define the components of a ket
state in the symmetric space, by the relation

|ψ〉 = 1√
n!Nn

n∑
P

|uP(1), uP(2), . . . , uP(n)〉 , (2)

where |ui〉 represents the one-qubit state (cos θi
2 , eiφi sin θi

2 )T ;
the symbol P denotes all the possible permutations of the
|ui〉 states and Nn is a normalization coefficient [29]. Thus,
the Majorana constellation serves as the mapping between an
(n + 1)-dimensional Hilbert space and the space of n-qubit
symmetric wave functions.

For symmetric two-qubit states, the Majorana constellation
consists of two stars. As shown in Ref. [9], their concur-
rence is proportional to the square of the chordal distance
between the stars. This implies that states with zero concur-
rence have their Majorana stars at the same position, that is,
they have degenerate stars. In contrast, maximally entangled
states have stars occupying antipodal positions on the sphere.
For monopartite three-level systems we may also speak of
entangled states as those whose Majorana stars are not co-
incident.

Along the same line of thought, three-level transformations
will be referred to as entangling as long as they can produce
a state with nondegenerate Majorana stars from a state with
a degenerate constellation. Figure 1 illustrates a separable
state (degenerate constellation) which, after being acted on
by a SQG, ends up as a fully entangled state (antipodal Ma-
jorana stars); such unitary transformations are called perfect
entanglers and will be discussed later in the paper. Consider
a three-level system Hilbert space spanned by |±1〉 and |0〉
in the spin-1 angular momentum basis, where we have sup-
pressed the index denoting the total angular momentum j = 1.
The mapping to the symmetric space is given by the asso-
ciations |1〉 , |−1〉 , |0〉 → |0, 0〉 , |1, 1〉 , (|0, 1〉 + |1, 0〉)/

√
2,

respectively, as suggested by the sum of angular momenta of
two spin- 1

2 particles. The symmetric states above follow from
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Eq. (2) by taking n = 2. The first two states on the three levels
correspond to separable states on the symmetric space and
have degenerate Majorana constellations, while the third one
corresponds to a Bell state and has stars on antipodal posi-
tions. Thus, a SQG (qutrit or three-level operation) converting
|±1〉 to |0〉 has to be a perfect entangler. Examples of these
gates in three-level systems are some phase gates and the
SWAP12 and SWAP23 gates, which have found applications in
qutrit-based quantum computing [5]. The association between
the angular momentum basis and the symmetric two-qubit
states above will be extensively used in the rest of the paper,
because it will allow us to translate entanglement and related
concepts to three-level systems.

III. CARTAN DECOMPOSITION OF UNITARY
TWO-QUBIT AND THREE-LEVEL TRANSFORMATIONS

The whole set of transformations on the Hilbert space of
two qubits can be classified as local and nonlocal. Local oper-
ations are those physical processes that act separately only on
one component of the bipartite system and, as a consequence,
do not change the entanglement properties of the state. Local
two-qubit gates can always be written as a tensor product of
one-qubit operations

V̂ (12) = V̂ (1) ⊗ V̂ (2), (3)

which belong to the SU(2) ⊗ SU(2) Lie group. We will re-
strict V̂ to denote transformations on the two-qubit space, not
necessarily symmetric.

In general, TQQGs that are elements of the set SU(4) that
cannot be written as in (3) are called nonlocal. There is a
very concise way of writing every element of SU(4) given
by the KAK decomposition of the group. Namely, for every
V̂ ∈ SU(4), we have the identity [30]

V̂ = K̂1ÂK̂2, (4)

Â = exp

[
i

2

∑
k

ck σ̂
(1)
xk

⊗ σ̂ (2)
xk

]
. (5)

The K̂ factors belong to the SU(2) ⊗ SU(2) Lie group; hence
they are local. As usual, the σ̂xk operators denote the Pauli
matrices, with k = 1, 2, 3 and xk = x, y, z. The Â factor con-
tains the nonlocal part of the quantum gates and is given
by the exponential of linear combinations of the operators
σ̂ (1)

xi
⊗ σ̂ (2)

xi
. Two-qubit quantum gates that differ only by a

K̂ factor are said to be in the same local equivalence class.
These set of operators span the Cartan subalgebra of the SU(4)
Lie group, which is a maximally commuting subalgebra of
su(4) [13]. It can be seen that the (c1, c2, c3) coordinates have
a period of π each, and thus the topological structure of the
local equivalence classes is a 3-torus [13]. The c = (c1, c2, c3)
point will be called a geometrical point hereafter. For a more
detailed discussion of the Cartan decomposition of SU(4) and
its algebra, namely, the su(4) Lie algebra, see Ref. [13].

There is a special case of TQQGs that act irreducibly on
the symmetric and antisymmetric two-qubit ket spaces. There-
fore, if V̂ (r) is an element of such a special set, in which (r)

denotes a reducible representation, it has a matrix form

V̂ (r) =
(

Û 0
0 1

)
, (6)

where Û ∈ SU(3) acts on any symmetric linear combination
of the computational basis; Û is thus the SQG we are inter-
ested in, as was said in the Introduction. The last factor acts
on the antisymmetric Bell state |φ−〉 = 1√

2
(|01〉 − |10〉).

Since reducible gates are a subgroup of SU(4), the Cartan
decomposition holds for all elements of the form (6). Also,
for reducible TQQGs, the Cartan decomposition is composed
of reducible factors. To see this, first let us note that Â is
reducible, as will be seen in the next section. With this, it is
readily shown that a sufficient condition for V̂ to be reducible
is that K̂ be reducible. To show that reducibility of V̂ implies
the reducibility of K̂ , we use the Cartan decomposition of the
SU(3) Lie group explained in Appendix A. This states that
Û ∈ SU(3) can be written as k̂1B̂k̂2, where k̂i = e−iθi n̂i·Ĵ and B̂
is the symmetric part of the Â matrix expressed in the angular
momentum basis. Hence we have(

Û 0
0 1

)
=

(
k̂1 0
0 1

)(
B̂ 0
0 1

)(
k̂2 0
0 1

)
.

The upper and lower off-diagonal elements are three-
dimensional column and row vectors, respectively. When
expressing each factor on the right-hand side of the equation
above in the computational basis, one sees that the reducible
matrices containing k̂ map to e−i(θ/2)n̂·σ̂ ⊗ e−i(θ/2)n̂·σ̂ , as shown
in more detail in Appendix A.

IV. LOCAL INVARIANTS AND EQUIVALENCE CLASSES
OF SYMMETRIC QUANTUM GATES

Two-qubit quantum gates that are equivalent up to a local
gate factor [see Eq. (4)] have the same local invariants [13,31].
Local invariants for two-qubit quantum gates are determined
by the set of eigenvalues of

M̂ = V̂ T
B V̂B, (7)

where the label B indicates that the gate V̂ is expressed in
the Bell basis B = {|ψ+〉 , |ψ−〉 , |φ+〉 , |φ−〉}. The transfor-
mation matrix between the Bell states and the computational
basis, ordered as {|00〉 , |01〉 , |10〉 , |11〉}, is

Q̂† = 1√
2

⎛
⎜⎝

1 0 0 1
0 i i 0
i 0 0 −i
0 1 −1 0

⎞
⎟⎠. (8)

Thus, the V̂ in the Bell basis is given by V̂B = Q̂†V̂ Q̂. The Lie
algebra of the local components of two-qubit quantum gate
is isomorphic to the Lie algebra of the SO(4) group [13],
through the map defined by Eq. (8). Thus, any two-qubit
quantum gate in the Bell basis, whose decomposition is given
by (4), becomes

V̂B = Ô1F̂ Ô2, (9)

where Ô1,2 = Q̂†K̂1,2Q̂ ∈ SO(4) and F̂ = Q̂†ÂQ̂, which is di-
agonal in this basis. The Bell states |ψ+〉, |ψ−〉, |φ+〉, and
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FIG. 2. Complex argument � of Trm̂ in the O plane (13). The
α1 and α2 are the root vectors of the su(3) Lie algebra. Every pair
of antiparallel short arrows lies in a plane belonging to the set that
generates the Weyl group. The inset shows a subcell divided into six
slices, each one corresponding to a Weyl chamber.

|φ−〉 are thus eigenstates of the Â matrix, with respective
eigenvalues

λ1 = ei(c1−c2+c3 )/2, (10a)

λ2 = ei(c1+c2−c3 )/2, (10b)

λ3 = ei(−c1+c2+c3 )/2, (10c)

λ4 = e−i(c1+c2+c3 )/2. (10d)

The eigenvalues of the matrix M̂ are determined by the
quantities (Tr M̂ )2 and (Tr M̂ )2 − Tr M̂2, which in turn serve
to define the local invariants of two qubit quantum gates,
namely,

G1 = 1
16 (TrM̂ )2, (11a)

G2 = 1
4 [(TrM̂ )2 − TrM̂2]. (11b)

Thus, distinct TQQGs having the same local invariants are
said to be locally equivalent.

Reducible TQQGs can be expressed as in Eq. (6) and their
action on the symmetric subspace only depends on Û . The
local invariant of the symmetric part of the gate is determined
by the eigenvalues of

m̂ = Û T
B ÛB (12)

and is then independent of the λ4 eigenvalue. Since we have
considered special unitary gates, this implies that

c1 + c2 + c3 = 0. (13)

Had we regarded general unitary gates, removing the extra
phase factor would lead to the same condition above; thus all
LECs can be located in the plane defined in (13).

The secular equation of the matrix m̂ is given by

λ3 − Tr(m̂)λ2 − Tr∗(m̂)λ − 1 = 0, (14)

where we have used (9) and (10) to simplify the related factor
Tr2(m̂) − Tr(m̂2). Thus, for SQGs the eigenvalues of m̂ are
determined by its trace. In this case, there is only one local
invariant which determines the LECs, in clear contrast to gen-
eral TQQGs, where LECs are determined by two invariants
G1 and G2. The argument of Trm̂ is plotted in Fig. 2.

We define the SQGs local invariant as

G = 1
9 [Tr(m̂)]2. (15)

The norm of G can be compactly written in terms of the
(c1, c2, c3) vector as

|G| = 1 − 4
9 [sin2(c12) + sin2(c13) + sin2(c32)], (16)

where ci j is shorthand for ci − c j . Thus, distinct SQGs having
the same value of G are said to be locally equivalent.

The whole extension of the O plane (13) has more in-
formation than is actually needed, given the periodicity the
matrix Â [Eq. (5)] up to local gate factors K̂ . Consider
the vectors α1 = (−π, 0, π ) and α2 = (0, π,−π ) lying on
the O plane. The Â matrix is obviously periodic along these
directions. Also, the angle between them is 2π/3. Thus, SQGs
whose geometrical points differ by a nα1 + mα2 translation
(n, m ∈ Z) are locally equivalent, and the whole set of local
equivalent classes can be found within the hexagonal primitive
cell spanned by α1 and α2, which is displayed in Fig. 2 by the
area between these vectors and the dotted lines. The vectors
α1 and α2 are the root vectors of the su(3) Lie algebra and the
set {±α1,±α2,±(α1 + α2)} (solid arrows in Fig. 2) form the
root space of the algebra [32].

Consider the reflection matrix (σ̂β̂ )i j = δi j − 2βiβ j/β
2

(i, j = x, y, z) on the plane normal to the unit vector β̂, which
is obtained from any vector lying between two successive
root vectors (dotted arrows). It can be checked that the effect
of σ̂β̂ is to permute and complex conjugate the eigenvalues
of the m̂ matrix. From Fig. 2 it can be seen that reflection
on the plane normal to the vertical β̂ vectors interchanges the
triangles composing the unit cell depicted there. This means
that knowledge of Trm̂ on a subcell determines its value on
the other subcell by complex conjugation, and thus all LECs
can be located in just one subcell.

Reflection on the planes normal to the root vectors gen-
erates the Weyl group of su(3); the corresponding reflection
matrices are given by σ̂α̂, where α̂ is a normalized root vector.
The action of this group on the Â matrix is permuting its
eigenvalues and thus leaves the character of m̂ invariant. As
in the general two-qubit case [13], the Weyl group allows us
to define a minimum extension containing the whole set of
local equivalence classes, called the Weyl chamber [13,32].
By bisecting one triangle of the primitive cell by the planes
normal to the root space we get the inset of Fig. 2. Every
slice of the triangle contains all the local-equivalence classes
of SQGs up to complex conjugation and represents a Weyl
chamber. Thus, by means of the σ̂β̂ and σ̂α̂ reflections, we
have reduced to a minimum the extension needed to locate
all distinct LECs. We will take advantage of this in the next
section to obtain the ratio of perfect entanglers to all the
possible SQGs.

V. ENTANGLING POWER OF SYMMETRIC
TWO-QUBIT QUANTUM GATES

A. Expression and properties

The entangling power of a quantum gate acting on a bipar-
tite system is a measure of the ability for these gates to create
entangled states from the set of all bipartite separable states.
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FIG. 3. Entangling power ep of SQGs on the O plane. The par-
allelogram spanned by the root vectors α1 and α2 corresponds to the
primitive cell. The smaller section defined by β1 and β2 contains all
the possible values of ep.

In the general two-qubit case [10], the entangling power of
a gate V̂ [Eq. (4)] is defined as the average of the linear
entropy of entanglement E (|ψ〉) = 1 − Tr(ρ̂2

1 ) over the set
of all separable symmetric two-qubit states with a uniform
probability,

ep(Â) = E (V̂ |ψ1〉 ⊗ |ψ2〉), (17)

with the overbar indicating such an average. Note that we have
written ep as a function of Â, since local transformations do
not change the entanglement of a quantum state. The entangle-
ment power is very informative, given that it can be compactly
expressed in terms of the two-qubit |G1| local invariant and
can be used as an indicator of whether a quantum gate is a
perfect entangler or not [11]. Nevertheless, for SQGs acting
on symmetric states only, this expression of the entangling
power is not adequate since it takes into account all two-qubit
separable states, not necessarily symmetric. Hence, we need to
restrict the entangling power definition to symmetric states in
order to obtain the correct expression. Accordingly, we define
the entangling power of SQGs as

ep(Û ) = E (Û |u〉 ⊗ |u〉), (18)

where |u〉 is a one-qubit state, as in Sec. II.
We are now going to derive an explicit formula for this

expression. First of all, let us consider a uniform distribution
of initial |u, u〉 states, for which the Majorana constella-
tion consists of two stars in the same position. Referring to
Appendix B for the details in the derivation, the entangling of
SQGs is

ep(Û ) = 3
10 (1 − |G|), (19)

with |G| given by the expression (16). It is remarkable that the
entangling power obtained can be so compactly expressed in
terms of the local invariant |G|, which only depends on the
trace of matrix m̂ [Eq. (12)]. This result resembles that of the
entangling power for general two-qubit gates [11], namely,
ep = 2(1 − |G1|)/9.

The function ep(c1, c2, c3) [Eq. (19)] presents minimum
and maximum magnitudes at the geometrical points c =
(0, 0, 0) and (−π/3, 0, π/3), which are zero and 3

10 , re-
spectively. As Fig. 3 suggests, these extreme values are also
reached at additional points c, obtained through symmetry

FIG. 4. Convex hull of the matrix m̂ associated with SQGs for
several entanglement capabilities. The vertices on the unitary circle
are defined by the phase of the eigenvalues of m̂. (a) Perfect entangler
with a maximum value of ep. (b) Perfect entangler with a minimum
value of ep. (c) Not a perfect entangler. The entangling character of
the gate is geometrically determined by the location of the origin,
inside (perfect) or outside (nonperfect) the convex hull

operations which are translations along β vectors and C6 rota-
tions about the (1,1,1) axis. Note also that ep is invariant under
translations along this same vector, which means that the same
pattern as that shown in Fig. 3 is displayed in planes parallel
to the O plane (13).

B. Perfect entanglers

A TQQG V̂ is a perfect entangler if it is capable of produc-
ing a fully entangled state from a separable one. The condition
for this is that the convex hull of eigenvalues of the M̂ matrix
contains the origin in the c space [13]. For SQGs the same
condition holds, applied to the corresponding matrix m̂. The
proof of this follows along the same lines as in the general
case [13]; in order to make the paper more self-contained, we
sketch it in Appendix C.

Figure 4 shows the convex hulls of eigenvalues for three
distinct cases. The eigenvalues of unitary matrices all have
unit length, and thus the circle in the figure is unitary. The
vertices of the triangles are defined by the phase of λ2

i , which
are the eigenvalues of m̂. In Fig. 4(a) the eigenvalues are sep-
arated by 2π/3. This case corresponds to the maximum value
ep = 3

10 of the entangling power, since λ2
1 + λ2

2 + λ2
3 = 0 and

|G| = 0. An example of three-level quantum gates, and hence
SQGs, with such an entangling power are the SWAP12(23) gates,
used in qutrit NMR [5]. In general, the vertices of the trian-
gle for this convex hull are φ1 = θ + 2π/3, φ2 = θ − 2π/3,
and φ3 = θ . In the O plane, the geometrical point is given
by c = π (−1, 1, 0)/3. This corresponds to the white dot in
Fig. 5 at the bottom of the blue triangle that, in terms of the
root vectors, is written as (α1 + α2)/3. Thus, all SQGs with
ep = 3

10 are locally equivalent to the SWAP12(23) gates.
The case in Fig. 5(b) also represents a convex hull for a

perfect entangling SQG, with the requirement that λ2
i = −λ2

j .
This makes |G| = 1

9 and, as a consequence, the entangling
power is then 4

15 . In fact, the phase gate U3 (θ ) gate [5] has
this value of ep for θ = π/3; the U8 [5] phase gate also has
this entangling power at θ = π/

√
3. Since any deformation of

such a convex hull such that it no longer contains the origin
makes ep less than 4

15 , this value is the minimum such that
the corresponding SQGs are perfect entanglers. A SQG with
this convex hull can be built with coefficients π (−2, 1, 1)/6,
corresponding to the geometrical point of Û3 (π/3) and
Û8 (π/

√
3). Other coefficients (c1, c2, c3) satisfying this con-

dition can be obtained through symmetry transformations on
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FIG. 5. Weyl chamber of the local-equivalence classes. The blue
area contains all the perfect entanglers and it is one-fourth of the tri-
angle. The white dot corresponds to the maximum perfect entangler
ep and is located at ( 2

3 , 0) in the (s1, s2) coordinates or, equivalently,
on the point (α1 + α2)/3 (see Fig. 3).

the geometric point just given. The case when the convex hull
does not contain the origin is depicted in Fig. 5(c), the SQGs
not being perfect entanglers (ep < 4

15 ).
Now that we can classify SQGs as perfect entanglers or not

according the geometrical point c, we are at a position to cal-
culate the ratio of perfect entanglers to nonperfect entanglers.
To do this we will calculate the area of the Weyl chamber
whose geometrical points correspond to perfect entangling
SQGs. Let us restrict (c1, c2, c3) to the Weyl chamber, as
shown in Fig. 5. A comparison with Fig. 3 indicates the
following associations: v = β1 + β2, vx = (α1 + α2)/2, and
vy = (α1 − α2)/6. As before, the α1 and α2 root vectors are
taken as π (−1, 0, 1) and π (0, 1,−1). Hence, the vectors
in Fig. 5 are v = π

3 (−2, 1, 1), vx = π
2 (−1, 1, 0), and vy =

π
6 (−1,−1, 2). Any geometrical point in the Weyl chamber
shown in Fig. 5 can be expressed as c = s1vx + s2vy, where
s1, s2 ∈ [0, 1] and s2 � s1. Upon multiplying the λ2 eigenval-
ues by a total phase, its convex hull gets rotated and does not
affect whether or not it contains the origin. Thus, regarding
c1 + c2 + c3 = 0 and setting λ2

2 = 0 [see Eqs. (10)], we have

φ1 = π (s1 + s2), (20)

φ3 = π (s2 − s1), (21)

where φ1 and φ3 are the phase angles of λ2
1 and λ2

3, respec-
tively. With this, a SQG is a perfect entangler if and only if
the condition

0 � φ1 � π, −π � φ3 � −π + φ1 (22)

holds, where all phases are equivalent modulo 2π . The case
φ1 > π always yields nonperfect entanglers by the imposed
conditions on s1 and s2 (see the discussion below). Let us
analyze all sections of the Weyl chamber to determine whether
they are composed of perfect entanglers or not.

Area 1. This area is constrained to the (s1, s2) coordinates:
0 � s1 < 1

2 and 0 � s2 � s1. These inequalities imply that
s1 + s2 < 1, hence 0 � φ1 < π , leaving us in the domain
of (22). By substituting φ3 into the right-hand side of (22)
we get s1 � 1

2 , which is a contradiction given the imposed
conditions on s1 and s2. Thus, all geometrical points in this
section of the Weyl chamber do not correspond to perfect
entanglers.

Areas 2 and 3. For these regions we have the following re-
striction on the (s1, s2) coordinates: 1

2 < s1 � 1 and 1 − s1 <

s2 � s1. These imply φ1 > π and −π < φ3 < 0. Thus, both
λ2

1 and λ2
3 are on the lower half of the unit circle [see Fig. 4(c)],

none of them at π . The convex hull does not contain the
origin and the geometrical points do not correspond to perfect
entanglers.

Blue area. In this case, the (s1, s2) coordinates are con-
strained by the inequalities: 1

2 � s1 � 1 and 0 � s2 � 1 − s1.
This implies π � φ1 � π/2 and consequently we must focus
on the expression (22). Inserting Eqs. (20) and (21) into the
right inequality of (22), we obtain −1 � s2 − s1 � −1 + s1 +
s2; −1 � s2 − s1 holds trivially, while the right-hand side of
the last inequality implies s1 � 1 − s1, which holds since we
are considering 1 � s1 � 1

2 . The expression (22) holds in this
case and all the geometrical points contained in the blue area
correspond to perfect entanglers.

The blue area occupies one-fourth of the total Weyl cham-
ber. In this sense, the LECs classified as perfect entanglers
represent one-fourth of the total SQGs. This contrasts with the
general case, in which perfect entanglers are one-half of the
total TQQGs. The white dot in Fig. 5 corresponds to perfect
entanglers with maximum ep, while the borders in this area
correspond to perfect entanglers with minimum ep.

It is worth noting at this point that the geometric picture of
LECs of SQGs does not trivially arise from that of TQQGs.
For example, the Weyl chamber of TQQGs is a tetrahedron
that, without loss of generality, has one vertex on the ori-
gin O. One of its edges, called the OA3 edge [13,33], along
geometrical points of the form (c, c, c), contains a point P
which represents a perfect entangler, the two-qubit SWAP1/2

to be specific. Nevertheless, for SQGs, the convex hull on
any geometrical point of the form (c, c, c) does not contain
the origin, as can be seen from inspection of Eqs. (10) and,
as a result, the entangling power is zero along the OA3 edge.
This fundamental difference between the geometry of LECs
of SQGs and TQQGs proves that the former is not just a trivial
special case of the latter.

We have seen that the SQGs show a simpler geometric
description than general two-qubit gates, merely because there
is only one local invariant in the former, while the latter has
two. This simplification may still hold for a symmetric spaces
with a higher number of qubits. For example, one can classify
the states of an arbitrary number of symmetric qubit states into
distinct entanglement families, while this seems an impossible
task for the nonsymmetric case [34]. For this reason it may
be worth exploring the geometry of entangling operations in
higher dimensional symmetric qubit spaces.

VI. EXAMPLES

In this section we will apply the theory developed so far to
three distinct physical models with three-dimensional Hilbert
spaces, namely, the anisotropic Heisenberg model, the LMG
model, and the two-coupled oscillator model with cross-Kerr
interaction. The first one is a two-qubit interaction Hamilto-
nian acting irreducibly on the symmetric and antisymmetric
subspaces, and hence the results developed so far apply and
the interpretation of the results is straightforward, in the sense
that nonlocal gates produce states of entangled qubit pairs. In
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the other two models the formalism also applies; nevertheless,
quantum gates classified as nonlocal can produce states with
separated Majorana stars that may not be physically entan-
gled. We will further clarify this in the corresponding sections.

We calculate the entangling power as a function of an inde-
pendent parameter for the three models and find conditions on
them to obtain perfect entanglers. By this and inspection of the
geometrical points, we find unitary operations locally equiva-
lent to the three-level operations Û3 (π/3) and Û8 (π/

√
3)

and SWAP gates of Ref. [5]. The linear entropy E (Û |u〉 ⊗
|u〉) on the Majorana sphere, where each point represents a
separable state, is computed and the color will indicate the
value of the entanglement measure or the separation between
Majorana stars of the final state, depending on the model.
We comment on some features of the spatial distribution of
entanglement on the Majorana sphere.

A. Anisotropic Heisenberg model with no cross terms

The anisotropic Heisenberg model of two interacting spins
is represented by the Hamiltonian [26]

ĤH = 1
2

(
Ixσ̂

(1)
x σ̂ (2)

x + Iyσ̂
(1)
y σ̂ (2)

y + Izσ̂
(1)
z σ̂ (2)

z

)
, (23)

where Ii are the spin coupling constants. This Hamiltonian
is composed of the Cartan subalgebra elements of su(4)
and hence has a reducible representation into symmetric and
antisymmetric subspaces. The symmetric part of the time-
evolution operator is, in the Bell basis,

ÛH =
⎛
⎝e−i(Ix−Iy+Iz )t/2 0 0

0 e−i(Ix+Iy−Iz )t/2 0
0 0 e−i(−Ix+Iy+Iz )t/2

⎞
⎠.

(24)

From Eq. (23), the c coordinate vector is (Ixt, Iyt, Izt ). The
entangling power becomes

ep = 2
15 [sin2(Ixyt ) + sin2(Iyzt ) + sin2(Ixzt )], (25)

where Ii j = Ii − I j . Note that for equal spin coupling constants
the entangling power is zero, which means that the isotropic
Heisenberg model does not have any entangling power on the
symmetric two-qubit subspace.

Figure 6(a) shows the entangling power as a function of
ωt for the choice of parameters Iy = 0 and Iz = −Ix = ω (left
panel), and thus the geometrical points are ωt (−1, 0, 1) ‖
α1. The maximum values are located at ωt = π/3, 2π/3, as
one would expect, and these are locally equivalent to the
SWAP12(23) gates. The minimum ep for which the quantum gate
is a perfect entangler is located at ωt = π/2.

The sphere on the right shows the linear entropy on the
Majorana sphere; we have chosen ωt = π/3 in order to ob-
tain maximum entanglement. There are zones on which the
quantum gate does not produce entanglement (red spots)
and zones where the initial states become symmetric Bell
states (blue spots). Even though it is not fully depicted here,
there are exactly four low-entanglement zones and four high-
entanglement zones, which form a tetrahedron on the sphere.
The tetrahedral distribution of the linear entropy on the Majo-
rana is to be expected for any maximum ep perfect entangler,
given that they have the same geometrical point and thus

FIG. 6. Shown on the left is the entangling power for (a) the
anisotropic Heisenberg model, (b) the Lipkin-Meshkov-Glick model,
and (c) the cross-Kerr interaction. The horizontal dashed line indi-
cates the lower bound for perfect entanglers (ep = 4

15 ). Shown on the
right is the linear entropy E of the final states obtained by applying
Û to the initial states with degenerate Majorana stars.

the same nonlocal action on the separable set of states. In-
triguingly, for the symmetric four-qubit space, whose kets
have four stars, there are states that meet different criteria for
being the least classical and have also a tetrahedral Majorana
constellation [35–37]. The reasons behind the emergence of
this pattern of the linear entropy on the Majorana sphere are
not evident to us.

B. Lipkin-Meshkov-Glick model

The LMG model was first proposed to study the many-
body problem in nuclear physics [27] and has also been useful
to model the physics of molecular solids [38,39] and critical
phenomena in Bose-Einstein condensates [40]. The Hamilto-
nian describing the interaction is given by

ĤL = BĴz + g1Ĵ2
z − g2Ĵ2

x . (26)

This Hamiltonian commutes with the total angular momen-
tum operator J2, which allows us to fix the j value to unity, for
which the model belongs to the su(3) Lie algebra. This model
can be written in matrix form as

ĤL =
⎛
⎝B + g1 − g2

2 0 − g2

2
0 −g2 0

− g2

2 0 −B + g1 − g2

2

⎞
⎠. (27)

The eigenvalues of ĤL are λ0 = −g2 and λ± = g1 − g2/2 ±√
B2 + g2

2/4. The corresponding quantum gates of this system
are given by exp(−iĤLt ).
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This model is a three-level system and as such can be
mapped to the symmetric two-qubit space. The isomorphism
is given by mapping the angular momentum kets |1, 1〉, |1, 0〉,
and |1,−1〉 to the symmetric states |0, 0〉, 1√

2
(|0, 1〉 + |1, 0〉),

and |11〉, respectively. With this, the transformation matrix
from the spin-1 angular momentum basis to the symmetric
Bell basis is given by

T̂ = 1√
2

⎛
⎝1 0 1

0
√

2i 0
i 0 −i

⎞
⎠. (28)

The definition of the Bell states should be evident from
the matrix above. With this, the absolute square of the local
invariant G is given by

|G| = 1

9

{
1 + 4GR cos

[
2
(

g1 + g2

2

)
t
]

+ 4G2
R

}
, (29)

where

GR = 1 − g2
2 sin2(Rt )

2R
, R =

√
B2 + g2

2/4.

The entangling power is readily obtained through Eq. (19).
As in the anisotropic Heisenberg model, we show the emer-

gence of maximum ep perfect entanglers. It is not obvious
how to achieve this by inspection of Eq. (29), and one has to
explore the space of parameters carefully. Figure 6(b) shows
the entangling power for the choice of parameters −2B/7 =
g1/2 = g2/4 = ω, where ω is a fixed frequency. The en-
tangling power displays an oscillating behavior where the
maximum ep is reached at values of ωt closed to π

4 (n + 1
2 ) for

some integer n � 0. The geometrical point at the maximum
values is c ≈ π (−1, 1, 0)/6, corresponding to a SWAP12(23)

gate, as one would expect. For the perfect entanglers with
minimum ep we have checked that these lie on the border of
the blue triangle in Fig. 5 but they are not locally equivalent
to Û8 (π/3).

On the right panel the linear entropy on the Majorana
sphere for ωt = π/8 is plotted. The colors on the sphere
follow the tetrahedronlike patterns, as should be expected for
maximum ep perfect entanglers. The Hilbert space in this
model is not bipartite; thus the linear entropy maps should be
interpreted as quantifying the separation of Majorana stars.

C. Cross-Kerr interaction

The nonlinear cross-Kerr effect in quantum optics is model
by the Hamiltonian [28]

ĤcK = ωaâ†â + ωbb̂†b̂ + gcKâ†âb̂†b̂. (30)

This Hamiltonian is an interacting two-boson model that con-
serves the total number of excitations N̂ = (â†â + b̂†b̂). An
arbitrary state in this Hilbert space is given by

|ψ〉 =
n/2∑

m=−n/2

cm
â†(n/2+m)b̂†(n/2−m)

√
(n/2 + m)!(n/2 − m)!

|0, 0〉

=
∑

m

cm |n/2 + m, n/2 − m〉 .

In this expression |na, nb〉 denotes a tensor product of Fock
states with na and nb number of excitations, respectively. By
transforming the Hamiltonian via the Schwinger operators

of the angular momentum [41], it is easily seen that N̂/2
equals the total angular momentum j of the resulting Hamilto-
nian. Let us work in the j = 1 representation. The cross-Kerr
Hamiltonian becomes

ĤcK = (ωa − ωb)Ĵz − gcKĴ2
z ,

The cross-Kerr interaction can be modeled as a LMG
model after the identification B = ωa − ωb, g1 = −gcK, and
g2 = 0. Also, the mapping from the two-boson Hilbert space
to the angular momentum basis in the spin-1 representation
is given by |2, 0〉 , |1, 1〉 , |0, 2〉 → |1〉 , |0〉 , |−1〉. The entan-
gling power is then easily obtained from Eqs. (29) and (19)
and the transformation matrix (28),

ep = 4
15 sin2(gcKt ).

Figure 6(c) shows the entangling power for a choice of
parameters B = g1/2 = ω. The entangling power has an os-
cillating behavior that never reaches the maximum possible
value. The eigenvalues of the m̂ matrix are e−igcKt , e−igcKt ,
and 1. There is a pair of degenerate eigenvalues, and thus
the convex hull contains the origin only when the vertices
are on antipodal positions on the unit circle, which gives the
minimum ep for which Û is a perfect entangler. It can be
checked that the geometrical points of the perfect entanglers
are located at π (−2, 1, 1)/6; hence they are locally equivalent
to the Û8 (π/3) and Û8 (π/

√
3) qutrit gates.

The linear entropy on the Majorana sphere is depicted on
the right, which is very different from the spheres in Figs. 6(a)
and 6(b). The antipodal low entangling spots on the sphere
with a high entangling zone between them is a general feature
of quantum gates with ep = 4

15 , as we have seen from distinct
numerical calculations, without regard to the details of the
Hamiltonian. As in the LMG model, the linear entropy quan-
tifies the separation between Majorana stars. The model (30)
admits genuine entanglement, since its Hilbert space is bipar-
tite. The linear entropy in Fig. 6(c) represents the separation
between the Majorana stars, but not the entanglement of the
states in the two-boson space. Take |1, 1〉, for example. This
state corresponds to |0〉 in the Schwinger representation of the
model. By the isomorphism between angular momentum spin-
1 kets and symmetric states, we have that |1, 1〉 corresponds to
(|01〉 + |10〉)/

√
2 in the symmetric two-qubit basis. For this

reason we must be cautious when applying this formalism
to three-level systems coming from a two-boson interacting
model, in that states with separate Majorana stars may still be
separable in the original Hilbert space.

VII. CONCLUSION

We have given a geometric classification of the LECs of
SQGs, which turns out to be a plane with hexagonal sym-
metry. There we have identified the Weyl chamber, which is
the minimum area that contains all distinct LECs. This geo-
metric description contrasts with the general two-qubit case,
for which the geometry is three dimensional. The entangling
power for SQGs is obtained in terms of the local invariant. As
was done in the general two-qubit case in Ref. [13], we gave
conditions for which a SQG is a perfect entangler and have
found that the perfect entanglers are one-fourth of all possible
SQGs. Along this line, we also found that perfect entanglers
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must have ep � 4
15 . It was stressed that LECs of SQGs do

not arise trivially from those of TQQGs, since there exist
geometrical points corresponding to perfect entanglers in the
latter case (TQQGs) that yield gates with zero ep in the former
(SQGs). The theoretic framework developed herein can be
applied to any three-level system, whether it is bipartite or not.
The entangling power then refers to the capability of quantum
gates to perform transformations that do not act as SO(3) rota-
tions on the Majorana constellation such as some phase gates,
e.g., SWAP12 and SWAP23 gates [5]. Finally, the formalism
we developed was applied to three physical models, namely,
the anisotropic Heisenberg model [26], the Lipkin-Meshkov-
Glick model [27], and two coupled quantized oscillators with
cross-Kerr interaction [28], and we found some conditions
on the Hamiltonian parameters to generate perfect entan-
gling three-level quantum gates. The last two models are
not physically symmetric two-qubit systems, but only three-
level systems that can be mapped onto such systems. On
the LMG model it was possible to obtain maximum ep per-
fect entanglers, which are locally equivalent to the SWAP12(23)

operations. In the coupled-quantized-oscillator model, we ob-
tained minimum ep perfect entanglers locally equivalent to the
Û3 (π/3) and Û8 (π/

√
3) qutrit gates. Additional examples

might include solid-state systems or optical analogs, such as
assemblies of three quantum dots with few electrons used to
study coherent control of quantum states [42], Landau-Zener-
Stückelberg interferometry [43], or quantum transport [44],
among other properties.
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APPENDIX A: CARTAN DECOMPOSITION
OF THE su(3) LIE ALGEBRA

In this Appendix we show that the su(3) Lie algebra has
a Cartan decomposition, which allows us to write the appro-
priate KAK decomposition of the group (as we mentioned in
Sec. III). For this decomposition to hold the Lie algebra must
be written as a direct sum (in the sense of vector spaces) of
two sets, namely, k and p, whose elements are orthogonal
with respect to the Killing form [13]. The Killing form is
defined by B(X̂ , Ŷ ) = Tr(adX̂ adŶ ), where adX̂ is the adjoint
representation of X̂ ∈ g [45]. Then, if it is always true that
B(X̂ , Ŷ ) = 0 for any two elements X̂ ∈ k and Ŷ ∈ p, then
k = p⊥ and the two spaces are said to be orthogonal. We now
give the following definition [13].

Definition 1 (Cartan decomposition of a Lie algebra). Let
g be a semisimple Lie algebra and let the decomposition g =
k ⊕ p, with k = p⊥ and the commutation relations

[k, k] ∈ k, [k, p] ∈ p, [p, p] ∈ k. (A1)

The Lie algebra g is said to have a Cartan decomposition.

TABLE I. Commutation relations of the su(3) algebra elements.

i[X̂i, X̂ j] Ĵx Ĵy Ĵz ĥ1 ĥ2 L̂1 L̂2 L̂3

Ĵx 0 −Ĵz Ĵy L̂3 −2L̂3 L̂2 −L̂1 ĥ2

Ĵy Ĵz 0 −Ĵx −2L̂2 L̂2 L̂3 ĥ1 L̂1

Ĵz −Ĵy Ĵx 0 L̂1 L̂1 −ĥ3 −L̂3 L̂2

ĥ1 −L̂3 2L̂2 −L̂1 0 0 Ĵz −2Ĵy Ĵx

ĥ2 2L̂3 −L̂2 −L̂1 0 0 Ĵz Ĵy −2Ĵx

L̂1 −L̂2 −L̂3 ĥ3 −Ĵz −Ĵz 0 −Ĵx Ĵy

L̂2 L̂1 −ĥ1 L̂3 2Ĵy −Ĵy Ĵx 0 −Ĵz

L̂3 −ĥ2 −L̂1 −L̂2 −Ĵx 2Ĵx −Ĵy Ĵz 0

The su(3) Lie algebra is semisimple [32]. Now let us
write the following linearly independent matrices that span
the su(3) Lie algebra:

Ĵx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, L̂1 = i

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠,

Ĵy = i√
2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠, L̂2 = 1√

2

⎛
⎝0 1 0

1 0 −1
0 −1 0

⎞
⎠,

(A2a)

Ĵz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, L̂3 = i√

2

⎛
⎝0 −1 0

1 0 1
0 −1 0

⎞
⎠,

ĥ1 = 1

2

⎛
⎝ 1 0 −1

0 −2 0
−1 0 1

⎞
⎠, ĥ2 = 1

2

⎛
⎝−1 0 −1

0 2 0
−1 0 −1

⎞
⎠.

(A2b)

In these equations the ĥ1 and ĥ2 commute and form the
Cartan subalgebra. The basis for these matrices is labeled
as |1〉 , |0〉 , |−1〉, which corresponds to the |00〉 , (|01〉 +
|10〉)/

√
2, |11〉 symmetric basis.

Lumping together the matrices above into the sets k = {Ĵi}
and p = {L̂ j, ĥk}, we obtain the commutation relations in
Table I. There we define ĥ3 = ĥ1 + ĥ2. Hence, it is easily
checked that [k, k] ∈ k, [k, p] ∈ p, and [p, p] ∈ k.

The second important property is that the elements of k are
orthogonal to the elements of p with respect to the Killing
form B(X̂ , Ŷ ). This can be directly checked with the k and p

sets chosen here. We have then given a Cartan decomposition
of the su(3) Lie algebra, and hence any three-level quantum
gate Û ∈ SU(3) can be written as k̂1B̂k̂2 [30], with

k̂ = e−iθ n̂·Ĵ, B̂ = e−i(x1ĥ1+x2 ĥ2 ),

where x1 and x2 are real coefficients.
Before finishing this Appendix, let us note that the su(3)

Lie algebra elements in (A2) can be obtained by symmetric
linear combinations of the SU(4) generators, given by all the
tensor products of the Pauli matrices [13]. For this let us
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introduce the transformation matrix

T̂ † =

⎛
⎜⎜⎝

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1
0 1√

2
− 1√

2
0

⎞
⎟⎟⎠, (A3)

transforming the computational basis into a symmetric part
(first three rows) and an antisymmetric part (last row). Thus,
an element of X̂ ∈ su(4) transforms to T̂ †X̂ T̂ in that basis. We
have the associations

1

2
T̂ †

(
σ̂ (1)

x 1(2) + 1(1)σ̂ (2)
x

)
T̂ =

(
Ĵx 0
0 0

)
, (A4a)

1

2
T̂ †(σ̂ (1)

y 1(2) + 1(1)σ̂ (2)
y

)
T̂ =

(
Ĵy 0
0 0

)
, (A4b)

1

2
T̂ †

(
σ̂ (1)

z 1(2) + 1(1)σ̂ (2)
z

)
T̂ =

(
Ĵz 0
0 0

)
, (A4c)

1

2
T̂ †

(
σ̂ (1)

x σ̂ (2)
y + σ̂ (1)

y σ̂ (2)
x

)
T̂ =

(
L̂1 0
0 0

)
, (A4d)

1

2
T̂ †

(
σ̂ (1)

y σ̂ (2)
z + σ̂ (1)

z σ̂ (2)
y

)
T̂ =

(
L̂2 0
0 0

)
, (A4e)

1

2
T̂ †

(
σ̂ (1)

x σ̂ (2)
z + σ̂ (1)

z σ̂ (2)
x

)
T̂ =

(
L̂3 0
0 0

)
, (A4f)

1

2
T̂ †

( − σ̂ (1)
x σ̂ (2)

x + σ̂ (1)
z σ̂ (2)

z

)
T̂ =

(
ĥ1 0
0 0

)
, (A4g)

1

2
T̂ †

(
σ̂ (1)

y σ̂ (2)
y − σ̂ (1)

z σ̂ (2)
z

)
T̂ =

(
ĥ2 0
0 0

)
. (A4h)

The generators of reducible two-qubit operations can be
mapped into the su(3) generators by a unitary transformation.
As seen from the expressions above, these are comprised of
symmetric linear combinations of the Pauli matrices, which
ensures maintenance of the particle exchange symmetry dur-
ing the dynamics.

APPENDIX B: DERIVATION OF THE ENTANGLING
POWER FOR SQGs

To derive an explicit expression for the entangling power
of SQGs, we first compute Tr[ρ̂2

1 ] and then integrate it over
the unit sphere. The pure state density matrix obtained after
applying a SQG Û to a symmetric two-qubit separable state
|u, u〉 is given by Û |u, u〉 〈u, u| Û †. Since we are interested in
this quantity in order to calculate the entropy of entanglement,
the local contributions to the quantum gate Û can be omitted
and hence

ρ̂ = Â |u, u〉 〈u, u| Â†.

Now, by expressing |u, u〉 in the Bell basis through the matrix
Q̂† [Eq. (8)], we find

Q̂† |u, u〉 = 1√
2

(a ib −ic 0)T
,

where a = cos φ − i sin φ cos θ , b = i sin θ , and c =
−i sin φ + cos φ cos θ . By transforming the Â matrix to
the Bell basis too, after some manipulations we get the

density matrix

ρ̂ = 1

4

⎛
⎜⎜⎝

|A|2 AB∗ AB∗ AC∗

A∗B |B|2 |B|2 BC∗

A∗B |B|2 |B|2 BC∗

A∗C BC∗ BC∗ |C|2

⎞
⎟⎟⎠,

where the complex coefficients in the matrix elements are A =
λ1a − iλ3c, B = λ2b, and C = λ1a + iλ3c, with the λi factors
given in Eqs. (10). After reducing this matrix on one of the
subsystems, we obtain

Trρ̂2
1 = 1

16 [(|A|2 + |B|2)2 + (|B|2 + |C|2)2

+ 2|AB∗ + BC∗|2].

What remains is to average this expression over all the
possible symmetric separate states (degenerate Majorana con-
stellations), where each state is equally likely to be obtained,

Trρ̂2
1 = 1

4π

∫
A

[
Trρ̂2

1

]
sin θ dθ dφ,

with integration performed over the surface A of the unit
sphere. After a long but straightforward algebra, we obtain,
from (18),

ep = 2
15 [sin2(c12) + sin2(c23) + sin2(c31)],

which can be recast in the form (19) by using the local invari-
ant expression (16).

APPENDIX C: CONDITION FOR A PERFECT ENTANGLER

In order to determine the values of ep for which a SQG
is a perfect entangler, we need first a theorem based on the
eigenvalues of the matrix m̂. The proof is very similar to that
given in Ref. [13] for the general two-qubit case, with the
appropriate changes to focus on the symmetric case. First, we
recall the definition of a convex hull.

Definition 2 (convex hull). The convex hull of n + 1 points
p0, p1, . . . , pn ∈ Rn is given by the set of all vectors of the
form

∑n
i=0 θi pi, where θi are non-negative real numbers satis-

fying
∑n

i=0 θi = 1.
Now we state and prove the following theorem.
Theorem 1 (perfect entanglers). A symmetric two-qubit

gate Û is a perfect entangler if and only if the convex hull
of eigenvalues of m̂ contains zero.

Proof. As explained in Sec. III, a general symmetric
two-qubit gate can be decomposed as Û = K̂ (s)

1 Â(s)K̂ (s)
2 ,

where K̂ (s) ∈ SU(2) in the spin-1 representation. Given a
symmetric separable two-qubit state |ψo〉 = (a b b c)T , it
is obtained for the concurrence [1] of the state Û |ψo〉
that C(Û |ψo〉) = C(Â |ψo〉), and thus for Û to be a per-
fect entangler Â has to be a perfect entangler; we have
also used Â |ψo〉 = Â(s) |ψo〉, since |ψo〉 is symmetric. Ex-
plicitly, C(Â |ψo〉) = 〈ψo|ÂT P̂Â |ψo〉, where P̂ = −σ̂y ⊗ σ̂y.
This expression can be rewritten in terms of Bell states

as C(Â |ψo〉) = 〈ψo| Q̂)F̂ 2(Q̂† |ψo〉, where we have used the
matrix Q̂ (8) and the result Q̂T P̂Q̂ = 1; the operator F̂ is
Q̂†ÂQ̂. Let Q̂† |ψo〉 = |φ〉. Since |ψo〉 is a nonentangled state,
we have C(|ψo〉) = 〈ψo|P̂ |ψo〉 = 〈φ|Q̂T P̂Q̂ |φ〉 = 〈φ|1 |φ〉 =

012601-10
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0, which implies

φ2
1 + φ2

2 + φ2
3 = 0, (C1)

where only three expansion coefficients appear, since |ψo〉 is
a symmetric state and thus has no projection on the antisym-
metric axis. For Â to be a perfect entangler, the concurrence of
Â |ψo〉 must equal unity, which along with the normalization
condition yields |φ2

1λ
2
1 + φ2

2λ
2
2 + φ2

3λ
2
3| = |φ2

1λ
2
1| + |φ2

2λ
2
2| +

|φ2
3λ

2
3|, where the eigenvalues λi are given in Eqs. (10). This

equation holds if and only if there exists a number θ ∈ [0, 2π )

such that φ2
j λ

2
j = |φ j |2ei2θ , j = 1, 2, 3, 4. From the above dis-

cussion and Eq. (C1) we get

φ2
1 + φ2

2 + φ2
3 = ei2θ

( |φ1|2
λ2

1

+ |φ2|2
λ2

2

+ |φ3|2
λ2

3

)

= ei2θ
(|φ1|2λ2

1 + |φ2|2λ2
2 + |φ3|2λ2

3

)
= 0.

By complex conjugation of the last equality, it follows that the
convex hull of the eigenvalues of m(Û ) contains the origin.
The converse statement can be done following Ref. [13].
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