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Quantum Fourier analysis for multivariate functions and applications to a class
of Schrödinger-type partial differential equations
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In this work we develop a highly efficient representation of functions and differential operators based on
Fourier analysis. Using this representation, we create a variational hybrid quantum algorithm to solve static,
Schrödinger-type, Hamiltonian partial differential equations (PDEs), using space-efficient variational circuits,
including the symmetries of the problem, and global and gradient-based optimizers. We use this algorithm to
benchmark the performance of the representation techniques by means of the computation of the ground state in
three PDEs, i.e., the one-dimensional quantum harmonic oscillator and the transmon and flux qubits, studying
how they would perform in ideal and near-term quantum computers. With the Fourier methods developed here,
we obtain low infidelities of order 10−4–10−5 using only three to four qubits, demonstrating the high compression
of information in a quantum computer. Practical fidelities are limited by the noise and the errors of the evaluation
of the cost function in real computers, but they can also be improved through error mitigation techniques.
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I. INTRODUCTION

Early at the beginning of quantum computing, one of the
suggested applications was the encoding and manipulation of
discretized functions [1,2], as states of the quantum register.
This idea opens the field of quantum numerical analysis,
where quantum computers assist in tasks such as the solu-
tion of linear, nonlinear, and differential equations. Kacewicz
demonstrated a quantum speedup in the solution of initial-
value problems for ordinary differential equations (ODEs)
[3], using quantum amplitude estimation as a subroutine
of a classical method. Leyton and Osborne [4] suggested
using quantum computers to solve nonlinear ordinary differ-
ential equations. Unlike an earlier work by Kacewicz [3],
later adapted to the Navier-Stokes partial differential equa-
tions (PDEs) [5], the quantum computer is not a subroutine
in a classical method, but the whole problem is encoded in
the quantum computer. Berry [6] pushed this idea forward,
transporting the quantum speedups of the Harrow-Hassidim-
Lloyd (HHL) algorithm [7] for linear systems of equations,
to the solution of ODEs, by means of the Euler method and
quantum simulation. Since then, a great deal of effort has
been put into this technique, improving its precision [8] and
extending the method to PDEs [9]. This technique also suits
the finite-element method [10] and spectral methods [11],
as well as a variety of linear problems: the Poisson equa-
tion [12], the heat equation [13], or the wave equation [14],
which is successfully simulated in Ref. [15]. Such ideas, in
combination with the Carleman [16] or the quantum nonlinear
Schrödinger linearization [17], can also be applied to weakly
nonlinear differential equations. Note also alternative methods
based on hardware-efficient Taylor expansions [18] or on the
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intrinsic dynamics provided by continuous-variable quantum
computers [19].

Even though HHL-based or quantum-simulation-based dif-
ferential equation solvers exhibit potential quantum speedups,
they require large numbers of qubits and operations, far
from current noisy intermediate-scale quantum (NISQ) [20]
devices and closer to the specifications of fault-tolerant scal-
able quantum computers. In this context, variational hybrid
quantum-classical algorithms [21] appeared as a family of
methods with lower hardware requirements and strong re-
silience to noise [22], more adequate for the state of the
art. In this paradigm, a variational quantum circuit encodes
the solution to a complex problem (an ODE or PDE in our
case) and the parameters of the circuit are tuned through a
learning process that optimizes a loss function. In some cases,
the variational form encodes the complete function [23,24],
while in others the variational circuit acts as a quantum neural
network that, given the right coordinates, outputs a prediction
for the function under study [25,26]. The resulting algorithms
have a wide range of applications, including physics [27,28],
chemistry [29], and finance [30–32], and may work with both
nonunitary [24,30] and nonlinear differential equations [23].

Both fault-tolerant and NISQ algorithms for quantum nu-
merical analysis need an efficient quantum representation of
functions and differential operators to benefit from the quan-
tum paradigm. In this work we propose a different Fourier
encoding to map functions and differential operators to the
states of an n-qubit quantum register, whose representa-
tion can be extended with a quantum Fourier interpolation
algorithm [33]. Combined, both tools provide an efficient
representation of PDEs and their eigenstates as quantum oper-
ators and quantum register states, with errors that can decrease
doubly exponentially. O( exp(−r2n)) in the number of qubits
n. This favorable scaling motivates the application of these
ideas on NISQ hardware, transforming the PDE into a varia-
tional principle that can be optimized using both existing and
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novel variational Ansätze, that take into account a problem’s
symmetries.

As a benchmark for these techniques, we consider PDEs of
the form

[D(−i∇) + V (x)] f (x) = E f (x), (1)

defined over a regular domain xi ∈ [ai, bi ), with periodic
boundary conditions f (x + (bi − ai )ei ) = f (x) and real func-
tions D(p),V (x) ∈ R. We assume that the PDE is a lower-
bounded Hamiltonian operator

H = D(−i∇) + V (x) � Emin (2)

and we seek the ground state Emin or lowest-energy exci-
tations using a variational quantum algorithm suitable for
solving static PDEs with a Hamiltonian nature. Our study
focuses on the impact of finite precision and gate errors in
the estimation of the cost function and how this affects the
estimation of the solution and the eigenvalues themselves.
Surprisingly, we find that the variational algorithm exhibits a
great performance, achieving an error 1 − F∞ = 10−4–10−5

in the solution of the harmonic oscillator, and the transmon
and flux qubit equations. This precision is well above what
one would expect when the cost function is estimated with a
finite number of measurements and illustrates the resilience of
variational methods when combined with stochastic optimiza-
tion. Our study shows that to exploit the degree of accuracy
and compression offered by our methods requires either high-
quality qubits and operations or error mitigation techniques.
In present quantum computers this is not yet possible and
we require a large number of measurements ∼104–105 for
moderate precision.

The structure of this paper is as follows. In Sec. II we
propose a set of quantum Fourier analysis tools to efficiently
represent functions and operators in a quantum register, as
well as an encoding of functions in the form of suitable varia-
tional quantum circuits. We provide three variational Ansätze:
a generic one based on σ y rotations, one adapted for this
function encoding [1,2], and a metavariational circuit that
symmetrizes either of those. In Sec. III we propose a varia-
tional quantum algorithm to solve Hamiltonian PDEs in order
to benchmark the accuracy of these techniques. In Sec. IV we
introduce three equations—the quantum harmonic oscillator,
the transmon, and the flux qubit—as three models that we will
use to run this algorithm. Section V discusses the application
of these algorithms for the harmonic oscillator (Sec. V B),
for the transmon qubit (Sec. V C), and for the flux qubit
(Sec. V D). Our study begins with idealized quantum comput-
ers, analyzing the limitations of the algorithm, the Ansatz, and
the optimization methods. We then simulate realistic NISQ
devices in Sec. V E, analyzing the attainable fidelities and in-
troducing error mitigation techniques to improve our estimate
of the PDE’s eigenvalues. In Sec. VI we summarize, discuss
the conclusions drawn from this work, and outline further
research. The performance of the algorithm is still subpar with
other classical methods for existing hardware. However, it
serves its purpose to verify the high precision of the quantum
Fourier analysis methods, even for a low number of qubits
(three to four qubits).

II. QUANTUM FOURIER ANALYSIS FOR
MULTIVARIATE FUNCTIONS

A. Position space discretization

In quantum numerical analysis it is key to find an efficient
representation of functions in a quantum register. Without loss
of generality, we center our discussion on one-dimensional
problems. Our work assumes periodic functions or functions
f (x) that vanish towards the boundaries of a finite interval
[a, b) of size Lx = |b − a|. We also focus on functions that
are bandwidth limited, i.e., their Fourier transform f̃ (p) =
[F f ](p) is negligible outside a corresponding interval in mo-
mentum or frequency space [−Lp/2, Lp/2).

With each such function f (x) we associate a quantum state
| f (n)〉 with n qubits, discretizing the function on a regular grid
with 2n points, labeled

x(n)
s = a + s�x, (3)

with s ∈ {0, 1, . . . , 2n − 1} and �x(n) = Lx
2n . The discretized

and normalized state is a linear superposition

| f (n)〉 = 1

N 1/2
f

2n−1∑
s=0

f
(
x(n)

s

) |s〉 (4)

of quantum register states |s〉 that encode the integer s into
the states of n qubits, with a normalization constant N f that
depends on the number of qubits. It is important to remark
that, as found in Refs. [1,2], in order to describe a function
with a fine grid we only need a logarithmically small number
of qubits n = O( log2(1/�x)). This advantage translates to
the scaling of approximation errors in the overall method, as
discussed in Sec. II C.

The Nyquist-Shannon theorem [34,35] ensures that any
bandwidth-limited function f (x) can be interpolated from a
discretization | f (n)〉 with spacing �x(n) � 2π/Lp, up to ex-
ponentially small errors. This allows us to (i) estimate the
smallest number of qubits required to make the sampling ac-
curate, (ii) establish the inverse mapping, from states | f (n)〉 to
functions, and (iii) develop an algorithm to create interpolated
states | f (n+m)〉 and | f̃ (n+m)〉 for the estimation of the wave
function and its energy.

B. Momentum space and Fourier interpolation

Given an n-qubit discretized function | f (n)〉, we can
straightforwardly implement the quantum Fourier transform
(QFT). This unitary operator F̂ is the quantum analog of the
discrete Fourier transform

|r〉 �→ 1√
2n

2n−1∑
s=0

ei2πrs/2n |s〉 . (5)

When applied on | f (n)〉, F̂ produces the quantum state that
encodes the discrete Fourier transform of the series of values
{ f (xs)},

| f̃ (n)〉 =
∑

s

f̃ (n)(ps) |s〉 := F̂ | f (n)〉

= 1√
2n

2n−1∑
r,s=0

ei2πsr/2n
f (xr ) |s〉 . (6)
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FIG. 1. Quantum interpolation algorithms. (a) Algorithm to
recreate a finer interpolation in position space | f (n+m)〉 adding m
qubits to a previous discretization | f (n)〉. (b) Algorithm to recreate
a momentum space discretization with n + m qubits from | f (n)〉.

As in the discrete Fourier transform, we have to deal with the
annoying ordering of quasimomenta ps ∈ [−Lp/2, Lp/2) that
stores negative frequencies in the higher states of the quantum
register

ps = 2π

�x(n)2n
×

{
s for 0 � s < 2n−1

s − 2n otherwise.
(7)

If we work with bandwidth-limited functions and the
discretization step is small enough �x(n) � 2π/Lp, we can
reconstruct the original function from the discretized state in
momentum space. Up to normalization, we write

f (x) ∝
2n−1∑
s=0

e−ipsx〈s|F̂ | f (n)〉. (8)

This equation represents a mapping from states in the quantum
register to continuous, infinitely differentiable bandwidth-
limited functions. It also provides us with a recipe to
interpolate the discretized function | f (n)〉 up to arbitrary pre-
cision, using more qubits to represent more points in the
position space.

As sketched in Fig. 1(a), to perform this position space
interpolation scheme we need three steps. First, compute the
QFT of the originally encoded function | f̃ (n)〉. Second, add
m auxiliary qubits to enlarge the momentum space. Due to
the anomalous encoding of momenta [Eq. (7)], the original
discretization with 2n points must be mapped to the intervals
s ∈ [0, 2n−1) ∪ [2n+m − 2n−1, 2n+m). This is done using the
operation Usym where the sign of the values of the auxiliary
register is determined by the most significative qubit of the
original register. Finally, we Fourier transform back to recover
the state with n + m qubits. The complete algorithm reads

| f (n+m)〉 = F̂−1Usym(|0〉⊗m ⊗ F̂ | f (n)〉)

=: U n,m
int | f (n)〉 . (9)

The interpolation algorithm reveals the exponential advantage
provided by the encoding of the function in the quantum
register. A similar interpolation executed in a classical com-
puter would require O(2n+m) real values, processed with a fast
Fourier transform that demands O((n + m)2n+m) operations.
In contrast, the quantum computer uses just n + m qubits and
O((n + m)2) quantum gates.

We can define another, simpler momentum space inter-
polation scheme that associates | f (n)〉 with a continuous

differentiable function in momentum space f̃ (p),

f̃ (p) ∝
2n−1∑
s=0

eipxs〈s| f (n)〉, p ∈ [−Lp/2, Lp/2). (10)

The quantum interpolation method enlarges the number of
points in momentum space by a factor 2m using m auxiliary
qubits and a quantum Fourier transform [Fig. 1(b)]

| f̃ (n+m)〉 = F̂n+m[|0〉⊗m ⊗ | f (n)〉]. (11)

This is equivalent to extending the grid on which we discretize
f (x) from [a, b) to [a, a + 2mLx ), setting all those extra points
to the same value that the function takes at the boundary.
This extension increases the interval size while preserving the
spacing, which causes the grid in momentum space to be-
come denser, �p → �p/2m, over the same frequency domain
[−Lp/2, Lp/2).

As a corollary, the study of the two-way interpolation
schemes and the Nyquist-Shannon theorem provides us with
the optimal sampling or discretization for a function, given
the domain sizes Lp and Lx in momentum and position space,
respectively. Our argument is that for the sampling theorem
to succeed and to provide us with good interpolations (8) and
(10), the spacings in momentum and position need to satisfy
�x(n) � 2π/Lp and �p(n) � 2π/Lx. This is achieved with a
minimum number of qubits, given by

nmin � log2

(
LpLx

2π

)
. (12)

We use this estimate in our numerical studies and following
sections.

C. Approximation errors

As discussed in the Appendix, the quantum states that we
construct are interpolants of the solution f (n) = IN f , with
N = 2n the number of interpolation points. The error made
by such interpolation originates in (i) the truncation of the
Fourier series to N modes and (ii) the computation of this
Fourier series using discrete Fourier transforms. When the
interpolated function is differentiable up to order m (and in
this case we know m � 2) the error of the method is expected
to be O(N−m) ∼ O(2−nm), which is close to other quantum
algorithms using finite-difference approximations of order m.

When the solution is almost everywhere differentiable up
to order m but the function experiences discontinuities, we
may find additional errors due to a phenomenon called Gibbs
oscillation. As discussed in the Appendix, those errors are
localized around the discontinuity and affect our estimation
of f (x), but because they have zero measure as N → ∞,
the errors we make when estimating the energy and various
observables decay in a favorable way with the refinement of
the discretization.

In practice, in many physically motivated PDEs, includ-
ing the ones we discuss below, we find that solutions are
analytical functions and therefore arbitrarily differentiable. In
this case, the Fourier method provides an approximation that
is exponentially good in the size of the lattice and doubly
exponential in the number of qubits O(e−rN ) ∼ O(e−r2n

), with
some problem-dependent constant r. Moreover, we only find
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Gibbs oscillations when we approximate problems that are
defined over the whole real line. As we will see in Sec. IV A,
those errors can be made arbitrarily small by enlarging the
interval size L until the value of f (x) is negligible, making
the function and higher derivatives almost periodic on the
computation interval.

D. Dimensionality

The study for one dimension can be generalized to
multidimensional problems with similar tools and similar
considerations for the precision of the method. To represent
a d-dimensional function f (x) = f (x0, x1, . . . , xd−1), we en-
code each variable in an ni-qubit register by discretizing them
on a regular grid with 2ni points, labeled

x(ni )
i,si

= a + si�xi, (13)

with si ∈ {0, 1, . . . , 2ni − 1}, where i = 0, . . . , d − 1 labels
the dimension of the coordinate and si is an integer encoded in
ni qubits. This allows us to store the d-dimensional function
f (x) in an n = ∑

i ni qubit quantum register as

| f (n)〉 = 1

N 1/2
f

∑
{si}

f (x) |s〉 , (14)

where s = (s0, s1, . . . , sd−1) is the collection of d integers
encoded in the quantum register.

To represent a function in momentum space we resort to
the multidimensional QFT

|r〉 �→ 1√
2n

∑
{si}

exp

(
i2πr

∑
i

si

/
2n

)
|s〉 , (15)

which extends the one-dimensional QFT to the d dimensions
of f (x) by applying the corresponding quantum circuits on the
ni qubits encoding each dimension xi. We can similarly apply
this reasoning to extend the quantum Fourier interpolation to
higher dimensions. Moreover, in order to compute a partial
derivative ∂xi , it is only necessary to apply the QFT on the ni

qubits of the register, and hence the cost of the QFT and its
inverse is the same as for the one-dimensional case.

E. Variational quantum circuits

In the previous sections we have discussed how to code
and manipulate functions in a quantum register using quantum
Fourier analysis. In practical applications we still need to con-
struct those functions in a quantum register as a combination
of gates. As discussed in the literature, a possible route for
this is to engineer generic variational circuits which can be
specialized to each problem. In the following we review an
Ansatz commonly used in the variational quantum eigensolver
(VQE) literature [36], we introduce a variational circuit in-
spired by an exact representation of functions [1,2], and we
introduce one technique to incorporate symmetries into both
of these Ansätze.

1. The RY Ansatz

As a baseline for our study, we use a variational Ansatz that
combines controlled-NOT (CNOT) gates with local, real-valued
transformations on the qubits generated by the σ y operator [cf.

FIG. 2. Variational representation of one-dimensional smooth
functions. (a) RY Ansatz of depth one, with full entanglement over
three qubits. (b) ZGR Ansatz to represent a function f (x) with three
qubits. (c) Ansatz to represent an (anti)symmetric function g(x) =
(sgnx)sym f (|x|), where Uf encodes f (x > 0).

Fig. 2(a)]. The result is a parametrized unitary

W (θ) =
n−1∏
q=0

Ry
q

(
θdepth+1

q

)

×
depth∏
d=1

[
n−1∏
c=0

∏
c<t

CNOTc,t

n−1∏
q=0

Ry
q

(
θd

q

)]
, (16)

where the parameters are the angles of the RY (θ ) =
exp(−iθσ y/2) rotations. This variational Ansatz is available in
many quantum computing frameworks, including QISKIT [37],
which is the one used for our simulations.

2. The Zalka-Grover-Rudolph Ansatz

We can derive a better variational Ansatz for real func-
tions using the ideas from Zalka [1] and Grover and Rudolph
[2] to discretize non-negative probability distributions in a
quantum register. In their work they showed that probability
distributions could be approximated by conditional rotations
of the least significant qubits based on the state of all previous
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qubits,

∣∣ f (n)
θ

〉 =
1∏

i=n−1

2i−1−1∏
zi=0

exp
[
iθi(zi )σ

y
i |z〉〈z| ] |0〉⊗n . (17)

Here zi is an integer constructed from the i first qubits z =
s0s1 · · · si−1 and θi(zi) is a collection of angles designed to
reproduce the desired function. Note how this is a constructive
process where the state of a qubit with low significance i
is determined by controlled rotations defined by the more
significant qubits j ∈ {0, 1, . . . , i − 1}.

In practice, the Zalka-Grover-Rudolph (ZGR) construct
could be implemented using σ y rotations and CNOT gates.
Inspired by this idea, we designed an alternative variational
Ansatz [cf. Fig. 2(b)] where such rotations are parametrized
by a similar number of angles and is slightly more efficient

| f (n)
θ

〉 =
1∏

i=n−1

2i−1−1∏
zi=0

eiθizi σ
y
N (z, i)eiθ00σ

y
0 |0〉⊗n . (18)

The N is a CNOT rotation of the ith qubit, controlled by a
j qubit which is determined by the most significant bit that
is active in z XOR(z − 1). As in the previous construct, the
exponentially growing number of parameters makes this an
ill-advised choice for very large computations, but we use it
because (i) it illustrates the required ordering of conditional
operations, from high to low-significant bits, (ii) it is more
accurate than the pure RY Ansatz, and (iii) in practice it gets
extremely close to the exact construct, but does not require
additional NOT gates.

3. Symmetrization of variational circuits

We can significantly reduce the number of variational pa-
rameters by embedding the symmetries of the function in the
circuit. Let us consider discretized functions with reflection
symmetry f (x) = (−1)λ f (−x), with λ = 0, 1. This symme-
try can be added to the variational Ansatz, engineering first
a unitary Uf that describes the function in the positive sector
0 � x � Lx/2 with n − 1 qubits and applying unitary oper-
ations that extend this state to n qubits, covering also the
negative part of the discretization −Lx/2 � x � Lx/2.

For this encoding to succeed, we first need to impose a
discretization of the space that is also symmetric, which we
do by slightly changing the relation between qubit states and
positions

x(n)
s = −Lx

2
+

(
s + 1

2

)
�x. (19)

With this, our symmetrized function satisfies

〈1s1 · · · sn−1| f λ〉 = (−1)λ〈0s̄1 · · · s̄n−1| f λ〉. (20)

Note how positive coordinates xs > 0 relate to the negative
ones xs < 0. These relations can be embedded into the vari-
ational circuit as shown in Fig. 2(c). First, we create the
most significant bit of the wave function sn on a quantum
superposition of both s0 = 1 (xs > 0) and s0 = 0 (xs < 0). We
then create the encoded function for the positive-valued coor-
dinates in the n − 1 least significant qubits. Finally, we reverse
the orientation of the function in the negative coordinates (20)
and set the right sign for the encoded state.

FIG. 3. Variational quantum PDE solver. We use a quantum com-
puter to initialize two quantum circuits in the states | f (n)

θi
〉 and | f̃ (n)

θi
〉.

We estimate the expectation values of the V (x̂) and D(p̂) operators
from measurements in the quantum computer, thereby approximating
the energy functional E [θ]. A classical computer uses these estimates
to iteratively update the parameters of the variational quantum cir-
cuit, until convergence.

Other symmetrization methods can be found in the liter-
ature, such as the one in Ref. [38]. This work presents a
symmetry-adapted VQE using a projection operator, whose
nonunitarity leads to a classical postprocessing. Our approach
symmetrizes the state by adding one qubit to the circuit and a
small number of single- and two-qubit gates, which is a fully
coherent approach and does not require any postprocessing.

III. VARIATIONAL QUANTUM PDE SOLVER

We will apply the quantum Fourier analysis techniques
from Sec. II to develop a hybrid quantum-classical algorithm
for solving PDEs of the form (1), which can be rewritten
as a lower-bounded Hamiltonian operator (2). As practical
examples of this type of equations, we will study the one-
dimensional quantum harmonic oscillator (see Sec. IV A) and
the transmon (Sec. IV B) and flux (Sec. IV C) qubits.

The ingredients of the algorithm are (Fig. 3) (i) a map
between states | f (n)〉 of a quantum register with n qubits
and bandwidth-limited continuous functions f (x); (ii) the
realization that given | f (n)〉, the QFT creates a state | f̃ (n)〉
that encodes the classical Fourier transform f̃ = F f of the
encoded function f (x); (iii) a quantum algorithm that uses
| f (n)〉 and | f̃ (n)〉 and suitable representations of position and
momentum operators x̂ and p̂ to estimate the energy functional
E [ f ] = ( f , H f ) with polynomial resources as

E [ f ] = 〈 f̃ (n)|D(p̂)| f̃ (n)〉
+ 〈 f (n)|V (x̂)| f (n)〉; (21)
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(iv) a variational quantum circuit W (θ), creating parametrized
states of a quantum register with n qubits | f (n)

θ
〉 =

W (θ) |00 . . . 0〉 (Sec. II E); and (v) a classical optimization
algorithm, such as constrained optimization by linear approx-
imation (COBYLA), simultaneous perturbation stochastic ap-
proximation (SPSA), or adaptive moment estimation (Adam),
that given E (θ) finds the parameters θ that minimize this
function. Ideas (i) and (iv) establish a map from a set of real
optimizable parameters θ ∈ Rk to the set of bandwidth limited
functions fθ (x) and their energies E [ fθ] =: E (θ). Algorithms
(ii) and (iii) provide us with a quantum recipe to estimate
E (θ). The classical algorithm (v) hybridizes with the quantum
algorithms (i)–(iv), allowing us to search for the variational
function fθ that best approximates a solution to Eq. (1),

arg min f 〈 f |H | f 〉 � farg minθE (θ). (22)

Using the association between states in a quantum register
and the space of bandwidth-limited differentiable functions
in Sec. II, we can discuss the Hamiltonian PDEs (1). We
associate with the differential operator (2) a quantum rep-
resentation Ĥ (n) = D( p̂(n) ) + V (x̂(n) ) where the position and
differential operators V (x̂) and D( p̂) are defined by

V (x̂(n) ) :=
∑

s

V (xs) |s〉〈s| , (23)

D( p̂(n) ) := F̂−1
∑

s

D(ps) |s〉〈s| F̂ . (24)

With this identification, we can translate the search for the
stationary solutions (1) to the quest for eigenstates of the Ĥ
operator, employing the VQE [21,39]. Using a dense varia-
tional family of unitary operators W (θ) acting on n qubits, we
define a continuous family of trial states | f (n)

θ
〉 := W (θ) |0〉⊗n

and a cost function

E (θ) := 〈
f (n)
θ

∣∣Ĥ (n)
∣∣ f (n)

θ

〉
. (25)

In order to approximate the solution to Eq. (1) with min-
imal eigenvalue Emin, we will use the continuous function
associated with the quantum state | f (n)

θmin
〉 that results from the

variational search

θmin := arg minE (θ). (26)

We implement this search as a hybrid algorithm, with a
classical algorithm that optimizes E (θ) using the estimations
of E (θ) provided by a quantum computer or a simulator
thereof. In the NISQ scenario we do not have access to the
exact value of E (θ) but a randomized estimator that results
from a finite set M of measurements. In this work we estimate
this “energy” as the sum of two random variables, one arising
from measurements of the position and another one from the
momentum operator

E (θ)  ĒM := V̄M + D̄M + O

(
1√
M

)
. (27)

Note that the values of V̄M and D̄M are computed sepa-
rately, creating the quantum states | f (n)

θ
〉 and | f̃ (n)

θ
〉 := F̂ | f (n)

θ
〉

in different experiments and measuring those states in the
computational basis. This approach leads to statistical uncer-
tainties that are of the order �V̂ /

√
M and �D̂/

√
M. Better

algorithms could be constructed by using amplitude estima-
tion over approximate implementations of the unitary operator
exp(−iĤ�t ), but this requires an infrastructure and a preci-
sion of gates that is not presently available.

Because of the way that we associate continuous, infinitely
differentiable functions f (n)(x) with quantum states | f (n)〉,
the formula (25) gives us the exact value of the functional
E [ f (n)] = ( f (n), H f (n) ). This means that our variational algo-
rithm finds a strict upper bound on the exact eigenvalue Emin

and the errors of the method can only be due to the expressive
power of the variational Ansatz and the capacity of f (n)(x) to
approximate the solution f (x).

Finally, note that a related method has been implemented
in Ref. [31] for solving the harmonic oscillator equation and
engineering Gaussian states in quantum circuits.

IV. BENCHMARK EQUATIONS

We will benchmark our variational quantum PDE solver
using three important equations: the quantum harmonic oscil-
lator (28) and the equations for the transmon (31) and flux (37)
qubits. They produce simple, highly differentiable functions
that can be analytically computed for the two first examples.
However, they also involve different boundary conditions,
which makes the practical study a bit more interesting.

A. Harmonic oscillator

The Schrödinger equation of an harmonic oscillator of
mass m and angular frequency ω is(

− h̄2

2m
∂2

x + 1

2
mω2x2 − E

)
f (x) = 0. (28)

The exact solutions to this problem are given by

fn(x) =
(

β2

π

)1/4 1√
2nn!

e−β2x2/2Hn(βx), (29)

where β = √
mω/h̄ and Hn is the Hermite polynomial of order

n. For m = ω = h̄ = 1, we obtain the ground state of the
harmonic oscillator, which is a trivial Gaussian

f0(x) = 1

π1/4
e−x2/2. (30)

This function is real, symmetric, and even and is thus particu-
larly well suited for the variational Ansätze discussed above.

In our quantum numerical analysis, we constrain Eq. (28)
to a finite domain |x| � Lx/2, defined symmetrically around
the origin as in (19). Following the prescriptions from the
Nyquist-Shannon theorem, we vary the length of the interval
according to the number of available qubits, as Lx ≈ √

2π2n,
to maximize the accuracy in both position and momentum
space.

B. Transmon qubit

The eigenstates for a superconducting transmon qubit [40]
without charge offset are obtained by solving the equation

[−4EC∂2
ϕ − EJ cos(ϕ) − E ] f (ϕ) = 0. (31)

The phase variable is periodic over the interval ϕ ∈ [−π, π ).
The model is parametrized by the Josephson energy EJ and
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the capacitive energy EC , which we choose to be EC = EJ/50.
The eigenfunctions of the transmon qubit are given by the
Mathieu functions, analytical solutions of Mathieu’s differen-
tial equation

d2y

dx2
+ (a − 2q cos 2x)y = 0. (32)

If we expand the problem around ϕ = 0, in the limit of
large EJ/EC ,

H = −4EC∂2
ϕ + 1

2 EJϕ
2, (33)

which behaves like an harmonic oscillator with

h̄2

2m
∼ 4EC,

1

2
EJ ∼ 1

2
mω2, (34)

and effective frequency h̄ω = √
8ECEJ . Therefore, in some

regimes the transmon ground state can be approximated by a
Gaussian function

ψ (ϕ) ∝ exp

[
−1

2

( ϕ

a0

)2
]

(35)

in the dimensionless variable x = ϕ/a0 with unit length

a4
0 = 8EC

EJ
. (36)

The Gaussian approximation is not perfect, as it fails to cap-
ture the nonlinear contributions and does not take into account
the periodicity of the function f (ϕ). In particular, unlike the
case of the harmonic oscillator, we are not free to choose the
interval length, which is fixed to 2π .

C. Three-junction flux qubit

As the third model in our study, we consider the one-
dimensional reduction of the model for a three-junction flux
qubit. This problem is given by a Schrödinger equation for
which there is no analytical solution,[

− Ec
1
2 + α

∂2
ϕ − EJ [2 cos(ϕ) − α cos(2ϕ)] − E

]
f (ϕ) = 0.

(37)

In this model, the small junction size takes typical val-
ues α ∼ 0.7–0.8. In this scenario, the inductive potential
V (ϕ) = −EJ [2 cos(ϕ) − α cos(2ϕ)] develops two minima.
The ground state of the qubit is a wave function delocalized
between those minima. The function f (ϕ) is symmetric, even,
periodic, and vanishes to zero towards the boundaries of the
interval, which makes it adequate for our method. For the
simulations we have chosen an inductive-to-capacitive energy
ratio EJ/EC = 50 and a junction size α = 0.7. These values
produce a qubit with a gap that is comparatively smaller than
that of the transmon qubit discussed before, thus requiring
better estimates of the energy functional to distinguish the
ground from the excited states.

V. NUMERICAL RESULTS

In this section we study the application of our variational
quantum PDE solver to the harmonic oscillator, and the trans-
mon and flux qubits. We use the ZGR and the RY variational

FIG. 4. Comparison of the infidelity figures of merit (the median
and the standard deviation around the mean of 100 repetitions) for
the ZGR Ansatz for the harmonic oscillator for the numerical limit.
The theoretical infidelity 1 − Ft is the infidelity of the theoretical
2n-point wave function interpolated up to 212 points and the theo-
retical 212-point wave function. The n-qubit infidelity 1 − F (n) is the
infidelity of the n-qubit function obtained from the optimization and
the 2n-point theoretical function. The continuous infidelity 1 − F∞

is the infidelity of the n-qubit function interpolated up to 212 points
and the 212-point theoretical function.

Ansätze, searching for the ground-state solution and energy
for two, three, four, five, and six qubits. The first part of
this study combines an idealized quantum computer simulated
by QISKIT [37], with three classical optimizers: COBYLA,
a gradient-free method; SPSA, a stochastic optimizer with
numerical gradient; and Adam, which we combine with an an-
alytic estimate of the gradient [41,42]. In Sec. V E we discuss
how the algorithm performs in a more realistic scenario with
errors, analyzing how these errors affect both the evaluation
of the function and its properties.

A. Figures of merit

When solving the PDEs we can compare the perfor-
mance of the algorithms using different metrics, such as time,
number of evaluations of the cost function, precision in the
evaluation of the energy, and precision in the determination of
the encoded function. We focus on the last two.

To analyze the quality of the variational state at the end of
the simulation, we use the fidelity F [ψ1, ψ2] := |〈ψ1|ψ2〉|2.
We may compute the fidelity between the variational states
produced by the optimization W (θopt) |0〉, with the discretized
function using the same number of qubits | f (n)〉,

F (n) := |〈 f (n)|W (θopt)|0⊗n〉|2. (38)

This first figure of merit may be arbitrarily small, but it does
not characterize how much information we have about the
continuous function that is the solution to our problem f (x).
To fully understand this we need to gauge the quality of
the continuous function that we associate with the quantum
register (8). This gives us a different figure of merit, which
we call the continuous fidelity, which is obtained by using the
quantum Fourier interpolation algorithm (9)

F∞ := lim
m→∞

∣∣〈 f (n+m)
∣∣U n,m

int W (θopt)
∣∣0⊗n

〉∣∣2
. (39)
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TABLE I. Noiseless results of the simulations for the harmonic oscillator for each number of qubits, Ansätze, and optimizers. The number
of parameters and the number of CNOT gates of each Ansatz for each number of qubits are shown. The infidelities for the COBYLA, SPSA,
and Adam optimizers are the median of the infidelities over 100 simulations using the QISKIT QASM simulator with 8192 evaluations. The
L-BFGS-B optimizer is combined with the statevector simulator to establish the numerical limit of each Ansatz. We highlight in bold letter
font the best result for each number of qubits.

1 − F∞ 1 − F∞ 1 − F∞ 1 − F∞

Qubits Ansätze Parameters CNOT gates COBYLA SPSA Adam L-BFGS-B

2 RY1 2 1 0.0320(7) 0.03182(7) 0.03185(4) 3.19 × 10−2

2 RY2 3 1 0.0310(8) 0.03184(3) 0.03185(0) 3.19 × 10−2

2 ZGR 1 1 0.0319(7) 0.03186(8) 0.03188(0) 3.19 × 10−2

3 RY1 4 3 0.002(3) 0.00008(0) 0.000060(8) 5.89 × 10−5

3 RY2 6 4 0.001(4) 0.000070(3) 0.000060(5) 5.89 × 10−5

3 ZGR 3 4 0.0019(4) 0.0003(8) 0.000069(9) 5.89 × 10−5

4 RY1 6 6 0.005(8) 0.0000(6) 0.0000(2) 2.13 × 10−5

4 RY2 9 9 0.006(8) 0.0002(2) 0.0000(8) 1.72 × 10−10

4 ZGR 7 9 0.006(6) 0.000(1) 0.000019(1) 1.73 × 10−9

5 RY1 8 10 0.02(7) 0.0019(2) 0.001(7) 1.47 × 10−3

5 RY2 12 16 0.02(5) 0.001(8) 0.003(4) 4.51 × 10−8

5 ZGR 15 18 0.01(2) 0.002(6) 0.000013(5) 6.23 × 10−8

6 RY1 10 15 0.09(3) 0.007(4) 0.006(2) 5.71 × 10−3

6 RY2 15 25 0.14(1) 0.003(8) 0.008(2) 1.47 × 10−5

6 ZGR 31 35 0.10(1) 0.00(1) 0.00006(9) 4.68 × 10−8

In Fig. 4 we compare the infidelities 1 − F (n) and 1 − F∞
obtained with the ZGR Ansatz and the best optimization
method. We also show, for comparison, the best numerical ap-
proximation (8) that we can obtain using a finite grid with 2n

points. Note how the errors in the quantum state overestimate
our true knowledge of the function F (n) � F∞. Consequently,
in our later plots we will represent the median of the infi-
delities 1 − F∞ over 100 repetitions of each simulation with
different initial states or trajectories, and the error bars will

be the standard deviation around the mean. Moreover, we
estimate F∞ using m = 12 − n extra qubits, which already
gives a good converged measure.

In addition to the quantum state, we are also interested in
how well we can estimate the properties of the solution to
the PDE. We gauge this by evaluating the relative error in the
computation of the energy

ε =
∣∣∣∣Etn − Eopt

E1 − E0

∣∣∣∣. (40)

FIG. 5. Results of the simulations for two, three, four, five, and six qubits with 8192 evaluations for the harmonic oscillator using the
ZGR and the RY Ansätze with depths 1 (RY1) and 2 (RY2) and the COBYLA, SPSA, and Adam optimizers. (a) Continuous infidelity with
n + m = 12. (b) Rescaled energy ε̄ [Eq. (40)].
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FIG. 6. Lowest infidelity results of the simulations for two, three,
four, five, and six qubits with 8192 evaluations for the harmonic
oscillator using the ZGR and the RY Ansätze with depths 1 (RY1) and
2 (RY2). (a) Continuous infidelity with n + m = 12. (b) Rescaled
energy ε̄ [Eq. (40)].

This is a dimensionless figure of merit that is adapted to the
natural energy scales of the problem: Etn is the theoretical
energy obtained over a grid with 2n points, Eopt is the optimal
energy derived by the algorithm, and E1 − E0 is the energy
difference between the lowest and first excited solutions of the
PDE (1). In idealized applications we expect ε and 1 − F∞ to
be proportional to each other, but this is not always true in
real-world quantum computers, as we see below.

B. Harmonic oscillator

We applied the variational quantum PDE solver to the
harmonic-oscillator model from Sec. IV A. The actual results
are summarized in Table I and Fig. 5. Figures 5(a)–5(c) show
the infidelity 1 − F∞ of the optimal state, as obtained with
three different optimizers and three versions of the varia-
tional Ansatz. As reference, we also plot the lowest infidelity
obtained with the best approximation (8) on the same grid.
Figures 5(d)–5(f) illustrate the relative error in the prediction
of the energy (40) for the same optimal states.

From these figures we conclude that the best optimization
method is Adam, closely followed by SPSA. Both methods
seem to excel due to their tolerance to the intrinsic uncertainty
in the estimation of the energy. However, while Adam uses an

FIG. 7. Result of the optimization for the Adam optimizer and
the ZGR Ansatz for three qubits for the harmonic oscillator. (a) Ab-
solute value of the theoretical and optimization wave functions (βx
is a dimensionless coordinate where β = √

mω/h̄). (b) Value of the
energy for each iteration.

analytic estimate of the cost function’s gradient [41,42], SPSA
relies on an stochastic estimate with errors that get amplified
by small denominators. Thus, even for the same Ansatz, SPSA
leads to worse estimates of the function and of the optimal
energy.

From Fig. 6 we conclude that the ZGR Ansatz is the best
variational Ansatz for this problem in the limited number of
measurements. We attribute the difference in precision to the
fact that the ZGR Ansatz is designed for the representation
of continuous functions [1,2]. In this Ansatz, every rotation
builds on the previous ones in a smooth, easily differentiable
fashion, without any loss of information. In the RY Ansatz,
however, the influence of different qubits and layers is more
inefficiently transported by the layers of entangling unitaries,
leading to the vanishing of gradients [43]. This chaotic nature
is more manifest as we increase the number of qubits and
parameters to optimize.

Also in Fig. 6 we see that the number of measurements
limits the achievable precision in any of the Ansätze (compare
with Table I, the L-BFGS-B column). However, the infidelities
obtained, in the range 10−3-10−5, are surprisingly below what
is expected from the statistical uncertainty with which we
evaluate the cost function. To illustrate this, Fig. 7(b) shows
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FIG. 8. Result of the optimization for the Adam optimizer and
the ZGR Ansatz for 8192 and 32 768 evaluations for the harmonic
oscillator. (a) Continuous infidelity with n + m = 12. (b) Rescaled
energy ε̄ [Eq. (40)].

one of the stochastic trajectories created by the Adam method
for the ZGR Ansatz. As a dashed line we plot the evalua-
tion of the cost function as returned by the simulator ĒM (θ),
surrounded by a colored band that estimates the statistical
uncertainty for M = 8192 measurements. This trajectory and
error band must be compared to the actual energy computed
for the same parameters E (θ), without any uncertainty. This
quantity approaches a relative error ε̄  5 × 10−3, which is
one order of magnitude below the statistical uncertainty, illus-
trating the power of stochastic optimization. Not only is the
energy very well approximated by the stochastic optimization,
but as shown in Fig. 7(a) we observe how with just three qubits
we recover the theoretical wave function with high fidelity
using interpolation. Very small Gibbs oscillations appear in
the boundary of the interpolation interval due to not strictly
periodic conditions.

With Fig. 8 we explore the behavior of the algorithm as the
number of evaluations increases. We show that the precision
of the algorithm is limited by the number of evaluations in
the quantum computer, as the more evaluations the better the
estimate of the expectation value [Fig. 8(b)]. By increasing the
number of evaluations by a factor 4, we decrease the value of
ε̄ by a factor 2. The increase in the precision of the algorithm
is also manifest in the increase of the fidelity [Fig. 8(a)].

C. Transmon qubit

The results of the transmon qubit simulations are shown in
Figs. 9(a)–9(f). These plots confirm the observations made for
the harmonic oscillator. Once more, the Adam optimizer leads
to the lowest infidelity results, due to the use of the analytic
gradient. The ZGR Ansatz also behaves better than the RY

Ansatz, and no Ansatz achieves the minimum infidelity that
can be reached with three to six qubits, probably for the same
reasons as before: local trapping and statistical uncertainty.

When we compare the harmonic oscillator and the trans-
mon, we see that the latter is typically affected by greater
infidelities. The zeroth-order solution of the Mathieu equa-
tion (32), which is the transmon ground state, is more
complicated to reproduce than the Gaussian function of the
ground state of the harmonic oscillator (30). First, this is a pe-
riodic function that does not strictly vanish on the boundaries.
Second, contrary to the Gaussian function, we are not allowed
to change the length of the interval to maximize the precision
in both position and momentum space. All together, as shown
in Table II, the achievable infidelities are in general worse for
all Ansätze, even when using numerical exact optimizations
(L-BFGS-B).

We chose the transmon qubit equation because it is a phys-
ically motivated problem. One might wonder about the utility
of this method for the computation of actual properties, such
as the energies and excitation probabilities of actual qubits.
The relative errors that we have obtained, 10−2–10−3, are
compatible with what can be expected from using 8192 shots.
One could further decrease to the theoretical limits, using
more measurements. However, in order to achieve a relative
error below 10−4 (a fraction of a megahertz), one would need
to use about 100–10 000 times more measurements in the
final stages of the optimization. While this seems doable,
it suggests the need to find better strategies for the energy
evaluation or even the optimization itself.

D. Flux qubit

We show the results of the resolution of the flux qubit
equation (37) in Figs. 10(a)–10(f) and Table III. The best
performance is obtained for the ZGR Ansatz combined with
the Adam optimizer. These results corroborate our previous
observations, even though the ground state of the flux qubit is
not a Gaussian and cannot by approximated by one. Thus, we
can affirm that our method has succeeded at obtaining differ-
ent types of solutions, as long as they verify the conditions in
Sec. III. The flux qubit ground state has no analytic solution,
but we can compare the ground state to the numerically exact
solution of the PDE solved by alternative techniques, in this
case, the representation of the qubit in the charge basis. As
shown in Fig. 11, the double-well structure of the qubit’s
potential creates a state that looks like the superposition of two
Gaussians. The greater complexity of the flux qubit’s ground
state demands more qubits for an accurate representation, but
already four qubits is enough to reach good results (10−5 infi-
delity) for the function representation. In contrast, the relative
errors for the energy of the qubit are higher, but this can be
explained by the fact that the ground and first excited state
energies are comparatively closer, requiring a smaller absolute
precision in the evaluation of the energy to be approximated.
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FIG. 9. Results of the simulations for two, three, four, five, and six qubits with 8192 evaluations for the transmon qubit using the ZGR and
the RY Ansätze with depths 1 (RY1) and 2 (RY2) and the COBYLA, SPSA, and Adam optimizers. (a) Continuous infidelity with n + m = 12.
(b) Rescaled energy ε̄ [Eq. (40)].

E. Application to NISQ devices

Until now we have focused on the performance of our
algorithm under noiseless circumstances. However, the actual
motivation of variational methods is to work in NISQ devices,
where qubits have finite lifetimes and gates are imperfect,
but even imperfect variational constructs can be optimized to
approach the ideal limits [22]. In a similar spirit, we will now
evaluate the noise tolerance of the variational quantum PDE
solver, to understand its suitability for existing and near-term
quantum computers. Our study is performed using a simula-
tor of the ibmq_santiago five-qubit quantum computer [37].
This simulator allows us to store the noise model, coupling

map, and basis gates so that each computation is subject to
identical conditions. The noise model includes the gate error
probability and gate length for each basis gate and qubit, and
the readout error probabilities and T1 and T2 relaxation times
for each qubit. For this device, T1 and T2 are of the order of
100 μs and the readout probability is ∼10−2. The gate error
for single-qubit gates is of order 10−3–10−4 with gate length
of order 10 ns, while both the gate error and length are one
order of magnitude greater for two-qubit gates.1

1The results are for the ibmq_santiago calibration with date 17
March 2021.

TABLE II. Noiseless results of the simulations for the transmon qubit for each number of qubits, Ansätze, and optimizers. We highlight in
bold letter font the best result for each number of qubits.

1 − F∞ 1 − F∞ 1 − F∞ 1 − F∞

Qubits Ansätze Parameters CNOT gates COBYLA SPSA Adam L-BFGS-B

2 RY1 2 1 0.159(5) 0.15907(4) 0.15910(0) 1.59 × 10−1

2 RY2 3 1 0.1602(3) 0.15909(8) 0.15911(0) 1.59 × 10−1

2 ZGR 1 1 0.159(2) 0.15906(5) 0.15917(8) 1.59 × 10−1

3 RY1 4 3 0.003(1) 0.00129(0) 0.00128(4) 1.28 × 10−3

3 RY2 6 4 0.003(1) 0.00129(2) 0.001280(2) 1.28 × 10−3

3 ZGR 3 4 0.0020(0) 0.00134(4) 0.001314(4) 1.28 × 10−3

4 RY1 6 6 0.007(9) 0.0001(8) 0.0001(2) 1.06 × 10−4

4 RY2 9 9 0.010(1) 0.0005(7) 0.0001(9) 5.67 × 10−11

4 ZGR 7 9 0.006(0) 0.000(5) 0.000109(6) 5.78 × 10−11

5 RY1 8 10 0.11(6) 0.008(1) 0.0066(3) 6.15 × 10−3

5 RY2 12 16 0.12(5) 0.002(7) 0.001(8) 1.51 × 10−6

5 ZGR 15 18 0.21(7) 0.01(0) 0.00022(7) 1.47 × 10−7

6 RY1 10 15 0.271(1) 0.01(9) 0.0140(7) 1.30 × 10−2

6 RY2 15 25 0.22(2) 0.01(9) 0.010(6) 3.44 × 10−4

6 ZGR 31 35 0.25(0) 0.2(0) 0.00031(4) 1.49 × 10−5
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FIG. 10. Results of the simulations for two, three, four, five, and six qubits with 8192 evaluations for the flux qubit using the ZGR and
the RY Ansätze with depths 1 (RY1) and 2 (RY2) and the COBYLA, SPSA, and Adam optimizers. (a) Continuous infidelity with n + m = 12.
(b) Rescaled energy ε̄ [Eq. (40)].

Our study applies the RY Ansatz with depth 1 to the so-
lution of the harmonic oscillator, using the SPSA optimizer.
We chose the Ansatz and problem that provide the best fi-
delities, with the least number of gates, combined with an
optimizer that is expected to perform well in noisy problems.
Figure 12(a) shows the infidelity of the continuous function
in the noiseless and noisy simulations. The fidelity decreases
with the number of qubits due to the greater number of
gates, which introduce more errors and increase the effect
of decoherence due to the longer time of the circuit. How-
ever, for a small number of qubits, it is possible to obtain
a reasonably small infidelity of order 10−4 for three qubits,

which allows us to reconstruct the theoretical continuous wave
function.

Although the optimization of the parameters is successful,
we obtain a very significant error in the evaluation of the
energy [Fig. 12(b)], even for a small number of qubits. We
attribute this error to the circuits that we use to evaluate the
energy in position and momentum space. We can confirm this
hypothesis using the QISKIT quantum tomography toolbox for
a small number of qubits, using the ibmq_santiago simulator.
As shown in Fig. 13, the errors in the two circuits can be quite
significant and are larger in momentum space because of the
gates that are required for the QFT.

TABLE III. Noiseless results of the simulations for the flux qubit for each number of qubits, Ansätze, and optimizers. We highlight in bold
letter font the best result for each number of qubits.

1 − F∞ 1 − F∞ 1 − F∞ 1 − F∞

Qubits Ansätze Parameters CNOT gates COBYLA SPSA Adam L-BFGS-B

2 RY1 2 1 0.0995(6) 0.09919(4) 0.09919(8) 9.92 × 10−2

2 RY2 3 1 0.0996(0) 0.09920(4) 0.09919(6) 9.92 × 10−2

2 ZGR 1 1 0.0994(7) 0.09918(4) 0.09921(8) 9.92 × 10−2

3 RY1 4 3 0.04(7) 0.06(6) 0.0662(9) 6.64 × 10−2

3 RY2 6 4 0.04(6) 0.06(5) 0.0662(2) 6.64 × 10−2

3 ZGR 3 4 0.056(1) 0.057(9) 0.0663(2) 6.64 × 10−2

4 RY1 6 6 0.03(5) 0.00(7) 0.000(0) 8.00 × 10−5

4 RY2 9 9 0.06(0) 0.00(2) 0.00(0) 4.35 × 10−5

4 ZGR 7 9 0.00(5) 0.00(0) 0.000051(4) 4.35 × 10−5

5 RY1 8 10 0.06(4) 0.04(2) 0.035(2) 3.36 × 10−2

5 RY2 12 16 0.07(2) 0.01(0) 0.00(0) 6.65 × 10−5

5 ZGR 15 18 0.02(4) 0.04(0) 0.000029(0) 6.96 × 10−8

6 RY1 10 15 0.10(5) 0.06(9) 0.065(4) 6.33 × 10−2

6 RY2 15 25 0.09(7) 0.04(7) 0.03(2) 6.95 × 10−4

6 ZGR 31 35 0.15(7) 0.34(8) 0.00010(3) 3.33 × 10−6
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FIG. 11. Absolute value of the ground state of the flux qubit.
We show the theoretical eigenstate as well as the discretized and
interpolated solution of our algorithm for the four-qubit RY1 Ansatz
using the L-BFGS-B optimizer.

Despite the errors in these circuits, the fact that we obtain
a good quality estimate of the function itself suggests that
we can apply error mitigation and zero-noise extrapolation
[44]. To test this hypothesis, we repeat the simulations using a
simpler noise model dominated by thermal relaxation, where
we can tune T1, but still use the coupling map and basis
gates of the ibmq_santiago five-qubit device. In this study
we prepare a quantum circuit with the optimal solution for
three qubits and compute the mean energy averaging over 100
repetitions of the simulation with 8192 evaluations each of
them, for different values of T1. We use this mean energy to
compute ε [Eq. (40)]. As Fig. 14(a) shows, if T1 � 2.5 μs, the
energy admits a Taylor expansion of fifth order

E (T1) = E0 +
∑

n

εn
1

T n
1

. (41)

This expansion can be used by itself or with Richardson ex-
trapolation [44] to estimate values of the energy with a lower
error, of order ε ∼ 10−2 for values of T1 ∼ 50–100 μs, which
are within the experimental range.

We have also tested the noise resilience of our algorithm
using a more complex equation, the Schrödinger equation of
the flux qubit (37). Let us recall that the energy spectrum of
the flux qubit has a much smaller gap between the ground and
first excited states than the one of the transmon. Moreover,
the wave function is a superposition of two Gaussians on
two separate wells and thus requires more points to achieve
a low-infidelity interpolation. Overall, this results in greater
errors in the estimation of the energy, even under noiseless
circumstances (cf. Fig. 10). Therefore, the error mitigation is
expected to perform worse than for the harmonic oscillator.

In Fig. 14(b) we show the results of the noisy simulations
with four qubits for the flux qubit. We observe that the in-
crease of the number of qubits, and hence quantum gates and
their associated errors, together with the nature of this equa-
tion, leads to worse results, as expected. The values of ε admit
a fifth-order Taylor expansion, only if T1 � 5 μs. Moreover,
when using Richardson extrapolation, we cannot obtain a low
error in the estimation of the energy for state-of-the-art values

FIG. 12. Results for the ideal (noiseless) and noisy
(ibmq_santiago noise model) optimization for the SPSA optimizer
and the RY1 Ansatz with 8192 evaluations for the harmonic
oscillator. (a) Continuous infidelity with n + m = 12. (b) Rescaled
energy ε̄ [Eq. (40)].

of T1, and just for values of 500–1000 μs we reach errors of
order ε ∼ 10−2. This points to the necessity of larger thermal
relaxation times in real noisy quantum computers to estimate
the ground-state energy of more complex Hamiltonians.

FIG. 13. Circuit infidelity for the position 1 − Fx and momentum
1 − Fp circuits for the harmonic oscillator for the RY1 Ansatz for 100
repetitions with 8192 evaluations each and using the ibmq_santiago
noise model.
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FIG. 14. Zero-noise extrapolation results (RY1 Ansatz with ther-
mal relaxation and 100 repetitions with 8192 evaluations for each
simulation). (a) Harmonic oscillator (three qubits). (b) Flux qubit
(four qubits).

VI. CONCLUSION AND FUTURE PERSPECTIVES

We have developed a set of quantum Fourier analysis
techniques to efficiently encode continuous functions and dif-
ferential operators in quantum registers. Our study showed
that spectral methods leverage the potential of the quantum
register, approximating these problems with an error that
decreases doubly exponentially in the number of qubits, in op-
timal circumstances. We illustrated the performance of these
methods by creating a variational quantum algorithm to solve
the eigenvalue problem of physically motivated Hamiltonian
PDEs. We combined this algorithm with newer variational
Ansätze that are better suited to describe continuous differ-
ential functions or which include symmetries. We have tested
these ideas in idealized scenarios with an infinite or a limited
number of measurements, obtaining excellent accuracy (10−5

infidelity) even with small numbers of qubits. In addition,
under the presence of noise sources, the algorithm is still
efficient, reaching high-fidelity results (10−3–10−4 infidelity)
for three qubits.

As in all variational methods, we have seen that the accu-
racy is ultimately limited by our statistical uncertainty in the
determination of the cost function and the analytic gradients.
Assume, for instance, that we want to use the present method

to study a transmon qubit. Reaching the required experimental
precision, with errors ε  10−4, can be costly in a scenario of
NISQ computers with limited access and temporal stability.
It also requires significant improvements in both the classi-
cal optimization and the quantum evaluation of properties.
These are the limitations that current NISQ devices need to
overcome to achieve the favorable scalings provided by our
quantum Fourier algorithms. In such a scenario, it may be
worth considering alternative quantum-inspired methods that
can benefit from similar encodings and also provide heuristic
advantages for the same type of equations [33]. Nevertheless,
our algorithm succeeds in proving the high efficiency of the
quantum Fourier analysis representation, achieving high fi-
delities with a low number of qubits (three to four qubits).

More generally, our investigation opens several avenues
for future research. First, less demanding gradient computing
techniques can also be implemented [45], which will also
be required to extend this method to solve PDEs in higher-
dimensional spaces. Second, the good results obtained for
the RY Ansatz with low depth, as well as with the more
general ZGR Ansatz, suggest the possibility to develop simpli-
fied Ansätze that encode smooth functions in quantum states
with lower circuit depth. Such a possibility is supported by
heuristic studies of the entropy growth with the discretization
density [33], but a precise scaling and the ideal structure of the
circuit is still missing. Undoubtedly, such results would also
be of interest for applications in quantum machine learning.

Regarding the generality of the equations, our work has
focused on Hermitian operators with lower bounded spec-
tra. For more general static equations, which are still of the
form [D(∇) + V − E ] f = 0, one may extend the algorithm
to work with self-adjoint operators, as it is usually done in the
study of Lindblad operators, by analyzing the square of the
equation [D(∇) + V − E ]†[D(∇) + V − E ] f = 0. The main
obstacle in this analysis is the cost of studying products such
as D(∇)V (x), which, while still amenable to computation
with our methods, undoubtedly demand a larger number of
gates and probably must be delegated to error-corrected quan-
tum computers.

With respect to fault-tolerant quantum computers, we see
many opportunities to enlarge the scope of quantum numerical
analysis algorithms based on spectral methods. As discussed
in the text, Fourier encodings have favorable scaling in the
number of qubits needed to encode smooth, highly differen-
tiable functions, such as the ones we find in many relevant
physical problems, and also in other realms of scientific
computing. One interesting avenue for study is to combine
spectral methods with the tools of quantum simulation to
solve initial-value problems, which are more challenging than
the eigenvalue problems developed here. Moreover, it will be
interesting to explore how these methods can be merged with
amplitude estimation to better interrogate the properties of
general functions.
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APPENDIX: FOURIER SPECTRAL METHOD ERRORS

In this Appendix we summarize well-known results
from Fourier analysis regarding decomposition, truncation,
interpolation, and differentiation of functions, following
Refs. [46,47]. We use these results in the article to discuss
the errors of our method.

1. Fourier series errors

Spectral methods approximate the solution of a differential
equation using a sum of orthogonal basis functions [46]. In
this work we propose to use the Fourier modes. For simplicity,
we can focus on one-dimensional function spaces, rescaled to
the [0, 2π ) interval. The Fourier modes

φk (x) = 1√
2π

e−ikx, k ∈ Z, (A1)

are an orthonormal basis of square-integrable functions
L2

[0,2π]. The Fourier series is the expansion of a function on
this basis

f (x) =
∞∑

k=−∞
f̂kφk, (A2)

using the Fourier coefficients f̂k , k ∈ Z,

f̂k = (φk, f ) = 1√
2π

∫ 2π

0
f (x)eikxdx. (A3)

In numerical applications we can only take care of a limited
number of Fourier coefficients, working with the truncated
Fourier series

PN f (x) =
N/2∑

k=−N/2

f̂kφk. (A4)

This truncation introduces an error that can be quantified as

‖ f (x) − PN f (x)‖2 =
∞∑

|k|=N/2+1

| f̂k|2. (A5)

This error is finite, but it depends on how fast the Fourier co-
efficients (A3) decay to zero, which they always do according
to the Riemann-Lebesgue lemma. On the one hand, if f (x)
is m times continuously differentiable in [0, 2π ] (m � 1) and
if f ( j) is periodic for all j � m − 2, then f̂k = O(1/km) [47]
and the truncation error for f ∈ Hm

p (0, 2π ) (where Hm
p is the

Sobolev space, i.e., the space of functions whose first m − 1
derivatives are periodic) is of order [47]

‖ f (x) − PN f (x)‖ = O(N−m). (A6)

On the other hand, if f (x) is an analytic function f (x) ∈ C∞
and periodic with all its derivatives on [0, 2π ], the decay of
the kth Fourier coefficient is faster than any negative power of
k [47]. More precisely, when f (x) is periodic with period 2π

and analytic in a strip of radius r > 0 centered around the real

axis |Imz < r|, the truncation error decays exponentially [47]

‖ f (x) − PN f (x)‖ = O(e−rN ). (A7)

2. Discrete interpolation errors

Our method is based on an interpolation technique that
replaces the Fourier coefficients in PN f (x) with those coming
from a discrete Fourier transform. Assuming a discretization
of the interval [0, 2π ) using N points with x j = 2π j/N and
−N/2 � k � N/2 − 1, those coefficients are

f̃k =
√

2π

N

N−1∑
j=0

f (x j )φ
∗
j = 1√

N

N−1∑
j=0

f (x j )e
ikx j . (A8)

Using these coefficients, we construct a Fourier interpolant
IN f (x) of degree N/2 as the sum

IN f (x) :=
√

2π

N

N/2−1∑
k=−N/2

f̃kφk (x) (A9)

that reproduces the values of the original function over the
same lattice IN f (x j ) = f (x j ).

The discrete Fourier transform (A8) differs from the exact
Fourier coefficients f̂k [Eq. (A3)] by an amount RN called the
aliasing term

RN := f̃k − f̂k =
∞∑

m=−∞,m �=0

f̂k±mN . (A10)

Due to the orthogonality of the Fourier coefficients, the
Fourier series truncation and the aliasing onto the lattice com-
mute. The difference between the original function and the
interpolated one can thus be written as

‖ f (x) − IN f (x)‖2 = ‖ f (x) − PN f (x)‖2 + ‖RN f (x)‖2.

(A11)

The interpolation error ‖ f (x) − IN f (x)‖ behaves asymptoti-
cally like the truncation error [47,48], depending similarly on
the differentiability properties of the function. In particular,
for bandwidth-limited or more specifically analytical func-
tions, the error of the interpolation decreases exponentially
with the number of points on the lattice N .

3. Gibbs phenomenon

Even if the function under study is almost everywhere
differentiable, a Fourier series will exhibit Gibbs oscillations
around any discontinuity of the function or its derivatives.
Those oscillations are evidence of the fact that such dis-
continuities require arbitrarily large frequencies. Assume,
for instance, a piecewise continuously differentiable periodic
function f (x), x ∈ [0, 2π ], with a jump discontinuity at x =
x0. Let us write its truncated Fourier series [47]

PN f (x) = 1

2π

∫ 2π

0

[
N/2∑

k=−N/2

e−ik(x−y)

]
f (y)dy

= 1

2π

∫ 2π

0
DN (x − y) f (y)dy, (A12)
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using the Dirichlet kernel DN (ξ ),

DN (ξ ) = 1 + 2
N/2∑
k=1

cos(kξ ). (A13)

Around the discontinuity, the Fourier series can be approxi-
mated [47] by

PN f (x)  1

2
[ f (x+

0 ) + f (x−
0 )]

+ 1

2π
[ f (x+

0 ) − f (x−
0 )]

∫ x−x0

0
DN (y)dy, (A14)

as N → ∞. An analysis of the second term reveals that the
Dirichlet kernel distorts the function’s jump by a fixed factor
(0.089 489 872 236 . . . ) that is around 9%. Unfortunately, this
phenomenon also affects the interpolated version of the func-
tion, as it can be seen by using the trapezoidal quadrature rule
to relate (A12) with

IN f (x) = 1

N

N−1∑
l=0

N/2∑
k=−N/2

f (xl )e
−ik(x j−xl )

= 1

N

N−1∑
l=0

DN (x j − xl ) f (xl ). (A15)

In practice, Gibbs oscillations only affect the precise values
of the function around discontinuities. However, they do not
affect the limit of computations with PN f (x) or IN f (x) in
the approximations of integrals and other observables, where
the effect of such distortions averages out and decays alge-
braically as N → ∞.

4. Differentiation errors

We can use the exact Fourier transform to easily compute
the derivative of a function f (x). However, in our method
we use a discretization of the derivative that results from
differentiating the interpolated function DN f (x) := ∂xIN f (x).
As opposed to truncation, interpolation and differentiation do
not commute due to the aliasing [46].

We can analyze the errors associated with the interpola-
tion derivative [47] assuming a differentiable function f ∈
Hm

p (0, 2π ) from a Sobolev space Hm
p (0, 2π ) that supports

m � 1 derivatives

‖ f ′(x) − DN f (x)‖ = O(N1−m).

As before, if the function is analytic, we can improve
this bound, which becomes exponentially small in the
discretization [49].

[1] C. Zalka, Simulating quantum systems on a quantum computer,
Proc. R. Soc. A 454, 313 (1998).

[2] L. Grover and T. Rudolph, Creating superpositions that
correspond to efficiently integrable probability distributions,
arXiv:quant-ph/0208112.

[3] B. Kacewicz, Almost optimal solution of initial-value problems
by randomized and quantum algorithms, J. Complexity 22, 676
(2006).

[4] S. K. Leyton and T. J. Osborne, A quantum algorithm to solve
nonlinear differential equations, arXiv:0812.4423.

[5] F. Gaitan, Finding flows of a Navier–Stokes fluid through quan-
tum computing, npj Quantum Inf. 6, 61 (2020).

[6] D. W. Berry, High-order quantum algorithm for solving linear
differential equations, J. Phys. A: Math. Theor. 47, 105301
(2014).

[7] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[8] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang,
Quantum algorithm for linear differential equations with expo-
nentially improved dependence on precision, Commun. Math.
Phys. 356, 1057 (2017).

[9] A. M. Childs, J.-P. Liu, and A. Ostrander, High-precision quan-
tum algorithms for partial differential equations, Quantum 5,
574 (2021).

[10] A. Montanaro and S. Pallister, Quantum algorithms and the
finite element method, Phys. Rev. A 93, 032324 (2016).

[11] A. M. Childs and J.-P. Liu, Quantum spectral methods for
differential equations, Commun. Math. Phys. 375, 1427 (2020).

[12] Y. Cao, A. Papageorgiou, I. Petras, J. Traub, and S. Kais, Quan-
tum algorithm and circuit design solving the Poisson equation,
New J. Phys. 15, 013021 (2013).

[13] N. Linden, A. Montanaro, and C. Shao, Quantum vs. classical
algorithms for solving the heat equation, arXiv:2004.06516.

[14] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum algorithm
for simulating the wave equation, Phys. Rev. A 99, 012323
(2019).

[15] A. Suau, G. Staffelbach, and H. Calandra, Practical
quantum computing: Solving the wave equation using a
quantum approach, ACM Trans. Quantum Comput. 2, 1
(2021).

[16] J.-P. Liu, H. Ø. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa,
and A. M. Childs, Efficient quantum algorithm for dissipative
nonlinear differential equations, Proc. Natl. Acad. Sci. USA
118, e2026805118 (2021).

[17] S. Lloyd, G. De Palma, C. Gokler, B. Kiani, Z.-W. Liu, M.
Marvian, F. Tennie, and T. Palmer, Quantum algorithm for
nonlinear differential equations, arXiv:2011.06571.

[18] T. Xin, S. Wei, J. Cui, J. Xiao, I. Arrazola, L. Lamata, X. Kong,
D. Lu, E. Solano, and G. Long, Quantum algorithm for solving
linear differential equations: Theory and experiment, Phys. Rev.
A 101, 032307 (2020).

[19] J. M. Arrazola, T. Kalajdzievski, C. Weedbrook, and S.
Lloyd, Quantum algorithm for nonhomogeneous linear par-
tial differential equations, Phys. Rev. A 100, 032306
(2019).

[20] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[21] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New J. Phys. 18, 023023 (2016).

[22] K. Sharma, S. Khatri, M. Cerezo, and P. J. Coles, Noise re-
silience of variational quantum compiling, New J. Phys. 22,
043006 (2020).

012433-16

https://doi.org/10.1098/rspa.1998.0162
http://arxiv.org/abs/arXiv:quant-ph/0208112
https://doi.org/10.1016/j.jco.2006.03.001
http://arxiv.org/abs/arXiv:0812.4423
https://doi.org/10.1038/s41534-020-00291-0
https://doi.org/10.1088/1751-8113/47/10/105301
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1007/s00220-020-03699-z
https://doi.org/10.1088/1367-2630/15/1/013021
http://arxiv.org/abs/arXiv:2004.06516
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1145/3430030
https://doi.org/10.1073/pnas.2026805118
http://arxiv.org/abs/arXiv:2011.06571
https://doi.org/10.1103/PhysRevA.101.032307
https://doi.org/10.1103/PhysRevA.100.032306
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/ab784c


QUANTUM FOURIER ANALYSIS FOR MULTIVARIATE … PHYSICAL REVIEW A 105, 012433 (2022)

[23] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch,
Variational quantum algorithms for nonlinear problems, Phys.
Rev. A 101, 010301 (2020).

[24] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin, and X.
Yuan, Variational ansatz-based quantum simulation of imagi-
nary time evolution, npj Quantum Inf. 5, 75 (2019).

[25] O. Kyriienko, A. E. Paine, and V. E. Elfving, Solving nonlin-
ear differential equations with differentiable quantum circuits,
Phys. Rev. A 103, 052416 (2021).

[26] M. Knudsen and C. B. Mendl, Solving differential equations via
continuous-variable quantum computers, arXiv:2012.12220.

[27] H. Liu, Y. Wu, L. Wan, S. Pan, S. Qin, F. Gao, and Q. Wen,
Variational quantum algorithm for Poisson equation, Phys. Rev.
A 104, 022418 (2021).

[28] P. Mocz and A. Szasz, Toward cosmological simulations of dark
matter on quantum computers, Astrophys. J. 910, 29 (2021).

[29] J.-N. Zhang, I. Arrazola, J. Casanova, L. Lamata, K. Kim, and
E. Solano, Probabilistic eigensolver with a trapped-ion quantum
processor, Phys. Rev. A 101, 052333 (2020).

[30] F. Fontanela, A. Jacquier, and M. Oumgari, A Quantum algo-
rithm for linear PDEs arising in finance, arXiv:1912.02753.

[31] S. Chakrabarti, R. Krishnakumar, G. Mazzola, N.
Stamatopoulos, S. Woerner, and W. J. Zeng, A threshold
for quantum advantage in derivative pricing, Quantum 5, 463
(2021).

[32] S. K. Radha, Quantum option pricing using Wick rotated imag-
inary time evolution, arXiv:2101.04280.

[33] J. José García-Ripoll, Quantum-inspired algorithms for mul-
tivariate analysis: From interpolation to partial differential
equations, Quantum 5, 431 (2021).

[34] H. Nyquist, Certain topics in telegraph transmission theory,
Trans. Am. Inst. Electr. Eng. 47, 617 (1928).

[35] C. E. Shannon, Communication in the presence of noise, Proc.
IRE 37, 10 (1949).

[36] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[37] H. Abraham, R. A. AduOffei, R. Agarwal, I. Y. Akhalwaya,
and G. Aleksandrowicz, Qiskit: An open-source framework for

quantum computing, available at https://quantum-computing.
ibm.com/.

[38] K. Seki, T. Shirakawa, and S. Yunoki, Symmetry-adapted
variational quantum eigensolver, Phys. Rev. A 101, 052340
(2020).

[39] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5, 4213 (2014).

[40] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[41] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum
circuit learning, Phys. Rev. A 98, 032309 (2018).

[42] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran,
Evaluating analytic gradients on quantum hardware, Phys. Rev.
A 99, 032331 (2019).

[43] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[44] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M.
Chow, and J. M. Gambetta, Error mitigation extends the com-
putational reach of a noisy quantum processor, Nature (London)
567, 491 (2019).

[45] R. Sweke, F. Wilde, J. Meyer, M. Schuld, P. K. Faehrmann, B.
Meynard-Piganeau, and J. Eisert, Stochastic gradient descent
for hybrid quantum-classical optimization, Quantum 4, 314
(2020).

[46] D. A. Kopriva, Implementing Spectral Methods for Partial Dif-
ferential Equations (Springer, Dordrecht, 2009), Chap. 2, pp.
3–22.

[47] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,
Spectral Methods: Fundamentals in Single Domains (Springer,
Berlin, 2006), Chaps. 2 and 5, pp. 41–68 and 267–275.

[48] H.-O. Kreiss and J. Oliger, Stability of the Fourier method,
SIAM J. Numer. Anal. 16, 421 (1979).

[49] E. Tadmor, The exponential accuracy of Fourier and Cheby-
shev differencing methods, SIAM J. Numer. Anal. 23, 1
(1986).

012433-17

https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1103/PhysRevA.103.052416
http://arxiv.org/abs/arXiv:2012.12220
https://doi.org/10.1103/PhysRevA.104.022418
https://doi.org/10.3847/1538-4357/abe6ac
https://doi.org/10.1103/PhysRevA.101.052333
http://arxiv.org/abs/arXiv:1912.02753
https://doi.org/10.22331/q-2021-06-01-463
http://arxiv.org/abs/arXiv:2101.04280
https://doi.org/10.22331/q-2021-04-15-431
https://doi.org/10.1109/T-AIEE.1928.5055024
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1038/nature23879
https://quantum-computing.ibm.com/
https://doi.org/10.1103/PhysRevA.101.052340
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.22331/q-2020-08-31-314
https://doi.org/10.1137/0716035
https://doi.org/10.1137/0723001

