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Unveiling quantum entanglement and correlation of sub-Ohmic and Ohmic baths
for quantum phase transitions in dissipative systems
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By employing the spin-boson model in a dense limit of environmental modes, quantum entanglement and
correlation of sub-Ohmic and Ohmic baths for dissipative quantum phase transitions are numerically investi-
gated based on the variational principle. With several measures borrowed from quantum information theory,
three different types of singularities are found for the first-order, second-order, and Kosterlitz-Thouless phase
transitions, respectively, and the values of transition points and critical exponents are accurately determined.
Besides, the scaling form of the quantum discord in the Ohmic case is identified, quite different from that in the
sub-Ohmic regime. In a two-spin model, two distinct behaviors of the quantum discord are uncovered: one is
related to the quantum entanglement between two spins and the other is decided by the correlation function in
the position space rather than the entanglement.
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I. INTRODUCTION

As a newly developed interdisciplinary field in recent
decades, quantum information science mainly based on the
principles of quantum mechanics has attracted much attention
and developed quickly in both theoretical and experimental
researches [1–3]. At the core of the quantum information,
quantum entanglement [4,5] which is an important resource in
the processes of realizing quantum computation and quantum
information tasks has been extensively studied, leading to
powerful applications. Examples are coupled electronic and
vibrational motions in molecules [6,7], quantum teleportation
[8], quantum key distribution [9], quantum dense coding [10],
telecloning [11], one-way quantum computing [12], and quan-
tum estimation [13]. However, the quantum entanglement is
very fragile and easily destroyed by the decoherence effect
from the surrounding environment [5,14]. Hence a full un-
derstanding of the influences of environmental noise on the
quantum entanglement is very important, though it is a long-
standing challenge in the study of open quantum systems.

A wide variety of characterizations for quantumness have
been proposed for the investigation of quantum phase tran-
sitions describing sudden changes of the many-body ground
state as a nonthermal control parameter moving through the
critical value at zero temperature [15–21]. These quantum
information oriented methods have a common advantage in
that they can study phase transitions without any knowledge
of order parameters and symmetries in priority. Quantum
entanglement is one of the most famous indicators [22],
and quantum discord which reflects the quantum correlation
between two components of the system complements the
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entanglement in certain situations to detect phase transitions
[14].

The spin-boson model (SBM) is a well-known dissipative
model describing the interaction between a qubit (spin or two-
level system) and an infinite collection of harmonic oscillators
(bosonic bath) [23–25]. In spite of apparent simplicity, it has
been widely used to study dephasing and dissipative effects
from the environment [26–30]. Recent studies show that there
exists a localized-delocalized quantum phase transition, as
long as the coupling between the system and environment
is characterized by a continuous spectral function J (ω) ∝ ωs

[24,31]. A rich phase diagram has been found for different val-
ues of the spectral exponent s [32–37]. More specifically, the
phase transition is of second order in the sub-Ohmic regime
(s < 1) and of the Kosterlitz-Thouless type in the Ohmic
case (s = 1). In the super-Ohmic regime, however, there is no
phase transition. Very recently, the transition of the two-spin
SBM with a strong antiferromagnetic spin-spin coupling has
been inferred to be of first order even in the Ohmic case [38]. It
is in contrast to that in the absence of spin-spin coupling where
the transition still belongs to the Kosterlitz-Thouless univer-
sality class. However, previous studies principally focused
on the spin-related observations, such as the spontaneous
spin magnetization and the spin coherence as well as the
von Neumann entropy characterizing the system-environment
entanglement [35,36,39–43]. Bath-related observables which
can provide a direct measurement of the quantum criticality
intrinsic to the environment were less considered [38,44,45].

Besides, SBM quantum simulation schemes have been
realized in recent experiments of superconducting quantum
circuits [46–48] and trapped atomic ion crystals [49,50]. It
will become feasible in the near future to experimentally
measure quantum entanglement and correlation of sub-Ohmic
and Ohmic baths. As a result, it crucially requires a deep-
ened knowledge of the critical behaviors nearby the phase
transition, but up to now the progress is limited. Although
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much effort has been devoted to the study of the quantum en-
tanglement in discrete variable systems [4,22,51,52], whether
the scaling law still holds for continuous variables remains an
open issue. Being one of the simplest prototypes of contin-
uous variable bipartite systems, a two-mode Gaussian state
possessing a Gaussian characteristic function and a quasi-
probability distribution has aroused great interest [53–55].
Using covariance matrices and symplectic analysis, numerical
investigations are carried out on the quantum entanglement
and correlation within the bosonic bath.

This paper aims at a comprehensive study of the quan-
tum entanglement and correlation of sub-Ohmic and Ohmic
baths for different types of quantum phase transitions, such as
first-order, second-order, and Kosterlitz-Thouless transitions,
taking the single-spin and two-spin SBM as examples. To
obtain an accurate description of the ground state for both
the spin system and its environment, the numerical variational
method (NVM) [36,44] based on systematic coherent-state
decomposition is employed here, which has been proved to
be valid in tackling ground-state phase transitions and quan-
tum dynamics [56–60]. Moreover, the quantum entanglement
and correlation between two spins are also measured in the
two-spin model, and critical behaviors are carefully analyzed,
in comparison with those within the bosonic bath. The rest
of the paper is organized as follows. In Sec. II, the models
and variational approach are described. In Sec. III, numerical
results of quantum entanglement and correlation as well as
the derivative of the ground-state energy are presented for
quantum phase transitions in dissipative systems involving the
single-spin and two-spin SBM in the sub-Ohmic or Ohmic
regime. Finally, conclusions are drawn in Sec. IV.

II. MODEL AND METHOD

The Hamiltonians of the single-spin and two-spin SBM are
given by

Ĥ = ε

2
σz − �

2
σx +

∑
k

ωkb†
kbk + σz

2

∑
k

λk (b†
k + bk ) (1)

and

Ĥ = ε

2
(σz1 + σz2) − �

2
(σx1 + σx2) +

∑
k

ωkb†
kbk

+ σz1 + σz2

2

∑
k

λk (b†
k + bk ) + K

4
σz1σz2, (2)

respectively, where ε (�) denotes the energy bias (bare tun-
neling amplitude), b†

k (bk) represents the bosonic creation
(annihilation) operator of the kth bath mode with the fre-
quency ωk , σx and σz are Pauli spin-1/2 operators, and λk

signifies the coupling amplitude between the system and bath.
The subscripts of σxi and σzi (i = 1, 2) in Eq. (2) correspond
to the first and second spins, respectively, and K represents the
Ising-type spin-spin interaction. Here we state the notation ε

only for completeness, and the focus of the paper lies on the
case ε = 0.

The parameters λk and ωk are obtained from the spec-
tral density function J (ω) = 2αω1−s

c ωs = ∑
k λ2

kδ(ω − ωk )

[31,36,44,61,62],

λ2
k =

∫ 	k+1ωc

	kωc

dt J (t ), ωk = λ−2
k

∫ 	k+1ωc

	kωc

dt J (t )t, (3)

where α denotes the dimensionless coupling strength, ωc

represents the high-frequency cutoff, and 	k = 	k−M is set
with the factor 	 in the logarithmic discretization procedure
[24,32,41,63]. In this work, the continuum limit 	 → 1 is
required in order to obtain an accurate description of the
ground state for the SBM with a high dense spectrum. To
simplify notations, hereafter we fix the maximum frequency
ωc = 1. Other model parameters, i.e., ε, �, and K , which are
in unit of ωc, are then set to be dimensionless.

The trial ansatz composed of a systematic coherent-
state expansion, termed as the “Davydov multi-D1 ansatz”
[36,56,59], is used in variational calculations,

|
1〉 = |+〉
N∑

n=1

An exp

[
M∑

k=1

( fn,kb†
k − H.c.)

]
|0〉b

+ |−〉
N∑

n=1

Dn exp

[
M∑

k=1

(gn,kb†
k − H.c.)

]
|0〉b, (4)

for the single-spin SBM, and

|
2〉 = |++〉
N∑

n=1

An exp

[
M∑

k=1

( fn,kb†
k − H.c.)

]
|0〉b

+ |+−〉
N∑

n=1

Bn exp

[
M∑

k=1

(gn,kb†
k − H.c.)

]
|0〉b

+ |−+〉
N∑

n=1

Cn exp

[
M∑

k=1

(hn,kb†
k − H.c.)

]
|0〉b

+ |−−〉
N∑

n=1

Dn exp

[
M∑

k=1

(pn,kb†
k − H.c.)

]
|0〉b, (5)

for the two-spin SBM, respectively. In Eqs. (4) and (5), H.c.
denotes Hermitian conjugate, + (−) stands for the spin up
(down) state, and |0〉b is the vacuum state of the bosonic bath.
The variational parameters fn,k, gn,k, hn,k , and pn,k represent
the displacements of the coherent states correlated to the spin
configurations, and An, Bn, Cn, and Dn are weights of the
coherent states. The subscripts n and k correspond to the
ranks of the coherent superposition state and effective bath
mode, respectively. In fact, these trial wave functions above
are generalized Silbey-Harris Ansätze based on the work of
Luther and Emery in the 1970s and of Silbey and Harris in
1984 [64,65].

The ground state |
g〉 can be found by minimizing the
energy expressed as E = H/N using the Hamiltonian expec-
tation H = 〈
1,2|Ĥ |
1,2〉 and the norm of the wave function
N = 〈
1,2|
1,2〉. The variational procedure entails a set of
self-consistency equations which can be numerically solved
with the relaxation iteration technique and global optimization
algorithm. For each set of the model parameters (α,�,	, K ),
more than 100 random initial states are taken to reduce sta-
tistical noise. Since time evolutions of variational parameters
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in the iteration are dependent on initial states, the relaxation
dynamics is considered to be not universal.

With the ground-state wave function at hand, two phase-
space variables are given by xk = 〈
g|x̂k|
g〉 and pk =
〈
g| p̂k|
g〉 as the expectation values of the position and mo-
mentum for the kth bath mode, respectively, where x̂k and p̂k

are

x̂k = (bk + b†
k )/

√
2, p̂k = i(b†

k − bk )/
√

2. (6)

The variances of phase-space variables and correlation func-
tions are then measured,

�Xb = 〈

g|(x̂k )2|
g

〉 − 〈
g|x̂k|
g〉2,

�Pb = 〈

g|( p̂k )2|
g

〉
,

CorX = 〈
g|x̂k x̂l |
g〉 − 〈
g|x̂k|
g〉〈
g|x̂l |
g〉,
CorP = 〈
g| p̂k p̂l |
g〉, (7)

where the subscripts k and l correspond to the kth and lth bath
modes, respectively, and 〈
g| p̂k|
g〉 ≡ 0 is expected for the
ground state.

Since the number of coherent-superposition N in Eqs. (4)
and (5) is small, the ground-state state of each bath mode can
be approximated to a Gaussian state. By that means, it can be
characterized by first and second statistical moments, denoted
by the vector −→r = (xk, pk, xl , pl ) and its covariance ma-
trix σi j = 〈
g|r̂i r̂ j |
g〉 − 〈
gr̂i|
g〉〈
g|r̂ j |
g〉, respectively.
In terms of the variances of phase-space variables, the latter
can also be written as⎛⎜⎝�Xk 0 CorX 0

0 �Pk 0 CorP

CorX 0 �Xl 0
0 �CorP 0 �Pl

⎞⎟⎠ =
(

A C
CT B

)
, (8)

where A, B, and C are three 2×2 matrices and CT represents
the transpose of the matrix C.

For an arbitrary two-mode Gaussian state σ , the von Neu-
mann entropy Sb is measured first,

Sb = f (n−) + f (n+), (9)

where n± is given by

n2
± = � ± √

�2 − 4 detσ

2
, (10)

with the invariant � = detA + detB + 2 detC under the action
of the symplectic transformation, and the form of the function
f (x) is given by

f (x) =
(

x + 1

2

)
ln

(
x + 1

2

)
−

(
x − 1

2

)
ln

(
x − 1

2

)
. (11)

The determinant of the covariance matrix σ and its submatrix
A, B, and C are calculated as

detA = �Xk�Pk,

detB = �Xl�Pl ,

detC = CorxCorp,

detσ = �Xk�Pk�Xl�Pl + CorxCorxCorpCorp

− �Xk�XlCorpCorp − �Pk�Pl CorxCorx. (12)

Another measurement referred to as the linear entropy, SL,b, is
also carried out,

SL,b = 1 − μb = 1 − Tr[ρ2] = 1 − 1/(4
√

detσ ), (13)

where μb denotes the purity ranging from 1 for pure states
to the limiting value 0 for completely mixed states, since no
finite lower bound to the 2-norm of ρ exists due to the infi-
nite dimension of the Hilbert space [66]. Besides, the mutual
information is also investigated,

Ib = Sb(σ1) + Sb(σ2) − Sb(σ )

= f (a) + f (b) − f (n−) − f (n+), (14)

where σ1,2 denotes the reduced state of the subsystem 1
or 2 and the parameters a and b represent

√
detA and

√
detB,

respectively.
In order to quantify the degree of entanglement, the log-

arithmic negativity EN,b = max{0,− log2 2ν̃−} is introduced,
where ν̃− is the symplectic eigenvalues of the partial transpose
of the two-mode covariance matrix,

ν̃2
± = �̃ ±

√
�̃2 − 4 detσ

2
, (15)

and �̃ = detA + detB − 2 detC is another symplectic invari-
ant.

Finally, quantum discord Db = Ib − Cb is considered as a
measure of all nonclassical correlations in a bipartite state, in-
cluding but not restricted to entanglement. For pure entangled
states, quantum discord coincides with the entropy of entan-
glement. It also can be nonvanishing for some mixed separable
state wherein the correlation depicted by the positive discord
is an indicator of quantumness. States with zero discord repre-
sent essentially a classical probability distribution embedded
in a quantum system. The classical correlation Cb is measured
by maximizing over all possible measurements, taking the
form

Cb(σ ) = Sb(σ1) − inf {∏i}{Sb(σ1|2)}
= Sb(σ1) − inf {∏i}

∑
i

piSb(ρ1i ), (16)

where pi is the measurement probability for the ith local
projector and ρ1i denotes the reduced state of subsystem 1
after local measurements.

As reported in previous work [53,55], the quantum discord
of a general two-mode Gaussian state is given by Db(σ ) =
f (b) + f (e) − f (n−) − f (n+), where b, n−, n+, and f (x)
are already mentioned before, and the value of e = √

detε is
estimated by

detε =

⎧⎪⎪⎨⎪⎪⎩
2γ 2+(β−1)(δ−α)+2|γ |

√
γ 2+(β−1)(δ−α)

4(β−1)2 if � � 0,

αβ−γ 2+δ−
√

γ 4+(δ−αβ )2−2γ 2(αβ+δ)
8β

if � < 0,

(17)
with � = (1 + β )γ 2(α + δ) − (δ − αβ )2, α = 4 det A, β =
4 detB, γ = 4 detC, and δ = 16 detσ .

Since the quantum entanglement and correlation de-
fined in Eqs. (9)–(17) can be investigated for arbitrary
two bath modes, without losing any generality we fix one
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FIG. 1. (a) First derivative of the ground-state energy Eg in the sub-Ohmic SBM (s = 0.2) is displayed as a function of the coupling
strength α for various values of the discretization factor 	 with the same lowest frequency ωmin = 	−Mωc ≈ 10−10ωc. The tunneling constant
� = 0.1ωc and the number of coherent-superposition states N = 8 are set. The phase boundary where the slope is discontinuous is marked by
the dash-dotted line. (b) The shift of the transition point �αc with respect to ln 	 and ωmin is plotted with open circles and open triangles (in
the inset), respectively. Dashed lines represent power-law fits.

frequency ωl = ωc = 1 in the following. Taking their sum-
mations over the other frequency ωk , efficient indicators∑

CorX ,
∑

Sb,
∑

Ib,
∑

SL,b,
∑

EN,b, and
∑

Db are thus
obtained for quantum phase transitions.

III. NUMERICAL RESULTS

By means of the entanglement, correlation, and entropy, as
well as the derivative of the ground-state energy, ground-state
phase transitions in single-spin and two-spin SBM are numer-
ically investigated based on the variational principle. In light
of rich phase diagrams, four different cases are considered
as examples, which are the single-spin one in sub-Ohmic
regime, Ohmic ones in single-spin and two-spin models,
respectively, and the two-spin one with a strong antiferro-
magnetic coupling. Correspondingly, three different types of
singularities and critical behaviors are identified for second-
order, Kosterlitz-Thouless, and first-order transitions.

A. Second-order phase transitions

First, the localized-delocalized phase transition in the sub-
Ohmic SBM is demonstrated by setting the model parameters
s = 0.2, � = 0.1, and ε = 0. Convergence test of variational
results is performed against the number of the coherent-
superposition states N and it is concluded that N = 8 is
sufficient in variational method to accurately describe ground
states.

1. Derivative of ground-state energy

In Fig. 1(a), the first derivative of the ground-state energy,
∂Eg/∂α, is plotted against the coupling α. To investigate
the discretization effect, one employs different values of
the discretization factors 	 = 1.05–8 with the same lowest

frequency ωmin ≈ 10−10. All curves decrease with the cou-
pling α and have sharp kinks, indicating a high-order
singularity expected at the transition point. It confirms that the
phase transition is of second order. Moreover, the transition
boundary marked by the dash-dotted line displays a linear
dependence of ∂Eg/∂α on the critical coupling αc. The con-
vergence is reached at 	 = 1.05, corresponding to the number
of effective bath modes M = 430. It is about the same order
of magnitude as that in the Davydov work on the quantum
dynamics of the SBM [67].

Taking the asymptotic value αc,	→1 = 0.018 02 as input,
the shift of the transition point �αc = αc(	) − αc,	→1 is
plotted in Fig. 1(b) as a function of the logarithm of the
discretization factor ln 	 on a log-log scale. A power-law
increase of �αc is found to provide a good fitting to the
numerical data, and the value of the slope yields d − 1/ν =
1.79(2) from the scaling arguments and the relation ln 	 =
−(ln ωmin)/M ∼ 1/M, where M is equivalent to the length
of the Wilson chain. By that we mean the Hamiltonian of
SBM can be exactly mapped to the one describing a bosonic
chain, i.e., Wilson chain, with nearest-neighbor interactions
via a canonical transformation [36,68]. In addition, quantum
phase transition for the system with short-range interactions
in d spatial dimensions is generally believed to be equiv-
alent to the classical transition in d + 1 dimensions under
the quantum-classical mapping. Thus taking effective spatial
dimension deff = 1 + 1 by assumption, one calculates the cor-
relation length exponent 1/ν = 0.21(2), in agreement with the
mean-field prediction 1/νMF = s = 0.2.

On the other hand, the dependence of the critical coupling
αc on the lowest frequency ωmin is also investigated, and the
results are shown in the inset where the discretization factor
	 = 2.0 is set. Note the correlation length is given by an in-
verse energy scale ξ = 1/ω∗, where ω∗ is the frequency above
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FIG. 2. Summations of the von Neumann entropy Sb, mutual in-
formation Ib, linear entropy SL,b, and quantum discord Db are plotted
with the solid, dashed, dash-dotted, and dotted lines, respectively, on
a linear scale. The discretization factor 	 = 1.05 and the numbers of
coherent-superposition states and effective bath modes N = 8, M =
430 are set. For clarity, all the values of the peaks are scaled to the
unit. The transition point αc = 0.018 03(1) is then located by the
vertical line.

which the quantum critical behavior is established. Therefore,
a power-law relation �αc ∝ L−1/ν = ω

1/ν

min can be derived
from the finite-size scaling analysis in frequency space. The
exponent 1/ν = 0.22(1) is estimated from the slope of the
curve in the inset, well consistent with the earlier one 0.21(2).

2. Bath-related observables

Critical behaviors of quantum entanglement and correla-
tion within the sub-Ohmic bath are investigated in Fig. 2
with the summations of the von Neumann entropy Sb, mutual
information Ib, linear entropy SL,b, and quantum discord Db

on a linear scale. Obviously, they reach a sharp peak right
at the phase transition, pointing to a cusplike singularity. By
normalizing the peak value to unity, all the curves have similar
shapes, suggesting they obey the same scaling law in the
sub-Ohmic regime. The transition point αc = 0.018 03(1) is
determined by the peak position which is indicated by the
vertical dash-dotted line. It is in good agreement with the
extrapolation result αc,	→1 = 0.018 02 in Fig. 1, showing
	 = 1.05 is sufficiently small for the convergence in the con-
tinuum limit. Besides, the accuracy of the variational result on
the critical coupling is significantly improved, in comparison
with previous ones 0.0168 [32] and 0.020 14 [69]. Moreover,
it agrees well with numerical results 0.0185(4),0.0175(2),
and 0.0179(5) obtained by the numerical renormalization
group (NRG) [63], quantum Monte Carlo (QMC) [70], and
variational matrix product [41], respectively, thereby lending
further support to the validity of variational calculations in this
work.

Using the summation of the quantum discord
∑

Db over
the frequency ωk as a representative, one investigates the

influence of the discretization factor 	 in Fig. 3(a). Similar
with that in Fig. 1(a), the critical coupling αc determined by
the peak position of

∑
Db is shifted left with the decreasing

discretization factor 	, while the slopes 1.00(2) and 2.37(3)
in two sides are almost unchanged, showing that critical expo-
nents are robust. Noting ln 	 ∼ 1/M, one concludes that the
peak value of

∑
Db increases slightly with the environmental

size M, confirming the general assumption that the quantum
correlation has a singularity at the transition point. Moreover,
the dependence on the low-energy cutoff ωmin is also demon-
strated in Fig. 3(b). Interestingly, all the curves of

∑
Db for

different ωmin ≈ 10−9–10−3 almost overlap with each other
in the delocalized phase, indicating quantum discord Db in
the low-frequency regime is negligible. In the localized phase,
however, the decay exponent is changed slightly from 3.3(1)
to 2.37(4) with the decreasing ωmin, different from that in
Fig. 3(a). It indicates the critical behavior of

∑
Db is de-

pendent on ωmin rather than 	. The slope approaches the
asymptotic value 2.37 at ωmin ≈ 10−9, confirming that the
value of the parameter ωmin used in this work is already
sufficiently small.

3. Shallow sub-Ohmic regime

As mentioned before, quantum phase transition in the
deep sub-Ohmic regime s < 0.5 is mean-field like where the
critical exponent obeys 1/ν = s. In the shallow sub-Ohmic
regime s > 0.5, however, nontrivial critical behaviors have
been found in both the numerical work and analytical analysis
[31,70,71]. The hyperscaling relations hold and the exponent
ν is expected to diverge as 1/

√
2(1 − s) near the Ohmic point

s = 1. In order to demonstrate the validity of our scaling
analysis and NVM in such non-mean-field regime, additional
simulations with the spectral exponent s = 0.7 are performed
for different values of 	 and ωmin.

Taking 	 = 1.05 as an example, the first derivative of the
ground-state energy, ∂Eg/∂α, is plotted versus the coupling α

in Fig. 4(a). Similar to that in Fig. 1, high-order singularity
is obtained at the transition point αc = 0.2276(1), though
the slope difference between two phases (1.5 − 0.75 = 0.75)
becomes far less, inferring that the transition is weakened in
the shallow sub-Ohmic regime. In addition, the first derivative
of the spin coherence, ∂〈σx〉/∂α, is also presented with stars,
and a tiny discontinuity is detected at the critical point, again
supporting the transition is of second order.

In Fig. 4(b), the asymptotic behavior of �αc is carefully ex-
amined. By taking into account the mass flow corrections, the
transition point αc = 0.2430 is estimated in the inset at 	 =
2, in agreement with QMC result 0.241(2) [70]. The asymp-
totic value of αc is then refined to be 0.227 31 in the continuum
limit 	 → 1, corresponding to the high dense sub-Ohmic
bath. Moreover, the exponent value 1/ν = 0.43(3) is deter-
mined, well consistent with the QMC result 0.45(5), but far
away from the predictions 1/ν = s = 0.7 and

√
2(1 − s) ≈

0.775. Quantum-to-classical correspondence gives that the
SBM quantum transition is in the same universality class as
the classical Ising chain with long-range interactions decay-
ing as 1/r1+s [31]. Interestingly, our result agrees well with
1/ν = 1/2 + 1/3ε − 2.628ε2 + O(ε3) ≈ 0.461 with ε = s −
0.5 which can be read off from the hyperscaling relation
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FIG. 3. Summation of the quantum discord,
∑

Db, is shown as a function of the coupling α for different discretization factors 	 at
ωmin ≈ 10−10ωc in (a) and low-energy cutoff ωmin at 	 = 2.0 in (b) on a log-log scale. Other parameters s = 0.2, �/ωc = 0.1, and N = 8 are
set. In both (a) and (b), dashed lines represent power-law fits.

γ = (2 − η)ν and two-loop renormalization-group predic-
tions on the exponents γ and η in the Ising chain [72].

B. Kosterlitz-Thouless phase transitions

Besides sub-Ohmic quantum transitions, quantum phase
transitions in the Ohmic SBM (s = 1) which are of Kosterlitz-
Thouless type are also studied in the weak tunneling and
continuous limits � → 0, 	 → 1. Considering the constraint

available computational resources, the tunneling amplitude
� = 0.01 and discretization factor 	 = 1.01 are set as a
demonstration. Convergence check shows that the numbers
of coherent-superposition states N = 6 and of effective bath
modes M = 1000, are sufficiently large for Ohmic phase tran-
sitions.

The first derivative of the ground-state energy ∂Eg/∂α is
plotted in Fig. 5 for the discretization factor 	 = 1.01 on
a linear scale. For comparison, numerical simulations with

FIG. 4. (a) In the shallow sub-Ohmic SBM (s = 0.7), the first derivatives of the ground-state energy Eg as well as the spin coherence 〈σx〉
are displayed as a function of the coupling strength α on a linear scale. The tunneling constant � = 0.1ωc, discretization factor 	 = 1.05, and
numbers of coherent-superposition states and effective bath modes N = 8, M = 430 are set. The left and right arrows indicate the y coordinates
for ∂Eg/∂α and ∂〈σx〉/∂α, respectively. (b) The shift of the transition point �αc with respect to ln 	 and ωmin is plotted with open circles and
open triangles (in the inset), respectively. Dashed lines represent power-law fits.
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FIG. 5. In the Ohmic SBM with s = 1, the ground-state energy
derivative ∂Eg/∂α is displayed for the logarithmic discretization fac-
tors 	 = 1.01 and 1.02. The tunneling constant �/ωc = 0.01 and the
number of coherent-superposition states N = 6 are set. In the inset,
the shift δ(∂Eg/∂α) = (∂Eg/∂α) − (∂Eg/∂α)|α→∞ is plotted with
open triangles (	 = 1.01) and open squares (	 = 1.02), respec-
tively, on a linear-log scale. Dashed line represents an exponential
fit.

	 = 1.02 are also performed. The overlap of two curves
indicates that the effect of discretization is already negligi-
bly small. With the increasing coupling α, the ground-state
energy derivative ∂Eg/∂α exhibits a smooth decay, tending
to a converging value around −0.5. Taking the asymptotic
value −0.499 958 as input, an exponential decay of the shift
δ(∂Eg/∂α) is found with the slope 8.6, as shown in the inset. It

suggests there is no discontinuity in derivatives of the ground-
state energy Eg of any order, supporting that the quantum
phase transition is of the Kosterlitz-Thouless type.

1. Bath criticality in single-spin SBM

In Fig. 6(a), the summations of the correlation function
CorX, logarithmic negativity EN,b, von Neumann entropy
Sb, mutual information Ib, linear entropy SL,b, and quantum
discord Db are plotted on a log-log scale for the quantum
entanglement and correlation within the Ohmic bath. Differ-
ent from the cusplike singularity in Fig. 2, the discontinuities
analogous to the universal jump of the superfluid density
in the XY model are found in all curves, again pointing to
the emergence of Kosterlitz-Thouless phase transition. The
critical value of the coupling αc = 1.01(1) is then estimated
for � = 0.01, in good agreement with the prediction αc =
1 + O(�/ωc) [24]. Furthermore, the asymptotic value αc =
1.0053 is measured by the extrapolation ωmin → 0, and the
linear coefficient (αc − 1)ωc/� = 5.3 is excellently consis-
tent with that in Ref. [73]. It points out that our variational
method is as powerful and efficient as QMC and variational
Feynman in providing an accurate description of the physical
features of SBM.

In the delocalized phase α < αc, the summations of the
von Neumann entropy Sb and its linear term SL,b increase
with the coupling α as a power-law form with the slope
close to 1, pointing to the linear dependence. A good
coincidence is found for the curves of the correlation func-
tion CorX, mutual information Ib, and quantum discord Db,
indicating the bath embodies pure quantum effect. They be-
have similarly to the entropy, though the slope 1.25(2) is
slightly larger than 1. In contrast, the summation of the
logarithmic negativity EN,b exhibits a power-law decay with
a larger exponent 6.04(8), suggesting the average bipartite

FIG. 6. (a) Summations of the correlation function CorX, logarithmic negativity EN,b, von Neumann entropy Sb, mutual information Ib,
linear entropy SL,b, and quantum discord Db are plotted versus the coupling strength α on a log-log scale. The dashed lines show power-law
fits. Other parameters �/ωc = 0.01, s = 1, 	 = 1.01, N = 6, and M = 1000 are set. (b) The quantum discord Db is plotted as a function of
the bosonic frequency ωk for different couplings. For comparison, the quantum discord Db(ωk ) in the sub-Ohmic regime s = 0.2 is also given
in the inset.
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FIG. 7. Frequency-dependent average displacement coefficients f k and gk as well as the quantum fluctuation �Xb − 1/2 in the position
space are plotted for different couplings α in (a) and (b), corresponding to the sub-Ohmic SBM (s = 0.2) and Ohmic SBM (s = 1), respectively.
Dashed line in the middle panel of the subfigure (a) represents a power-law fit.

entanglement is rapidly erased by the decoherence effect from
the environment. The opposite trend and vanishing value of∑

EN,b show that the ground state of the Ohmic bath in the
delocalized phase is separable mixed, rather than pure entan-
gled.

Subsequently, the frequency dependence is examined, typ-
ified by the quantum discord Db. In Fig. 6(b), Db(ωk ) is
displayed for different couplings α = 0.5, 0.6, 0.7, 0.8, and
1.0 on a log-log scale. It increases monotonously with the
frequency ωk and quickly stabilizes at a constant which is
coupling dependent. As the coupling α increases, the growth
curve flattens out gradually and tends to be ωk independent
at the transition point. For comparison, the quantum discord
Db(ωk ) in the sub-Ohmic regime s = 0.2 is also given in the
inset. Different from the Ohmic case, all the curves of Db(ωk )
exhibit sharp peaks in the high-frequency region. It is worth
noting that the peak value reaches a maximum at the transition
αc = 0.018, while the position of the peak remains practically
unchanged. Therefore, two distinct scaling behaviors of the
bosonic bath can be found for the Ohmic and sub-Ohmic tran-
sitions, lending further support to the claim that they belong
to different universality classes.

For better understanding the nature of ground states in
the sub-Ohmic and Ohmic regimes, the structure of the
environmental wave function characterized by average dis-
placement coefficients defined as f k = 〈
1|(bk + b†

k )(1 +
σz )|
1〉/2 and gk = 〈
1|(bk + b†

k )(1 − σz )|
1〉/2 is demon-
strated in Fig. 7. For the sub-Ohmic SBM at s = 0.2, a perfect
antisymmetry relation f k = −gk is found over the whole
range of ωk in the upper panel of the subfigure (a), support-
ing the usual assumption concerning the delocalized phase
[34,65]. A huge jump appears in the low-frequency value of
the displacement coefficient when the coupling is changed
from α = 0.018 03 to 0.018 04, showing a sharp transition.
In the middle panel, power-law decays of both f k and gk are
observed with the slope 0.4 for α > αc at low frequencies,
confirming that they follow the same classical displacement

λk/(2ωk ) ∼ ω
−(1−s)/2
k = ω−0.4

k , and thereby the antisymmetry
is broken in the localized phase.

For the Ohmic SBM at s = 1, the antisymmetry relation as
well as the antipolaron which was proposed as an important
concept in Ref. [34] is confirmed in our numerical work,
indicating that the picture of the variational parameters in the
delocalized phase is almost the same. Spontaneous breakdown
of the antisymmetry is also found at the quantum phase tran-
sition, as shown in Fig. 7(b), while the deep Kondo regime
where α → 1 and the localized phase were untouched in that
work [34]. Further analysis points out that the amount of the
jump for the average displacement coefficient at ωmin is almost
four orders of magnitude smaller than the sub-Ohmic one. It is
because the value of f k or gk is independent of ωk in the local-
ized phase, for the classical displacement λk/(2ωk ) = const.
Hence it can be inferred that the bath modes with low and high
frequencies may follow the same critical scaling in the Ohmic
case, but behave differently in the sub-Ohmic regime.

Quantum fluctuations mainly caused by the effect of the
antipolarons are investigated in the lower panels of Fig. 7,
which can be measured by the departure from the single-
coherent state, �Xb − 1/2. In the sub-Ohmic regime, as
expected, quantum fluctuations at low frequencies vanish in
both the localized and delocalized phases. In contrast, the
curve develops a plateau in the high-frequency region for any
coupling α, and the plateau value reaches a maximum at the
transition point αc = 0.018, similar with that in the inset of
Fig. 6(b). It suggests that the emergences of kinks in Figs. 2
and 3 are only related to the high-frequency bath modes. In
the Ohmic case, the quantum fluctuation �Xb − 1/2 for α =
0.5, 0.7, and 1.0 grows with the frequency ωk , and approaches
an α-dependent constant value. For a larger coupling, e.g.,
α = 1.1, however, it vanishes �Xb − 1/2 = 0 over the whole
frequency range, confirming that bath modes are independent
of each other and behave as a single-coherent state in the
localized phase. The picture is quite different from that in the
sub-Ohmic regime.
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FIG. 8. (a) In the Ohmic bath s = 1 of two-spin SBM with vanishing spin-spin interaction K = 0, the summations of the correlation
function CorX, logarithmic negativity EN,b, von Neumann entropy Sb, mutual information Ib, linear entropy SL,b, and quantum discord Db are
plotted on a log-log scale at �/ωc = 0.01, 	 = 1.01, N = 6, and M = 1000. (b) The scaling function of the quantum discord D̃b(r) = Db/α

is displayed with respect to the ratio r = ωk/ωs for different couplings. Inset shows the energy scale ωs(α) extracted from the data collapse. In
both (a) and (b), dashed lines represent power-law fits and the solid line in the inset shows the fit with an exponential form.

2. Bath criticality in two-spin SBM

Environmental entanglement, correlation, and entropy in
two-spin SBM are also presented in Fig. 8(a), in the presence
of the vanishing spin-spin coupling K = 0 and weak tunneling
� = 0.01. Similar to those in Fig. 6(a), they follow power-
law behaviors in the delocalized phase, though the values of
the growth exponents are slightly larger. The transition point
αc = 0.191(2) is then located by sudden drops of the curves,
much lower than earlier variational results αc = 0.5 [74] and
0.31 [38]. It is because the value of critical coupling can be
well refined with the help of the high dense spectrum and
broad frequency range ωc/ωmin > 105 [45]. Moreover, it is in
good agreement with the NRG one αc = 0.185 and QMC one
0.210 estimated from the linear extrapolation � → 0.01 of
numerical results obtained in previous work [33,71], further
confirming the accuracy of our NVM calculations.

General scaling arguments of the continuous phase transi-
tion lead to the scaling form of the quantum discord,

Db(ωk, α) = αλD̃b(ωk/ωs), (18)

where αλ indicates the scaling dimension, D̃b(r = ωk/ωs)
represents the scale invariance of the quantum discord in the
Ohmic bath, and ωs = 1/ξ denotes the inverse of the correla-
tion length.

The scaling function of the quantum discord D̃b(r) =
Dbα

−λ defined in Eq. (18) is shown in Fig. 8(b) with respect
to the ratio r = ωk/ωs. With the exponent λ = 1 and energy
scale ωs(α) as inputs, all data of different coupling α nicely
collapse to a single curve, fully confirming the scaling form
of the quantum discord Db. Clearly, D̃b(r) → const. when
r → ∞ and D̃b(r) ∼ r1.60 when r → 0, suggesting it is a non-
analytic function. In the inset, the energy scale ωs extracted
from the data collapse decays exponentially with the coupling

α. The solid line provides a good fit to the numerical data
with a power-law correction to scaling, yielding the exponent
value 52.7(4). It is perfectly consistent with the result 52.1(5)
measured from the magnetization 〈σz〉 under a tiny bias 10−5,
and almost twice as large as that from the renormalized tun-
neling �r [38]. Therefore, it is concluded that exponentially
divergent correlation length 1/ωs plays an essential role in
critical behaviors of two-spin SBM.

3. Spin criticality in two-spin SBM

For comparison, the correlation, entanglement, and entropy
between two spins are also investigated in this work. First,
the von Neumann entropy Sv-N that characterizes the entan-
glement between the spin system and its surrounding bath
is introduced, Sv-N = −Tr[ρslog2ρs], where ρs = Trb[ρsb] is
a reduced system density matrix given by tracing the total
(system + bath) density operator ρsb over the bosonic bath.
The linear entropy of the system is then calculated as SL =
1 − Tr[ρsρs]. With the reduced density matrix ρs at hand, the
quantum entanglement between two spins can be measured by
the concurrence,

C(ρs) = max{λ1 − λ2 − λ3 − λ4, 0}, (19)

where λi (i = 1, 2, 3, or 4) represents a square root of the
eigenvalues of the matrix ρsρ̃s arranged in a descending or-
der and ρ̃s = (σy ⊗ σy)ρ∗

s (σy ⊗ σy). The entanglement of the
formation is then calculated,

SE(C) = h

(
1 + √

1 − C2

2

)
, (20)

with the function h(x) = −x log2 x − (1 − x) log2(1 − x).
In addition, the spin-spin correlation function Cor =

〈σz1σz2〉 − 〈σz1〉〈σz2〉 and mutual information I = SvN(ρs1) +
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FIG. 9. By tracing out the bath degrees of freedom, the quantum correlation, entanglement, and entropy between two spins are displayed,
including the von Neumann entropy SvN, linear entropy SL, correlation function Cor, and mutual information I in (a) on a linear scale and the
concurrence C, entanglement of the formation SE, logarithmic negativity EN, and quantum discord D in (b) on a log-linear scale. Dashed lines
represent fits to the exponential damping.

SvN(ρs2) − SvN(ρs) are investigated for the correlation in the
spin system, where the subscripts 1 and 2 denote the ranks of
the spins. The negativity is a measure of quantum entangle-
ment derived from the PPT criterion for separability, which is
an entanglement monotone. The negativity of a subsystem can
be defined as N (ρs) = (||ρT

s ||1 − 1)/2, where ρT
s is the partial

transpose of the reduced system density ρs with respect to the
spin 1, and ||X̂ ||1 = Tr|X̂ | = Tr

√
X̂ †X̂ is the trace norm or the

sum of the singular values of the operator X̂ . The logarithmic
negativity is then calculated as EN = log2(2N + 1). It is be-
lieved to be an easily computable entanglement measurement
and an upper bound to the distillable entanglement [5].

Finally, the quantum discord reflecting the nonclassical
part of the total correlation is calculated as D(ρs2|1) = I (ρs) −
C(ρs2 : ρs1), where I denotes mutual information between two
spins 1 and 2 and C represents the classical correlation,

C(ρs2 : ρs1) ≡ sup
{� j1}

I (ρs|{� j1})

= sup
{� j1}

[
SvN(ρs2) −

∑
j

p jSvN(ρ j2)

]
, (21)

given by a certain projection measurement {� j1} on the spin
1 with

p j = Tr(� j1ρs� j1), ρ j2 = � j1ρs� j1

p j
. (22)

Thus the quantum discord can be written as

D(ρs2|1) = SvN(ρs1) − SvN(ρs) + inf
{� j1}

∑
j

p jSvN(ρ j2), (23)

with the element of the projective measurement � j1( j = 1, 2)
and density matrix in the Bloch representation ρ ′

s defined as

� j1 = 1

2
(l + �n j · �σ1),

ρ ′
s = 1

4

(
1 ⊗ 1 + �a · �σ1 ⊗ 1 + 1 ⊗ �b · �σ2

+
3∑

i, j=1

Ti jσi1 ⊗ σ j2

)
, (24)

where �n1 = −�n2 = (sin θ cos φ, sin θ sin φ, cos θ ) is a
three-dimensional unit vector in an arbitrary direction,
�σ = (σx, σy, σz ) denotes a vector of Pauli matrices,

�a = Tr(ρs �σ1 ⊗1) as well as �b = Tr(ρs1 ⊗ �σ2) represents
a local Bloch vector, and Ti j = Tr(ρsσi1 ⊗ σ j2) denotes one
component of the correlation tensor. By scanning all possible
measurements with parameters (θ, φ), the quantum discord D
is obtained by means of the minimization procedure.

The spin-related observables defined in Eqs. (19)–(23) are
displayed in Fig. 9, whose behaviors are quite different from
those of bath-related ones in Fig. 8(a). In particular, the von
Neumann entropy SvN increases monotonically due to the sup-
pression of the renormalized tunneling amplitude and reaches
a plateau with the maximal system-bath entanglement. It indi-
cates that coherence is lost already before the system becomes
localized and the spin dynamics is incoherent in the plateau.
This coherent-to-incoherent crossover in the two-spin model
occurs at the Toulouse point αt = αc/2 ≈ 0.1, which is the
same as that in the single-spin model. Moreover, the entan-
glement between the quantum system and bath can also be
measured by the linear entropy SL which behaves similarly
to the von Neumann entropy SvN, although the value of SL is
slightly lower when α < αt .
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Besides the entropy, the spin-spin correlation function Cor
and quantum mutual information I are also plotted in Fig. 9(a).
Since the mutual information measures the total amount of
the correlations in the spin system, the relation Cor < I in the
coupling regime α < αt indicates that the correlation function
Cor = 〈σz1σz2〉 − 〈σz1〉〈σz2〉 is an incomplete measure of the
correlation. Further analysis points out that Cor has a simi-
lar behavior to C(ρs2 : ρs1) = I − D, suggesting it belongs to
the degree of the classical correlation. Besides, it reaches its
maximum Cor = I = 1 at α � αt , the same as the system-bath
entanglement SvN. Therefore, one can conjecture that the spin-
spin correlation function Cor may come from the effect of
the bath-induced ferromagnetic interaction Kr = (−4αωc/s)
[38].

In Fig. 9(b), the entanglement between two spins is de-
picted by the concurrence C, entanglement of formation SE,
and logarithmic negativity EN. Exponential decays are found
in the delocalized phase with large slopes, i.e., 42 for EN and
C and 78 for SE, respectively. It indicates that the entangle-
ment diminishes rapidly with the environmental coupling α.
Besides, the quantum discord D reflecting the nonclassical
correlation is also plotted in this subfigure. In contrast to the
mutual information I and spin-spin correlation function Cor,
quantum discord D exhibits a monotonic smooth decrease in
the delocalized phase. Abrupt drops of the curves are found
at the transition point αc = 0.191, analogous to the univer-
sal jump of the superfluid density in the XY model, again
supporting that the quantum phase transition of the two-spin
model still belongs to the Kosterlitz-Thouless universality
class.

Note that the behaviors of the correlation, entanglement,
and entropy between two spins significantly differ from those
between two bath modes. For example, the classical correla-
tion in the former Cor ∼ I − D increases with the coupling α

and reaches its plateau with the maximal correlation, while the
one in the latter

∑
(Ib − Db) vanishes in the delocalized phase,

showing the pure quantumness which can be identified as a
signature of the bosonic bath. Furthermore, the logarithmic
negativity EN,b decreases with the coupling, displaying the
opposite trend of the quantum discord Db. It indicates that
the nonclassical correlation in the Ohmic bath is irrelevant
to the entanglement, in contrast to that in the quantum spin
system where the discord is strongly restricted by the entan-
glement as shown in Fig. 9(b). Further analysis suggests that
this nonclassical correlation is essentially determined by the
quantum correlation in the position space CorX, as given in
Fig. 8(b). Although the average value of the entanglement in
the bath

∑
EN,b/(M − 1) is negligibly small as compared to

that of EN between two spins, both of them decay with the
coupling α in the delocalized phase. At the transition point,
however, there exists an abnormal increase of

∑
EN,b and

an abrupt drop of EN, suggesting different singularities of
quantum entanglements.

C. First-order phase transitions

In this subsection, ground-state properties of the two-
spin model under a strong antiferromagnetic coupling are
investigated, taking K = 3.0 as an example. The numbers of
coherent-superposition states N and effective bath modes M

FIG. 10. In the two-spin SBM with the Ising-type interaction
K = 3.0ωc, the ground-state energy derivative ∂Eg/∂α as well as
the quantum discords D and Db for the quantum spin system and its
bosonic environment, respectively, is displayed on a linear scale. The
tunneling constant � = 0.025ωc, numbers of coherent-superposition
states and bath modes N = 6, M = 1000, and spectral exponent
s = 1 are set. The left and right arrows indicate the y coordinates
for the energy derivative ∂Eg/∂α and quantum discords D and Db,
respectively.

are set to be the same as those in the subsection B. In Fig. 10,
the discontinuity in the first derivative of the ground-state
energy, ∂Eg/∂α, is obtained at αc = 0.751(2), pointing to a
first-order phase transition. The spin-related quantum discord
D and summation of the quantum discord

∑
Db are then

plotted as representatives to illustrate quantum correlations in
the spin system and bosonic bath, respectively. In the whole
delocalized phase, the quantum discord D remains unchanged,
quite different from that in the case with K = 0 as shown in
Fig. 9(b). An abrupt jump from D = 1 to 0 is found at the tran-
sition point αc, yielding a singularity in the quantum discord.
Further studies give the coincidence between the quantum dis-
cord and entropy of entanglement, indicating a pure entangled
state of the spin system. Moreover, the relation 〈σz1σz2〉 =
−1 leads to an antiparallel spin configuration. Therefore, the
ground state of the spin system in the delocalized phase can be
approximated as one Bell basis of maximally entangled states,√

2/2(|+−〉 + |−+〉). In the localized phase, however, both
the classical and nonclassical correlations vanish, showing the
independence of two spins.

In contrast to the spin system, the nonclassical correla-
tion

∑
Db of the bosonic bath vanishes in both the localized

and delocalized phases and possesses a δ-function peak at
the transition. In addition, this δ-function singularity is also
found for the summations of the correlation function CorX,
von Neumann entropy Sb, mutual information Ib, and linear
entropy SL,b; thereby one concludes that arbitrary two bath
modes are always independent except at the transition point.
Interestingly, the system-bath entanglement represented by
the von Neumann entropy SvN behaves the same as

∑
Db,

indicating that the sharp drop of the entanglement between
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two spins EN is triggered by the emergence of such singularity
in the Ohmic bath.

IV. CONCLUSIONS

Quantum entanglement and correlation of bosonic baths
in dissipative quantum systems have been numerically stud-
ied comprehensively based on the variational principle for
ground-state phase transitions, taking the spin-boson model in
a high dense spectrum 	 → 1 and a broad range of frequency
ωc/ωmin. Since phase diagrams are rich, four different cases
are considered, which are the single-spin one in sub-Ohmic
regime, Ohmic ones in single-spin and two-spin models, and
the two-spin one with a strong antiferromagnetic coupling.
By comparing and analyzing several measures borrowed from
quantum information theory, δ-function, cusp-like, and dis-
continuous singularities have been obtained, corresponding
to quantum phase transitions of first-order, second-order, and
Kosterlitz-Thouless types, respectively. Besides, the values of
transition points and critical exponents have been accurately
determined, which are much better than previous variational
results, and in good agreement with analytical predictions and
results from other numerical approaches.

Offering the bath-related quantum discord as a rep-
resentative example, the frequency dependence has been
carefully examined. Scaling form of the discord Db(ωk, α)
has been confirmed by the data collapse technique for
the Ohmic case, yielding an exponentially divergent cor-
relation length. It is in contrast to that in the sub-Ohmic

case where all curves of Db(ωk, α) for different couplings
exhibit sharp peaks at almost the same frequency. It indicates
that they belong to different universality classes. In the two-
spin model, the investigation of the correlation, entanglement,
and entropy between two spins have also been carried out for
comparison. Their behaviors show a great difference, com-
pared to those between two bath modes. Specifically speaking,
the classical correlation in the former increases with the cou-
pling and reaches its plateau at the Toulouse point, while
the latter vanishes over the whole α range, showing pure
quantumness of the bosonic bath. In addition, the quantum
discord between two spins is related to the quantum entangle-
ment, while the bath-related one is decided by the correlation
function in the position space rather than the entanglement.
Finally, quantum entanglements behave quite differently in
the spin system and bosonic bath, though they both diminish
rapidly with environmental couplings.

For the discontinuous transition, two spins are maximally
entangled in the delocalized phase and independent in the
localized phase. In contrast, bath modes are independent on
both two sides except at the transition point, pointing to a
δ-function singularity. Further studies indicate that the sharp
drop of the entanglement between two spins may be triggered
by the emergence of such singularity from the bosonic bath.
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