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Landauer’s principle in qubit-cavity quantum-field-theory interaction in vacuum and thermal states
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Landauer’s principle has seen a boom of interest in the last few years due to the growing interest in quantum
information sciences. However, its relevance and validity in the contexts of quantum field theory (QFT) remain
surprisingly unexplored. In the present paper, we consider Landauer’s principle in qubit-cavity QFT interaction
perturbatively, in which the initial state of the cavity QFT is chosen to be a vacuum or thermal state. In the
vacuum case, the QFT always absorbs heat and jumps to excited states. For the qubit at rest, its entropy decreases,
whereas if the qubit accelerates it may also gain energy and it increases its entropy due to the Unruh effect. For
the thermal state, the QFT can both absorb and release heat, depending on its temperature and the initial state
of the qubit, and the higher-order perturbations can excite or deexcite the initial state to a higher or lower state.
Landauer’s principle is valid in all the cases we consider. We hope that this paper will pave the way for future
explorations of Landauer’s principle in QFT and gravity theories.
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I. INTRODUCTION

Landauer’s principle [1], which relates the entropy change
of a system to the heat dissipated into a reservoir during any
logically irreversible computation, provides a theoretical limit
of energy consumption throughout the process. According
to this limit, an observer needs at least kBTR ln 2 of work
to erase a one-bit memory, where kB is the Boltzmann con-
stant and TR is the temperature of the reservoir at which the
erasure process takes place. Landauer’s principle provides a
direct link between information theory and thermodynamics,
and as a consequence establishes that information is physical
[2]. However, ever since its conception, Landauer’s principle
has been controversial, both theoretically and experimentally
[3,4]. For example, debates ensued on whether the second
law of thermodynamics is the premise of Landauer’s principle
or its outcome, and whether it can be used to exorcise the
infamous Maxwell’s demon [5–9]. See also the review [10].

These seemingly contradictory results arose because they
are based on specific models and different (perhaps arguable)
assumptions. A landmark progress was achieved in 2013 by
Reeb and Wolf, who proposed a general and minimal setup to
tighten Landauer’s principle [11] using a quantum statistical
physics approach. Their version of the principle is based on
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four assumptions: (i) both the “system” S and “reservoir” R
are described by Hilbert spaces, (ii) R is initially in a thermal
state, (iii) S and R are initially uncorrelated, and (iv) the pro-
cess proceeds by unitary evolution. If all the four assumptions
are satisfied, then Landauer’s principle can be expressed as

�Q � TR�S. (1)

The quantity �Q := tr[ĤR(ρ ′
R − ρR)] is the heat transferred

to the reservoir R, where ĤR is the Hamiltonian of R, while
ρ ′

R and ρR denote the final and initial state of R, respectively,
and �S := S(ρS ) − S(ρ ′

S ) is the von Neumann entropy change
between the initial state ρS and the finial state ρ ′

S of the
system S.

The derivation of Reeb and Wolf is simple and illuminat-
ing. In particular, it makes use of the non-negativity of two
basic quantities in quantum information: relative entropy and
mutual information. The bound (1) is written only in terms
of �S and �Q, and it does not require any information be-
yond the four assumptions; the bound is also valid arbitrarily
far from equilibrium. Due to the growing interest in quan-
tum information sciences, the study of Landauer’s principle
has picked up the pace, especially in improving (tightening
or generalizing) the bound, and carrying out experimental
demonstrations in the microscopic domain [12–17].

On the other hand, the study of Landauer’s principle in the
areas of quantum field theory (QFT) is surprisingly scarce.
This is probably because Landauer’s principle is born out of
information science, while QFT is traditionally more con-
cerned about field interactions. However, in recent years,
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quantum information theory has become interdisciplinary. For
example, it was argued that quantum error correction plays
important roles in gauge and gravity correspondence [18,19]
(and even in the context of a certain two-dimensional con-
formal field theory [20]). Also, in the attempt to resolve the
information paradox of black holes [21], various works have
looked into the possible information content of Hawking radi-
ation (see [22] for a review). Interestingly, the non-negativity
of relative entropy—a crucial property in establishing
Landauer’s principle—can also be used to establish [23] the
modern version of the Bekenstein bound (essentially how
much energy can be contained by a finite area), which is
attained by black holes [24]. Recently, Landauer’s principle
has been investigated in general relativity and its implications
for gravitational radiation discussed [25].

The application of quantum information to gravity calls
for a proper understanding of QFT in a curved spacetime
background, in which various quantities (such as temperature)
become observer dependent. Of course, even for QFT in its
vacuum state of Minkowski spacetime, an observer with a
uniform acceleration will find him or herself in a bath of
thermal distribution, with a temperature proportional to the
acceleration. This is known as the Unruh effect. Meanwhile,
the inertial observer detects nothing peculiar [26,27].

Since the derivation of Reeb and Wolf and its modifications
have not considered the models in QFT and observer-
dependent effects, in the present paper we take the first step
by considering two models. One is an accelerating qubit in-
teracting with the vacuum state of free massless scalar QFT,
while the other is a qubit at rest interacting with the QFT in a
thermal state. Since practical information processing requires
finite time erasure and any device designed to perform this
task also needs to be built on a finite-size platform, in both
cases we shall restrict our paper to the qubits that interact
with the QFT in a finite time and in a finite-size cavity. All
the four assumptions of Reeb and Wolf are satisfied in both
models. We will calculate perturbatively the variations of the
von Neumann entropy of the qubits and the heat dissipation
into the cavity QFT, and then we check whether the bound (1)
is still valid. Henceforth in the present paper we adopt the nat-
ural unit system, setting c = h̄ = kB = 1 in all the analytical
calculations and numerical analyses.

II. DETECTOR-CAVITY QFT INTERACTION

The total Hamiltonian Ĥtotal describing our system consists
of three terms: Ĥtotal = Ĥ (d )

0 + Ĥ ( f )
0 + Ĥint. The first term Ĥ (d )

0
is the free Hamiltonian of the detector, and in our case it is just
a qubit so we can choose Ĥ (d )

0 = �d|e〉〈e|, where |e〉 denotes
the excited state of the qubit and �d is the energy level. The
second term Ĥ ( f )

0 = ∑∞
j=1 ω ja

†
j a j is the free Hamiltonian of

the cavity QFT, and finally Ĥint = λχ (τ )μ(τ )φ[x(τ )] is the
interaction Hamiltonian, in which λ is a weak-coupling con-
stant so that we can apply perturbative method, and τ denotes
proper time. Here χ (τ ) is the so-called switching function that
controls the interaction, μ(τ ) is the monopole moment of the
detector, and φ[x(τ )] is the field operator at the position of the
detector in the cavity. This model has also been used to build
quantum gates for the processing of quantum information [28]

and to study the weak equivalence principle [29,30]. If we
solve the system in the interaction picture, the monopole mo-
ment can be expressed as μ(τ ) = σ+ei�dτ + σ−e−i�dτ , and
φ[x(τ )] reads

φ[x(τ )] =
∞∑
j=1

{a je
−iω j t (τ )u j[x(τ )] + a†

j e
iω j t (τ )u∗

j [x(τ )]}, (2)

where the expression of u j[x(τ )] depends on the boundary
conditions of the cavity. The time evolution operator of the
system under the interaction Hamiltonian Ĥint from time τ =
0 to T is1 given by the Dyson series:

Û (T, 0) = 1−i
∫ T

0
dτ Ĥint(τ )︸ ︷︷ ︸
Û (1)

+(−i)2
∫ T

0
dτ

∫ τ

0
dτ ′Ĥint(τ )Ĥint(τ

′)︸ ︷︷ ︸
Û (2)

+ · · ·

+(−i)n
∫ T

0
dτ...

∫ τ (n−1)

0
dτ (n)Ĥint(τ )...Ĥint(τ

(n) )︸ ︷︷ ︸
Û (n)

,

(3)

so the density matrix at a time τ = T will be

ρT = [1 + Û (1) + Û (2) + O(λ3)]ρ0

× [1 + Û (1) + Û (2) + O(λ3)]†, (4)

and we can write ρT order by order as

ρT = ρ
(0)
T + ρ

(1)
T + ρ

(2)
T + O(λ3), (5)

where

ρ
(0)
T = ρ0, (6)

ρ
(1)
T = Û (1)ρ0 + ρ0Û

(1)†, (7)

ρ
(2)
T = Û (1)ρ0Û

(1)† + Û (2)ρ0 + ρ0Û
(2)†. (8)

We are now ready to study Landauer’s principle for various
initial states of the QFT.

A. Vacuum state

First we choose the initial state of the cavity QFT to be the
vacuum |0〉〈0|, where |0〉 satisfies a j |0〉 = 0 for all positive
integers j. The initial state of the detector is chosen to be
(1 − p)|g〉〈g| + p|e〉〈e|, where |g〉 and |e〉 correspond to the
ground state and excited state, respectively, thus the initial
state for the total system is ρ0 = [(1 − p)|g〉〈g| + p|e〉〈e|] ⊗
|0〉〈0|. Inserting the interaction Hamiltonian into the Dyson
series we obtain all the formulas of Û (N ). For the ρ

(1)
T term,

the aj from Û (1) acting on the |0〉〈0| would be zero. On
the other hand, a†

j |0〉〈0| = |1 j〉〈0|, which is an off-diagonal
term. So if we take the trace of the field the result would

1This T should not be confused with temperature.
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be zero. Similarly both σ+ and σ− acting on (1 − p)|g〉〈g| +
p|e〉〈e| can only yield off-diagonal terms, thus the trace of
the detector would also be zero. This means ρ

(1)
T = 0 and

the detector-cavity QFT interaction has no effect on the λ

order. In the language of QFT, it is just the one point function
〈0|φ(x)|0〉= 0.

Next we consider the λ2-order term ρ
(2)
T . For the term

Û (1)ρ0Û (1)†, since we have a†
j and a j on both sides of |0〉〈0|,

the vacuum state can be excited, and σ± can also produce
diagonal terms. For both Û (2)ρ0 and ρ0Û (2)†, the Û (2) operator
acts on |0〉〈0| from one side, so the vacuum could not jump to
excited states. After some lengthy computations we arrive at

Û (1)ρ0Û
(1)† = λ2

∞∑
j=1

[(1 − p)|I+, j |2|e〉〈e|

+ p|I−, j |2|g〉〈g|]|1 j〉〈1 j | (9)

and

Û (2)ρ0 = ρ0Û
(2)† = − λ2

2

∞∑
j=1

[
(1 − p)|I+, j |2|g〉〈g|

+ p|I−, j |2|e〉〈e|
]|0〉〈0|, (10)

where

I±, j :=
∫ T

0
dτ ei[±�dτ+ω j t (τ )]u j[x(τ )]. (11)

Here we have already set χ (τ ) = 1 for 0 � τ � T . These
formulas give the evolution of the total system at λ2 order.
They are also unitarity preserving. Similar analysis can also
be extended to higher orders of λ, and one finds the detector-
cavity QFT interaction can only affect the system at even
orders of λ. Unitarity is preserved order by order. The vacuum
state can be excited in the order of λ2n (n = 1, 2, 3, . . .), while
the contributions from λ2n−1 vanish. However, we emphasize
that this is not a general result; it depends on the initial state of
the QFT. If the initial state already contains some off-diagonal
terms, the odd-order λ2n−1 interaction may create some diag-
onal terms and the contributions are not zero. For example,
if the initial state is a coherent state, the λ order would play
the leading role [28]. In the present paper we are considering
weak coupling, so we focus on at most the λ2 terms and omit
higher-order ones.

Up to order λ2 we can write the density matrix of the total
system as

ρT = ρ0 + Û (1)ρ0Û
(1)† + Û (2)ρ0 + ρ0Û

(2)†. (12)

Tracing out the field part we get the reduced density matrix of
the detector:

ρd
T = (1 − p − δp)|g〉〈g| + (p + δp)|e〉〈e|, (13)

where

δp = λ2
∞∑
j=1

[(1 − p)|I+, j |2 − p|I−, j |2]. (14)

Tracing out the detector part we get the reduced density matrix
of the field:

ρ
f
T = (1 − δ f )|0〉〈0| + δ f |1 j〉〈1 j |, (15)

where

δ f = λ2
∞∑
j=1

[p|I−, j |2 + (1 − p)|I+, j |2]. (16)

Notice that the sum above also includes the state |1 j〉〈1 j |.
Using the definition of �S and �Q in (1), we have

�S = ln

(
1 − p

p

)
λ2

∞∑
j=1

[p|I−, j |2 − (1 − p)|I+, j |2] (17)

and

�Q = λ2
∞∑
j=1

[p|I−, j |2 + (1 − p)|I+, j |2]ω j . (18)

From (18) we can see that heat dissipation to the field is
always non-negative. This brings no surprise since our ini-
tial state of the field is vacuum, so it cannot transfer heat
to the detector. On the other hand, the sign of �S depends
on the explicit values of p and |I±, j |2. The |I±, j |2 term in
turn depends on the boundary conditions and qubit trajec-
tories. For example, u j[x(τ )] ∼ sin[knx(τ )] for the Dirichlet
boundary condition, and u j[x(τ )] ∼ eiknx(τ ) for the periodic
boundary condition, up to some normalization constants. For
either sin[knx(τ )] or eiknx(τ ), if the detector is located at the
position x(τ ) = const, then t = τ and u j[x(τ )] gives a con-
stant value. From (11), one finds for I−, j , as �d = ω j , the
integrand will just be the value of uj[x(τ )] at x(τ ) = const.
Thus I−, j is proportional to the time T . However, if �d 	= ω j ,

or for the case of I+, j , the integration gives 1−ei(±�d+ω j )T

±�d+ω j
u j (x).

For larger values of ±�d + ω j , the contribution from (11)
becomes smaller. Whenever ω j is outside a small neighbor-
hood of �d, the noise created by these terms quickly decays.
An analogous phenomenon in classical mechanics was
reported in [31].

Thus, for the detectors at rest, I+, j is negligible compared
to I−, j , and both �S and �Q are dominated by the |I−, j |2 term.
The vacuum state of the field absorbs heat from the detector,
which leads to the decrease in the detector’s entropy. Since the
effective temperature of the vacuum state is zero, Landauer’s
principle is satisfied. In Fig. 1 we present the numerical results
of �Q and �S as the function of τ for the detector at rest for
p = 0.05. We can observe both �Q and �S increase with the
proper time τ . Notice that the settings for the parameters in
|I±, j |2, such as the cavity scale L and the location of the qubit,
need to avoid the possible zeros of the function due to the
periodicity of the integrand.

For the accelerating detector with a constant proper accel-
eration a, we can choose

x(τ ) = 1

a
[cosh(aτ ) − 1], t (τ ) = 1

a
sinh(aτ ), (19)

so that the detector is at x = 0 at time t = 0. Inserting the
above trajectories into |I±, j |2 we find that while �Q is always
positive, �S can become negative (see Fig. 2), meaning both
the detector and the field gain energy. The detector seems to
be both absorbing photons from the field and emitting photons
to the field at the same time. However, since the field is in
vacuum, there is no Minkowski photon to be absorbed, and the
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FIG. 1. Detector at rest for the case of a vacuum state. We
set uj[x(τ )] ∼ sin[knx(τ )], �d = ω10, p = 0.05, L = 1.567 89, and
x = 0.212 345 in natural units.

detector is just emitting photons. This appears to be a violation
of energy conservation. There is no real paradox, however:
this extra energy comes from the source of the detector ac-
celeration in the first place. The accelerating detector causes
the emission of particles that create—for the lack of a better
term—a “resistance force,” and the accelerating force has to
overcome this resistance by doing more work, which supplies
the extra energy [32].

Although the four assumptions of Reeb and Wolf are satis-
fied in this model, the acceleration of the detector is caused by
some other sources, such as an external field or curved space-
time. To obtain the full picture we need more information
about the source, and treat it as part of the total system. Nev-
ertheless, we know the bound (1) is satisfied, since �Q > 0
and TR = 0, even if �S can in principle be negative. One may
fear that TR = 0 would render Landauer’s principle trivial.
However, this is because the four assumptions of Reeb and
Wolf only provide a general and minimal setup. If one wants to
improve the bound, extra information of the system is needed,
such as an interaction formula [13] or the heat capacity of
the reservoir [17]. For a specific model one can always in-
clude more assumptions to obtain a tighter bound, but this
is not the research focus of the present paper. In the present
paper we concentrate on the original bound (1) of Reeb
and Wolf.

FIG. 2. Accelerating detector in the case of a vacuum state. We
set uj[x(τ )] ∼ sin[knx(τ )], �d = ω15, p = 0.05, a = 50, and L = 3
in natural units.

B. Thermal state

In some sense the vacuum state can be viewed as the
vanishing temperature limit of the thermal state, although one
of them is pure and the other is mixed. If we consider the
initial state of the field to be the thermal state with a nonvan-
ishing temperature TR, it can be written as (this expression is
commonly used in the quantum optics community) [33]

∞⊗
j=1

∞∑
n j=0

n̄
n j

j

(1 + n̄ j )1+n j
|n j〉〈n j |, (20)

where, for each integral value of j, n j ∈ [0,∞) and n̄ j :=
1/(e

ω j
TR − 1). Taking the limit TR → 0 we have n̄ j → 0, and

the only nonvanishing term would be nj = 0, which reduces to
the vacuum case. The initial density matrix for the total system
is the direct product of (1 − p)|g〉〈g| + p|e〉〈e| and (20). Since
(20) contains only diagonal terms, we know the contributions
from the odd order of λ2n−1 will also be zero for both the
detector and the field.

Similarly, we can also calculate ρ
(2)
T . Since now the ini-

tial state includes the excited states, Û (1)ρ0Û (1)† acting on
the |nj〉〈n j | state of ρ0 can create both |n j + 1〉〈n j + 1| and
|nj − 1〉〈n j − 1|. Upon evaluating Û (2)ρ0 and ρ0Û (2)†, we find
they are neither raising nor lowering the state |nj〉〈n j |. After
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FIG. 3. The (de-)excitation rules for the initial state |nj〉〈nj |. To
create the state |nj ± n〉〈nj ± n| one must include the λ2n- or higher-
order terms.

some lengthy computations we obtain

Û (1)ρ0Û
(1)† = λ2

∞∑
j=1

{
[(1 − p)|I+, j |2|e〉〈e| + p|I−, j |2|g〉〈g|]

×
∞∑

n j=0

n̄
n j

j (1 + n j )

(1 + n̄ j )n j+1
|n j + 1〉〈n j + 1|

+[(1 − p)|I−, j |2|e〉〈e| + p|I+, j |2|g〉〈g|]

×
∞∑

n j=1

n̄
n j

j n j

(n̄ j + 1)n j+1
|n j − 1〉〈n j − 1|

}
(21)

and

Û (2)ρ0 = ρ0Û
(2)† = −λ2

2

∞∑
j=1

∞∑
n j=0

{(1 − p)[n j |I−, j |2

+ (n j + 1)|I+, j |2] + p[n j |I+, j |2 + (n j + 1)|I−, j |2]}

× n̄
n j

j

(1 + n̄ j )1+n j
|n j〉〈n j |. (22)

Similar analysis can be extended to the higher-order cases.
If we consider the λ2n-order terms, they can be expressed
as Û (m)ρ0Û (2n−m)†. For m = n and 0, 2n, we would have
|nj ± n〉〈n j ± n| and |n j〉〈n j |, respectively, which are exactly
what we have obtained in the n = 1 case above. However, for
n � 2 we know m can also take the values from 1 to 2n − 1.
The Û (m)ρ0Û (2n−m)† term creates |n j ± m〉〈n j ± m| for 0 <

m < n, and |nj ± 2(m − n)〉〈n j ± 2(m − n)| for n < m < 2n.
Thus, we can conclude that the λ2n-order perturbation can
create all the states from |nj − n〉〈n j − n| to |n j + n〉〈n j + n|,
as long as n j > n. To create the state |n j ± n〉〈n j ± n| one must
include the λ2n- or higher-order terms. In Fig. 3 we present the
(de-)excitation rules for the initial state |nj〉〈n j |.

In the λ2 order one can directly check that the total system
preserves unitarity. Tracing out the field part and detector part
we can obtain the reduced density matrix of the detector and

FIG. 4. The cases of TR = 1 and 100. In both figures we set
L = 1.234, �d = ω15, p = 0.05, and x = 0.52345 in natural units.
In each figure the top and bottom curves correspond to �Q/TR and
�S, respectively.

the field, and finally we obtain �S and �Q/TR as

�S = λ2
∞∑
j=1

ln
1 − p

p
{[(n̄ j + 1)p − n̄ j (1 − p)]|I−, j |2

− [(n̄ j + 1)(1 − p) − n̄ j p]|I+, j |2} (23)

and

�Q

TR
= λ2

∞∑
j=1

ln
n̄ j + 1

n̄ j
{[(n̄ j + 1)p − n̄ j (1 − p)]|I−, j |2

+ [(n̄ j + 1)(1 − p) − n̄ j p]|I+, j |2}. (25)

According to Boltzmann distribution, the detector in
(1 − p)|g〉〈g| + p|e〉〈e| corresponds to an effective tempera-

ture Td satisfying p = 1/(e
�d
Td + 1). From the above formulas

we can deduce that both �S and �Q are positive for n̄ j+1
n̄ j

>

1−p
p , which means TR

ω j
< Td

�d
. This is stronger than the classical

condition TR < Td . Nevertheless, we already know the expres-
sions above are dominated by the |I−, j |2 term in the ω j = �d

case, so we also effectively have TR < Td . In this case we
can easily check that Landauer’s principle (1) is satisfied.
Similarly, for n̄ j+1

n̄ j
<

1−p
p , �S and �Q are both negative and
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(1) is also valid. In Fig. 4 we present the numerical examples
for the T = 1 and 100 cases.

III. CONCLUSIONS

In the present paper we consider Landauer’s principle in
qubit-cavity QFT interaction. The initial state of the cavity
QFT is chosen to be a vacuum or thermal state. In the vacuum
case, as the qubit is at rest, the QFT absorbs heat from the
qubit and jumps to the excited state, while the qubit decreases
its entropy. As the qubit accelerates, the qubit may also gain
energy and it increases its entropy, while the QFT absorbs
heat. This extra energy comes from the source of the detector
acceleration. In the thermal case, the QFT can both absorb
and release heat, depending on its temperature and the qubit’s
initial state, and the λ2n-order perturbation can create all the
states from |n j − n〉〈n j − n| to |n j + n〉〈n j + n|, as long as
n j > n. In all the cases we consider, Landauer’s principle is
still valid. Our paper thus provides strong support for the
effectiveness of Landauer’s principle in QFT.

Our analysis can also be extended to other cases in QFT,
such as the magnetic field via magnetic dipole moment,
which could be more practical in experiment. On the other
hand, in the present paper we consider weak coupling so
that the higher-order terms can be neglected. This is because
the Hamiltonian of the qubit is very different from that of
the QFT. However, if we consider a harmonic oscillator to
be the detector, the interaction Hamiltonian can be described
by the creation-annihilation operators and we can solve the
system as a Gaussian state nonperturbatively. This method
has been explored in [34,35] and it would be interesting to
study Landauer’s principle in harmonic oscillator-cavity QFT
interaction. Furthermore, as previously stated, in the case with
acceleration the extra energy comes from the acceleration

source, so it would be more illuminating to include it as a part
of the whole system for a more detailed analysis. If the source
comes from gravity, it might even be a first step in shedding
some light on the theories of quantum gravity. In fact, the
generalized second law is expected to hold in quantum gravity,
which in turn implies a quantum singularity theorem [36].
A better understanding of Landauer’s principle might thus
eventually lead to a better understanding of the formation of
spacetime singularities and the cosmic censorship conjecture.
In addition, recently there has been some discussion about the
connection between quantum gravity and the Gaussianity of a
state [37]; we will pursue this direction in our future work.

ACKNOWLEDGMENTS

H.X. thanks Karen V. Hovhannisyan, Eduardo Martín-
Martínez, Yuan Sun, and Rui-Hong Yue for useful discus-
sions. He also thanks the Natural Science Foundation of
the Jiangsu Higher Education Institutions of China (Grant
No. 20KJD140001) for funding support. Y.C.O. thanks
the National Natural Science Foundation of China (Grant
No. 11922508) for funding support. M.-H.Y. thanks Nat-
ural Science Foundation of Guangdong Province (Grant
No. 2017B030308003); the Key-Area Research and De-
velopment Program of Guangdong province (Grant No.
2018B030326001); the Science, Technology, and Innova-
tion Commission of Shenzhen Municipality (Grants No.
JCYJ20170412152620376, No. JCYJ20170817105046702,
and No. KYTDPT20181011104202253); National Natural
Science Foundation of China (Grants No. 11875160 and No.
U1801661); the Economy, Trade, and Information Commis-
sion of Shenzhen Municipality (Grant No. 201901161512);
and Guangdong Provincial Key Laboratory (Grant No.
2019B121203002) for funding support.

[1] R. Landauer, Irreversibility and heat generation in the comput-
ing process, IBM J. Res. Dev. 5, 183 (1961).

[2] R. Landauer, The physical nature of information, Phys. Lett. A
217, 188 (1996).

[3] R. Alicki, Quantum memory as a perpetuum mobile? stability
vs. reversibility of information processing, Open Syst. Inf. Dyn.
19, 1250016 (2012).

[4] A. O. Orlov, C. S. Lent, C. C. Thorpe, G. P. Boechler, and G. L.
Snider, Experimental test of Landauer’s principle at the sub-
kBT level, Jpn. J. Appl. Phys. 51, 06FE10 (2012).

[5] J. Earman and J. D. Norton, EXORCIST XIV: The wrath of
Maxwell’s demon. Part II. From szilard to landauer and beyond,
Stud. Hist. Philos. Mod. Phys. 30, 1 (1999).

[6] H. J. D. Miller, G. Guarnieri, M. T. Mitchison, and J. Goold,
Quantum Fluctuations Hinder Finite-Time Information Erasure
Near the Landauer Limit, Phys. Rev. Lett. 125, 160602 (2020).

[7] J. D. Norton, Eaters of the lotus: Landauer’s principle and the
return of Maxwell’s demon, Stud. Hist. Philos. Mod. Phys. 36,
375 (2005).

[8] K. Maruyama, F. Nori, and V. Vedral, Colloquium: The physics
of Maxwell’s demon and information, Rev. Mod. Phys. 81, 1
(2009).

[9] C. H. Bennett, Notes on Landauer’s principle, reversible com-
putation, and maxwell’s demon, Stud. Hist. Philos. Mod. Phys.
34, 501 (2003).

[10] S. Ciliberto and E. Lutz, The physics of information: From
Maxwell to Landauer, in Energy Limits in Computation, edited
by C. Lent, A. Orlov, W. Porod, and G. Snider (Springer,
New York, 2018).

[11] D. Reeb and M. M. Wolf, An improved Landauer principle with
finite-size corrections, New J. Phys. 16, 103011 (2014).

[12] Y. Jun, M. Gavrilov, and J. Bechhoefer, High-Precision Test of
Landauer’s Principle in a Feedback Trap, Phys. Rev. Lett. 113,
190601 (2014).

[13] J. Goold, M. Paternostro, and K. Modi, Nonequilibrium
Quantum Landauer Principle, Phys. Rev. Lett. 114, 060602
(2015).

[14] S. Lorenzo, R. McCloskey, F. Ciccarello, M. Paternostro, and
G. M. Palma, Landauer’s Principle in Multipartite Open Quan-
tum System Dynamics, Phys. Rev. Lett. 115, 120403 (2015).

[15] L. L. Yan, T. P. Xiong, K. Rehan, F. Zhou, D. F. Liang, L. Chen,
J. Q. Zhang, W. L. Yang, Z. H. Ma, and M. Feng, Single-Atom
Demonstration of the Quantum Landauer Principle, Phys. Rev.
Lett. 120, 210601 (2018).

012430-6

https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1016/0375-9601(96)00453-7
https://doi.org/10.1142/S1230161212500163
https://doi.org/10.7567/JJAP.51.06FE10
https://doi.org/10.1016/S1355-2198(98)00026-4
https://doi.org/10.1103/PhysRevLett.125.160602
https://doi.org/10.1016/j.shpsb.2004.12.002
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.1088/1367-2630/16/10/103011
https://doi.org/10.1103/PhysRevLett.113.190601
https://doi.org/10.1103/PhysRevLett.114.060602
https://doi.org/10.1103/PhysRevLett.115.120403
https://doi.org/10.1103/PhysRevLett.120.210601


LANDAUER’S PRINCIPLE IN QUBIT-CAVITY … PHYSICAL REVIEW A 105, 012430 (2022)

[16] K. Lochan, H. Ulbricht, A. Vinante, and S. K. Goyal,
Detecting Acceleration-Enhanced Vacuum Fluctuations With
Atoms Inside a Cavity, Phys. Rev. Lett. 125, 241301
(2020).

[17] A. M. Timpanaro, J. P. Santos, and G. T. Landi, Landauer’s
Principle at Zero Temperature, Phys. Rev. Lett. 124, 240601
(2020).

[18] A. Almheiri, X. Dong, and D. Harlow, Bulk locality and quan-
tum error correction in AdS/CFT, J. High Energy Phys. 04
(2015) 163.

[19] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Holo-
graphic quantum error-correcting codes: Toy models for the
bulk/boundary correspondence, J. High Energy Phys. 06 (2015)
149.

[20] A. Dymarsky and A. Shapere, Solutions of Modular Boot-
strap Constraints From Quantum Codes, Phys. Rev. Lett. 126,
161602 (2021).

[21] S. W. Hawking, Breakdown of predictability in gravitational
collapse, Phys. Rev. D 14, 2460 (1976).

[22] D. Harlow, Jerusalem lectures on black holes and quantum
information, Rev. Mod. Phys. 88, 015002 (2016).

[23] H. Casini, Relative entropy and the Bekenstein bound,
Class. Quantum Grav. 25, 205021 (2008).

[24] J. D. Bekenstein, Universal upper bound on the entropy-to-
energy ratio for bounded systems, Phys. Rev. D 23, 287
(1981).

[25] L. Herrera, Landauer principle and general relativity, Entropy
22, 340 (2020).

[26] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D
14, 870 (1976).

[27] W. G. Unruh and R. M. Wald, What happens when an acceler-
ating observer detects a rindler particle, Phys. Rev. D 29, 1047
(1984).

[28] E. Martín-Martínez, D. Aasen, and A. Kempf, Processing Quan-
tum Information with Relativistic Motion of Atoms, Phys. Rev.
Lett. 110, 160501 (2013).

[29] A. Ahmadzadegan, E. Martín-Martínez, and R. B. Mann, Cav-
ities in curved spacetimes: The response of particle detectors,
Phys. Rev. D 89, 024013 (2014).

[30] E. Tjoa, Robert B. Mann, and E. Martín-Martínez, Parti-
cle detectors, cavities, and the weak equivalence principle,
Phys. Rev. D 98, 085004 (2018).

[31] S. T. Smith and R. Onofrio, Thermalization in open classical
systems with finite heat baths, Eur. Phys. J. B 61, 271 (2008).

[32] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved
Space, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 1982).

[33] S. Olivares, Quantum optics in the phase space, Eur. Phys. J.:
Spec. Top. 203, 3 (2012).

[34] E. G. Brown, E. Martin-Martinez, N. C. Menicucci, and R. B.
Mann, Detectors for probing relativistic quantum physics be-
yond perturbation theory, Phys. Rev. D 87, 084062 (2013).

[35] D. E. Bruschi, A. R. Lee, and I. Fuentes, Time evolution
techniques for detectors in relativistic quantum information,
J. Phys. A 46, 165303 (2013).

[36] A. C. Wall, The generalized second law implies a quantum
singularity theorem, Class. Quantum Grav. 30, 165003 (2013).

[37] R. Howl, V. Vedral, D. Naik, M. Christodoulou, C. Rovelli, and
A. Iyer, Non-gaussianity as a signature of a quantum theory of
gravity, PRX Quantum 2, 010325 (2021).

012430-7

https://doi.org/10.1103/PhysRevLett.125.241301
https://doi.org/10.1103/PhysRevLett.124.240601
https://doi.org/10.1007/JHEP04(2015)163
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1103/PhysRevLett.126.161602
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/RevModPhys.88.015002
https://doi.org/10.1088/0264-9381/25/20/205021
https://doi.org/10.1103/PhysRevD.23.287
https://doi.org/10.3390/e22030340
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.29.1047
https://doi.org/10.1103/PhysRevLett.110.160501
https://doi.org/10.1103/PhysRevD.89.024013
https://doi.org/10.1103/PhysRevD.98.085004
https://doi.org/10.1140/epjb/e2008-00070-8
https://doi.org/10.1140/epjst/e2012-01532-4
https://doi.org/10.1103/PhysRevD.87.084062
https://doi.org/10.1088/1751-8113/46/16/165303
https://doi.org/10.1088/0264-9381/30/16/165003
https://doi.org/10.1103/PRXQuantum.2.010325

