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Contextuality provides one of the fundamental characterizations of quantum phenomena, and can be used
as a resource in lots of quantum information processing. In this paper, we summarize and derive some
equivalent noncontextual inequalities from different noncontextual models of the proofs for the Kochen-Specker
theorem based on Greenberger-Horne-Zeilinger states. These noncontextual inequalities are equivalent up to
some correlation items which hold both for noncontextual hidden variable theories and quantum mechanics.
Therefore, using single-photon hyperentangled Greenberger-Horne-Zeilinger states encoded by spin, path, and
orbital angular momentum, we experimentally verify several state-dependent noncontextual models of the proofs
for the Kochen-Specker theorem by testing an extreme simplest Mermin-like inequality.
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I. INTRODUCTION

Nonlocality and contextuality are important properties of
quantum mechanics (QM) and are essential points different
from classical mechanics. There are some efforts which try
to put these characters into a deterministic form by including
hidden variables. Two typical hidden variable theories, local
hidden variable theories (LHVTs) and noncontextual hid-
den variable theories (NCHVTs), have been proposed [1–4].
LHVTs assume that all natural processes are local, and infor-
mation and correlations are propagated at most at the speed of
light. The hidden aspect ascribes variability of experimental
results to uncontrollable parameters of the model. NCHVTs
state that the predefined value of an observable is independent
of any contexts (a set of compatible observables) which it is
simultaneously measured with. Proofs of these hidden vari-
able theories can be summed up in two famous theorems, i.e.,
Bell’s theorem [1] and the Kochen-Specker (KS) theorem [2].
Bell’s theorem states that no LHVTs can reproduce the predic-
tions of QM, and likewise, the KS theorem that no NCHVTs
can reproduce the predictions of QM. Bell’s theorem can be
proven either by the violation of a Bell inequality [1,3] or
by a logical contradiction [4–8]. The KS theorem is usually
proven by a logical contradiction [2,9–13] or by a specific
type of noncontextual inequalities [14,15]. As for experimen-
tal respects, one would prefer to test Bell inequalities [3,16],
noncontextual inequalities [17], and other alternative formu-
lations even not directly involving the KS theorem [18–23].

Quantum entanglement and spacelike separation are two
crucial requirements for proof of Bell’s theorem but are not
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necessary for the KS theorem (the latter might be valid for any
quantum systems with dimension d � 3) [18,24,25]. We can
still use these inequalities, which have the same mathematical
form as Bell inequalities, to prove quantum contextuality [26].
The inequalities are called Bell-like noncontextual inequali-
ties.

Cabello proposed a two-qubit state-dependent Bell-like
noncontextual inequality [27] derived from the Peres-Mermin
proof [9–12] of the KS theorem, which can be simplified by
abandoning some items holding both for QM and NCHVTs.
Similar to the three-party Bell inequality (Mermin inequality)
[16], a three-qubit state-dependent noncontextual inequal-
ity can also be worked out from the Mermin’s proof of
the KS theorem [11,12]. It is referred to as the Mermin-
like inequality. Furthermore, by extending the assumption
of “elements of reality” [28] in NCHVTs on single observ-
ables to composite observables, one can establish several
other Peres-Mermin-type proofs of KS theorem and the cor-
responding state-dependent noncontextual inequalities based
on Greenberger-Horne-Zeilinger (GHZ) states in three-qubit
case [4,29]. Interestingly, the mathematical forms of these
state-dependent noncontextual inequalities are the same as
the Mermin-like one up to some cancellable items holding
for both QM and NCHVTs, which implies a special kind of
equivalent relations.

Like nonlocality correlation of QM, quantum contextuality
can be used as a resource [30] for many quantum tasks such as
simulation of quantum information processes, quantum error
correction [31], random access codes [32], one-location quan-
tum games [33], and universal quantum computing [34–36].
In addition, contextuality has been proved as a remarkable
equivalent to the possibility of universal quantum computation
via “magic state” distillation [35,37]. In this paper, we study
several typical equivalent noncontextual inequalities from dif-
ferent noncontextual models of the proofs for Kochen-Specker
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theorem. A single-photon GHZ entangled state with spin an-
gular momentum (SAM), orbital angular momentum (OAM),
and path degrees of freedom (DoFs) is prepared in experiment.
We test all these state-dependent noncontextual models by
checking an extreme simplest Mermin-like inequality. The
experimental results show that the Mermin-like inequality can
be obviously violated and quantum mechanics is contextual.

II. THEORY

Some proofs of KS theorems in the three-qubit case exhibit
an interesting kind of equivalent relations, namely, they can
lead to the same noncontextual inequality up to the cancellable
items. Here, we consider several equivalent state-dependent
proofs of KS theorem based on a special kind of multi-DoF
(Path, SAM, and OAM) GHZ states of a single photon. The
first GHZ-type state-dependent proof of KS theorem comes
from Mermin [11,12]. The main idea is as follows.

Begin with marking quantum states of a single photon with
different DoFs. For path DoFs, eigenstates of measurement
Z p have eigenvalues +1 and −1 for |0〉p path mode and |1〉p

path mode, respectively. Similar to path DoFs, |0〉s and |1〉s

are horizontal and vertical polarization states of SAM, and
|0〉o and |1〉o are OAM states with different OAM values
� = +1 and � = −1, respectively. In addition, |±〉 = (|0〉 ±
|1〉)/

√
2 and |R(L)〉 = (|0〉 ± i|1〉)/

√
2. Therefore, the multi-

DoF GHZ state of a single photon can be written as

|G〉 = (|0〉o|0〉s|0〉p + |1〉o|1〉s|1〉p)/
√

2. (1)

Note that measurements carried on different DoFs of the
multi-DoF GHZ state can no longer be considered as space-
like separated events. Therefore, a conventional GHZ test
to demonstrate nonlocal quantum correlations using Bell in-
equalities cannot be directly adopted here. Alternatively, we
can modify the experimental protocol to a weaker version, i.e.,
a GHZ-like test due to Mermin to reveal the conflict between
NCHVTs and QM.

Consider the GHZ state |G〉. The GHZ-type proof of KS
theorem can be derived using the four contexts {X o,Y s,Y p},
{Y o, X s,Y p}, {Y o,Y s, X p}, and {X o, X s, X p} (displayed in
Fig. 1). The following four QM predictions for the contexts
in the GHZ state |G〉 are

X oY sY p|G〉 = −|G〉, (2a)

Y oX sY p|G〉 = −|G〉, (2b)

Y oY sX p|G〉 = −|G〉, (2c)

X oX sX p|G〉 = +|G〉. (2d)

Since the measured results of {X α,Y α, α ∈ {o, s, p}} must
be the eigenvalues ±1, according to the noncontextual assign-
ment assumption of NCHVTs, the involved six observables
X o, X s, X p, Y o, Y s, and Y p should be assigned to prede-
fined values v(X o), v(X s), v(X p), v(Y o), v(Y s), and v(Y p),
respectively, where v(Aα ) = ±1, and A ∈ {X,Y }. It follows
that if the observables from one context, namely, mutually
commuting, satisfying a certain algebraic relation, then the
values assigned to them in an individual system must obey the

FIG. 1. Mermin’s pentagram proof for KS theorem. The observ-
ables along each line are in the same context (mutually commuting).
The product of the four observables on every gray line of the star is
I . In contrast, the product of the observables on the red line is −I .
Therefore, any noncontextual value assignment to each observable
will lead to a contradiction.

algebraic constraint of the same structure. For these pre-
defined values, one has the following constraints from
Eqs. (2a)–(2d):

v(X o)v(Y s)v(Y p) = −1, (3a)

v(Y o)v(X s)v(Y p) = −1, (3b)

v(Y o)v(Y s)v(X p) = −1, (3c)

v(X o)v(X s)v(X p) = +1. (3d)

According to the above discussion, v2(Aα ) = 1. Then
multiplying both sides of Eqs. (3a)–(3d), we find that the left-
hand side is v2(X o)v2(Y o)v2(X s)v2(Y s)v2(X p)v2(Y p) = +1,
which contradicts the product of the four right-hand side num-
bers (−1)3(+1) = −1. Therefore, it is impossible to ascribe
predefined values −1 or +1 to each of the six observables.

In fact, the algebraic structure used in the above argument
is the same as that in the three-qubit GHZ paradox except
for their physical explanations. Any proof of KS theorem
can be converted to an experimentally testable noncontextual
inequality [17,38]. Here the related noncontextual inequality
can be derived from the linear combination of the expectation
values of products of the variables in each of the contexts, with
the respective quantum mechanical predictions as coefficients.
If each of the six variables can be assigned to predefined
values −1 or +1, then we can get the following Mermin-like
inequality [16,39]:

− 〈X oY sY p〉 − 〈Y oX sY p〉
− 〈Y oY sX p〉 + 〈X oX sX p〉 � 2 (4)

and we have a brief proof for the classical bound in
Appendix A. As shown by Eqs. (2a)–(2d), however, quantum
mechanics predicts the maximal value of the combination
to be 4 (with ideal equipment). In fact, the actual quantum
violation measured in experiment is always less than 4 since
the noise of environment and imperfection of experimental
equipment.
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The inequality (4) is state independent. This can be proved
by checking a deep connection between the above GHZ-type
proof of KS theorem and the Mermin’s pentagram proof
[12] shown in Fig. 1. Note that the involved items in the
GHZ-type proof, say X oY sY p, Y oX sY p, Y oY sX p, and X oX sX p,
are exactly the products of the single-qubit observables in
the remaining four lines. One can infer (although not very
strictly) that the GHZ-type proof is state dependent from the
fact that the six single-qubit observables generate a subset of
the Mermin’s pentagram set (made up of ten observables in
Fig. 1) while the whole pentagram set can provide a state-
independent proof for the KS theorem.

In the above, we only consider the form of independent
measurements with DoFs. As for other forms, we discuss
several typical proofs of KS theorem and the corresponding
noncontextual inequalities in Appendix B. Following the sim-
ilar arguments to Ref. [27], since the cancellable items hold
both for QM and NCHVTs and we use a multistage (cascade)
measurement method (e.g., the assigned predefined values
v(X s)v(Y oY p) and v(X sY oY p) are the same in experiment),
we can use the same experimental setup to test the same
simplified inequality in the form of Eq. (4) in principle. Fur-
thermore, we discuss a framework to study the commonness
of the GHZ-Peres-Mermin-type proofs of the KS theorem for
n qubits in Appendix C.

III. EXPERIMENTAL SETUP AND RESULTS

Our experimental setup is shown in Fig. 2. The generation
of single-photon GHZ states is illustrated in Fig. 2(a). Cor-
related photon pairs in the SAM basis {|0〉s, |1〉s} are created
through a type-II spontaneous parametric down-conversion in
a 5-mm-long periodically poled potassium titanyl phosphate
(ppKTP) crystal pumped by a 405-nm continuous-wave diode
laser. The dichroic mirror is to make the 810-nm correlated
photons transmit, and the 405-nm pump light is reflected
into the block box. The correlated photon pairs are separated
through a polarizing beam splitter (PBS), and the horizon-
tally polarized photons are coupled into the single mode fiber
(SMF0) as a trigger signal.

Then one only needs to consider the vertical polarizing
photon; the initial state is expressed as |ψ〉 = |� = 0〉|1〉s|0〉p.
The quarter wave plate (QWP) after PBS0 turns the vertical
polarization to left-handed polarization, |ψ〉 = |� = 0〉(|0〉s +
i|1〉s)|0〉p/

√
2. The quantum states of SAM and OAM cou-

pling can be generated by a q plate, which is a kind of phase
plate with locally varying birefringence that gives rise to such
coupling through the Pancharatnam-Berry geometric phase
[40]. The unitary operation of q plate Uq can be defined as
Uq|L, �〉 = i|R, � + 2q〉 and Uq|R, �〉 = i|L, � − 2q〉, in which
q is the topological charge of the q plate, here q = 1/2 in our
experiment, and L (R) represents left (right) -handed polar-
ization. Therefore, it changes to the state |ψ〉 = |0〉o(|0〉s −
i|1〉s)|0〉p/

√
2 after the q plate. The incident photons pass

through the PBS that separates the photons into the |0〉p path
mode and the |1〉p path mode; meanwhile, the OAM value of
down path flips from +h̄ to −h̄ after the reflection of the PBS.
The multi-DoF GHZ state |G〉 with single photons has been
generated successfully after passing through the PBS.

FIG. 2. Experimental setup for GHZ tests with a single photon.
(a) Initial state preparation. A single mode beam with a central wave-
length of 405 nm is focused on a 5-mm ppKTP nonlinear crystal to
create correlated photon pairs at 810 nm. QWP, Q-plate, and PBS are
used to generate the GHZ state between SAM, OAM, and path DoFs.
(b), (c) Realization of the projection measurements of path, SAM,
and radial OAM correspond to a Mach-Zehnder interferometer, a
combination of QWP and POL, and SLM together with a SMF,
respectively. ppKTP: periodically poled potassium titanyl phosphate;
PBS: polarizing beam splitter; HWP: half-wave plate; QWP: quarter-
wave plate; DM: dichroic mirror; MTS: motorized translation stage;
POL: polarizer; SLM: spatial light modulator; SMF: single mode
fiber.

The projective measurements of path DoF X p and Y p are
illustrated in Fig. 2(b). The measurement X p, inserting the
QWPs (all setting in 45◦) into the two optical paths in the
Mach-Zehnder interferometer, respectively, is +1 (−1) for
the |+〉p (|−〉p) path mode through the PBS. Considering the
inversion of the OAM modes caused by reflection, we revise
the configuration of the interferometer to ensure the OAM
modes of the two arms match with the projection measure-
ments. The difference between measurement Y p and X p is
that another two QWPs (all setting in 90◦) are added into the
interferometer shown in the Fig. 2(b), respectively. The two
PBSs here are equivalent to achieving global operations in
these three DoFs. The polarizers oriented at 45◦ and the QWPs
depicted in Fig. 2(c) allow measurements of linear polariza-
tion |+〉s, |−〉s (circular polarization |R〉s, |L〉s). The HWPs
after polarizers convert linear polarized photons to horizontal,
which mode can be modulated by a spatial light modulator
(SLM). Finally a SLM and a SMF are used to perform any
directional projection measurements of OAM modes. An in-
coming photon is flattened its phase by SLM, and transformed
into a Gaussian mode that can be efficiently coupled into the
SMF. Three single-photon avalanche detectors recorded the
photon counting rate after the multi-DoF Pauli measurements,
and their coincidence counts are proportional to the detecting
correlated photon pairs with a certain setting.
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FIG. 3. Data showing the fraction of measurements (a) X oY sY p,
(b) Y oX sY p, (c) Y oY sX p, and (d) X oX sX p on the corresponding
eigenstates base, respectively.

In addition, different assigned predefined values, such as
v(Y o)v(Y p) and v(Y oY p) of the same observable Y oY p, can
be measured with the same experimental setup. Furthermore,
as described in Ref. [27], in the experiment we designed, these
observables whose corresponding predictions hold in any
NCHVT can be measured by cascading the above-mentioned
measurement methods.

To evaluate the performance of the GHZ state generated in
experiment, the fidelity between the theoretical GHZ state |G〉
and the prepared state ρexpt is F̄expt = 〈G|ρexpt|G〉 = (90.0 ±
3.0)%. From this value, the entanglement witness of the GHZ
state, defined by W = I/2 − |G〉〈G| [41], can be directly
determined as Fwit = −0.400 ± 0.030. It is negative and thus
proves the presence of genuine tripartite entanglement in our
experiment, which means that this three-qubit state cannot
be divided into any separated parts, and is indeed genuinely
tripartite GHZ entangled. All the experimental data are listed
in Appendix D.

As explained above, demonstrations of the contradiction
between NCHVTs and QM are exactly the four experi-
ments (xyy, yxy, yyx, and xxx) with the GHZ argument.
For each DoF, recall these elements of reality X i with val-
ues +1 (−1) for corresponding eigenstates |+〉i (|−〉i ) in
NCHVTs, similarly to Y i. Firstly we perform three exper-
iments (xyy, yxy, and yyx), and the expectation values of
the three experiments measured are listed in Appendix D,
〈X oY sY p〉 = −0.863 ± 0.028, 〈Y oX sY p〉 = −0.869 ± 0.034,
and 〈Y oY sX p〉 = −0.897 ± 0.032. It supports that the perfect
correlations, i.e., Eqs. (3a) and (3c), cannot be easily obtained
in real experiments. The specific measurement results, illus-
trated in the Figs. 3(a)–3(c), show the probabilities of the three
experiments roughly analogous in respective bases, which are
in line with theory.

Then consider the fourth experiment, xxx. On the one hand,
we assume that multiplication rules are valid for NCHVTs,

and any measurements between different DoFs must be in-
dependent in NCHVTs. One can obtain v(X o)v(X s)v(X p) =
[v(X o)v(Y s)v(Yp)][v(Yo)(X s)v(Yp)][v(Yo)v(Y s)v(X p)]=−1.
It is easy to investigate the possible outcomes, which are
predicted by noncontextual realism based on the elements of
reality introduced to explain the above three xyy, yxy, and
yyx experiments. Therefore the only possible outcomes of
experiment xxx, still being similar to the three experiments
above, are |+〉o|+〉s|−〉p, |+〉o|−〉s|+〉p, |−〉o|+〉s|+〉p, and
|−〉o|−〉s|−〉p from NCHVTs. The experimental results
[illustrated in Fig. 3(d)], however, show that the outcomes
of the fourth are completely inconsistent with the prediction
of NCHVTs. The value of observable X oX sX p in the fourth
experiment yields 0.869 ± 0.034, being approximately equal
to 1 from the prediction of QM [Eq. (3d)].

On the other hand, without requiring the perfect cor-
relations [Eqs. (3a)–(3d)] and assuming about multiplica-
tion rules, it is sufficient to have the inequality (4) test,
which means an experimentally testable state-independent
quantum contextuality [17]. The expectation value of the
Mermin operator in our experiments can be obtained
as 〈M〉 = 〈X oX sX p〉 − 〈X oY sY p〉 − 〈Y oX sY p〉 − 〈Y oY sX p〉 =
3.498 ± 0.130. This value is greater than the maximum pre-
dicted under the NCHVTs background. Combined with our
theoretical proof, this kind of test actually is an experimental
demonstration of the GHZ paradox in a contextual manner.

IV. CONCLUSION

In summary, we find an equivalent class of noncontextual
models for the state-dependent proofs of the KS theorem
and the corresponding equivalent noncontextual inequalities,
which can be converted into a simple Mermin-like inequal-
ity by canceling out the trivial items. Since the trivial items
hold both for any NCHVTs and QM, we can simultaneously
check all these noncontextual models in the same experiment
by examining the Mermin-like inequality. In our experiment,
SAM, OAM, and path of a single photon are prepared in the
GHZ state and the violation of the Mermin-like inequality
exclusively discards any NCHVTs as a possible extension to
QM.

A number of open questions can be raised in further re-
search. One of the interesting problems is to classify different
noncontextual proofs of KS theorem for a larger number of
qubits. In addition, the intrinsic causes of this classification
need further study. We conjecture that one of the causes may
depend on whether the whole information (predefined values
of the respective observables) for the composite subsystems
in each noncontextual model can be divided into smaller
units of determined information, e.g., the information of the
composite spin and OAM qubits in the models of Fig. 4(d) in
Appendix B can only be considered as a whole. Furthermore,
the contextual advantage can be used for state-dependent
cloning [42,43], state discrimination [44], and other quantum
information tasks [45]. Since the universality for quantum
computation schemes by state injection in Ref. [30] tells
us that any quantum unitary operations can be linked to
some state-dependent proofs for quantum contextuality from
a quantum resource perspective, then conversely, can different
equivalent noncontextual proofs (not limited to single-qubit
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FIG. 4. Three 3-qubit noncontextual models provide some rep-
resentative GHZ-Peres-Mermin-type proofs for the KS theorem.
Observables along each line are in the same context. The prod-
uct of the observables on every gray line is I , but the red line is
−I . Therefore, any noncontextual value assignment (+1 or −1) to
each observable will lead to a contradiction. In addition, in each
model, observables in the yellow zone (a subset) can provide a
state-dependent proof for the KS theorem (by choosing the GHZ
state |G〉).

operation) be used to realize a universal quantum gate? Other
questions such as how to construct an equivalent noncontex-
tual mode and inequalities from a rank-one projector set may
also be interesting tasks.
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APPENDIX A: CLASSICAL BOUND
FOR MERMIN INEQUALITY

This section is about a brief proof of the classical
bound for Mermin inequality. Let a = v(X o)v(Y s)v(Y p),
b = v(Y o)v(X s)v(Y p), c = v(Y o)v(Y s)v(X p), and abc =
v(X o)v(X s)v(X p). Here |a| = 1, |b| = 1, |c| = 1, and we can
have

(a + b + c − abc)2 = a2 + b2 + c2 + (abc)2 + 2ab(1 − c2)

+ 2bc(1 − a2) + 2ac(1 − b2)

= a2 + b2 + c2 + (abc)2 = 4. (A1)

Therefore, a + b + c − abc = ±2, which means that the clas-
sical up bound of Mermin inequality is +2.

APPENDIX B: PERES-MERMIN SQUARE PROOFS

Figure 4 shows three representative Peres-Mermin square
proofs of KS theorem in which Fig. 4(a) are discussed in
Sec. II.

As for Fig. 4(b), by applying the six observables X o, X s,
X p, Y sY p, Y oY p and Y oY s in the yellow box on the multi-DoF
GHZ state |G〉, we can infer that the predefined values v(X o),
v(X s), v(X p), v(Y sY p), v(Y oY p), and v(Y oY s) satisfy the fol-
lowing equations according to the assumptions of NCHVTs:

−v(X o)v(Y sY p) = +1, (B1a)

−v(X s)v(Y oY p) = +1, (B1b)

−v(X p)v(Y oY s) = +1, (B1c)

v(X o)v(X s)v(X p) = +1, (B1d)

v(Y sY p)v(Y oY p)v(Y oY s) = +1. (B1e)

Equations (B1a)–(B1d) follow from the algebraic relations
for the stabilizers of the state |G〉, and Eq. (B1e) follows from
the fact that the product of three mutually commuting opera-
tors is identity. Note that each of the six observables appears
twice in the left-hand sides of Eqs. (B1a)–(B1e). Therefore,
it is impossible to preassign the values (−1 or +1) to them.
The contradiction comes from the fact that the product of the
left-hand sides of Eqs. (B1a)–(B1e) is −1 while the right-hand
side is +1.

An experimental testable inequality for the proof of the KS
theorem can be derived from the linear combination of the five
expectation values of the products of the three observables in
Fig. 4(b), with the respective quantum mechanical predictions
as coefficients,

− 〈X oY sY p〉 − 〈X sY oY p〉 − 〈X pY oY s〉
+ 〈X oX sX p〉 + 〈Y sY pY oY pY oY s〉 � 3. (B2)

Note that these items are exactly the products of observables
in each row or each column of the yellow box. For the GHZ
state, the prediction of QM is 5.

The order of mutually commuting observables can be
exchanged because observables in different DoFs are compat-
ible; Eq. (B1e) is state independent and holds in any NCHVT.
In other words, in any NCHVT, those observables whose
product is I or −I have an expectation of 1 or −1. Therefore,
Eq. (B2) can be simplified to

〈X oX sX p〉 − 〈X oY sY p〉
− 〈Y oX sY p〉 − 〈Y oY sX p〉 � 2, (B3)

which is exactly the same form of KS inequality as that in the
main body, and the prediction of QM is 4. From this point of
view, one can say that they are indeed equivalent.

Similar arguments can be applied to the other model,
Fig. 4(c). The constraints of the value assignments and the
noncontextual inequalities are listed in Table I. It follows that
the noncontextual inequalities with respect to Figs. 4(a)–4(c)
are equivalent noncontextual inequalities. In fact, the reduced
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TABLE I. Constraints for value assignments and the respective noncontextual inequalities for GHZ-Peres-Mermin-type proofs for the KS
theorem in Fig. 4.

Figure Value assignment constraints Noncontextual inequalities

−v(X o)v(Y s )v(Y p) = +1,

−v(Y o)v(X s )v(Y p) = +1, −〈X oY sY p〉 − 〈Y oX sY p〉 − 〈Y oY sX p〉
(a) −v(Y o)v(Y s )v(X p) = +1, +〈X oX sX p〉 � 2

v(X o)v(X s)v(X p) = +1.

−v(X o)v(Y sY p) = +1,

−v(X s )v(Y oY p) = +1, −〈X oY sY p〉 − 〈X sY oY p〉 − 〈X pY oY s〉
(b) −v(X p)v(Y oY s ) = +1, +〈X oX sX p〉 + 〈Y sY pY oY pY oY s〉 � 3

v(X o)v(X s)v(X p) = +1,

v(Y sY p)v(Y oY p)·v(Y oY s ) = +1.

−v(X o)v(Y s )v(Y p) = +1,

−v(Y o)v(X s )v(Y p) = +1, −〈X oY sY p〉 − 〈Y oX sY p〉 − 〈Y oY sX p〉
(c) −v(Y oY s )v(X p) = +1, +〈X oX sX p〉 + 〈Y sY oY sY o〉 � 3

v(X o)v(X s)v(X p) = +1,

v(Y s )v(Y o)v(Y sY o) = +1.

Bell operators of Figs. 4(a)–4(c) are

BR
a = − X oY aY p − X aY Y p

− X pY oY s + X oX sX p,

BR
b = − X oY sY p − X sY oY p

− X pY oY s + X oX sX p,

BR
c = − X oY sY p − X sY oY p

− X pY oY s + X oX sX p,

respectively.

APPENDIX C: n-QUBIT GHZ-PERES-MERMIN-TYPE
PROOFS OF KS THEOREM

Inspired by the properties of the sequential measurements
[27], we here propose a framework to study the commonness
of the GHZ-Peres-Mermin-type proofs of the KS theorem for
n qubits. Based on this, as we will see below, one may test
different noncontextual models by the same experiment.

Denote by {C, |ϕ〉;M(B)} an n-qubit noncontextual model
for the GHZ-Peres-Mermin-type proof of the KS theorem,
where C = {C1, C2, . . . , Cs}; each Ci is a context (a set
of mutually commuting POs), and M(B) is the induced
noncontextual inequality. Let Ci = {A1

i , A2
i , . . . , A|Ci|

i }, where
Aj

i ( j = 1, 2, . . . , |Ci|) is the jth PO in the context, then
{C, |ϕ〉;M(B)} is nonreducible if it cannot produce a new
state-dependent noncontextual model by reducing any PO
in all the involved contexts. To give a strict framework, we
assume that the state-dependent noncontextual models dis-
cussed in this paper are all nonreducible. Then for the model
{C, |ϕ〉;M(B)}, one can get the following s equations:

A1
i A2

i · · · A|Ci|
i |ϕ〉 = αi|ϕ〉 (i = 1, 2, . . . , s),

where αi ∈ {1,−1}. According to the assumptions of
NCHVTs, if the observables from one context are constrained
by a certain algebraic relation, then the values assigned to

them must obey the same algebraic constraint. Based on this,
the following constraints for these predefined values should
be satisfied:

v
(
A1

i

)
v
(
A2

i

) · · · v(
A|Ci|

i

) = αi(i = 1, 2, . . . , s).

Moreover, the Bell operator can be defined as B ≡∑s
i=1 αiA1

i A2
i · · · A|Ci|

i ; then the noncontextual inequality reads

M(B) : 〈B〉 � βc(C), (C1)

where 〈·〉 represents the classical (noncontextual) expectation
and βc(C) is a constant which is bounded by the noncontextual
value assignments of the related observables. One can easily
check that the quantum violation of 〈B〉QM is larger than βc(C)
(its maximum is usually obtained in |ϕ〉).

In fact, for some GHZ-Peres-Mermin-type proofs, the
noncontextual inequalities tested in the experiments are not
the M(B)-like versions but rather simplified ones, e.g., a
two-qubit Bell-like inequality in Ref. [27]. This is because
for a given {C, |ϕ〉;M(B)}, if the product of the observ-

ables in some contexts Cl1 , . . . , Clk ⊂ C satisfy
∏|Clp |

j=1 Aj
lp

=
αlp I for p = 1, 2, . . . , k, then the corresponding predictions

v(A1
lp

)v(A2
lp

) · · · v(A
|Clp |
lp

) = αlp (p = 1, 2, . . . . , k) hold both
for NCHVTs and QM, and even do not depend on any par-
ticular preparation of the state. If we define the reduced Bell
operator as BR ≡ ∑

i∈{1,...,s}\{l1,...,lk} αiA1
i A2

i · · · A|Ci|
i , then it is

enough to test the following noncontextual inequality:

MS (BR) : 〈BR〉 � βc(C) −
k∑

p=1

αlp . (C2)

It can be considered as a special kind of symmetry.
Note that each term in the noncontextual inequal-

ity is just a correlation of all the observables in some
context Ci, and the test of quantum violation for each
noncontextual inequality can be accomplished by the se-
quential measurements. First, a product partition of m
compatible observables (O1, O2, . . . , Om) can be defined
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TABLE II. Measurements of fidelity and witness of the multi-DoF GHZ state. In the first three lines, the results of Pauli measurement
ZoZsZ p are listed. From 000 to 111: |0〉o|0〉s|0〉p, |0〉o|0〉s|1〉p, ..., |1〉o|1〉s|1〉p. The expectation values of the other eight observables are listed
in last three lines.

State |000〉 |001〉 |010〉 |001〉 |100〉 |101〉 |110〉 |111〉
Probability 0.485 0.037 0.003 0.002 0.003 0.003 0.027 0.440
Error 0.014 0.006 0.000 0.000 0.000 0.000 0.004 0.012

Observables X oY sY p Y oY sX p Y oX sY p X oX sX p Y oX sX p X oX sY p X oY sX p Y oY sY p

Expectation value −0.863 −0.897 −0.869 0.869 −0.014 −0.016 0.0059 −0.006
Error 0.028 0.032 0.034 0.036 0.027 0.028 0.030 0.032

as (
∏

i1∈I1 Oi1 ,
∏

i2∈I2 Oi2 , . . . ,
∏

iq∈Ir Oir ) wherein ∪r
i=1I i =

{1, 2, . . . , m} and I i ∩ I j = ∅ (∀i = j). In a cascade mea-
surement, the correlation 〈A1

i A2
i · · · A|Ci|

i 〉QM can be considered
as the coincidence of any product partition of |Ci| observ-
ables (A1

i , A2
i , . . . , A|Ci|

i ). This thought comes from the fact
that in a multistage measurement, one can combine some
steps as a whole [e.g., stages (1,(23),4) resulting from stages
(1,2,3,4) after some combination] for consideration. This
gives us another kind of symmetry. Based on this observa-
tion, we can define a useful cascade measurement equivalent
relation. Denote by a single-qubit Pauli operator Bi (i =
1, 2, . . . , n) for the ith qubit, i.e., Bi ∈ {Xi,Yi, Zi}, then a
PO Ai is of the form Ai = (⊗k∈IBk ), where I is the in-
dex set for some qubits. Two correlations of compatible
POs, E = 〈(⊗i1∈I1 Bi1 )(⊗i2∈I2 Bi2 ) · · · (⊗ip∈IpBip )〉 and F =
〈(⊗ j1∈J1 Bj1 )(⊗ j2∈J2 Bj2 ) · · · (⊗ jq∈Jq Biq )〉, are cascade mea-
surement equivalent, if (i) the total numbers of any Bi in the
expression of E and F are the same; and (ii) for the POs
with respect to any pair of (Ii, I j ) sharing two or more qubit
indices in common, the same indices should be presented in
the POs with respect to some (Ji′ ,J j′ ).

For example, the number of any Pauli operator Bi in
〈Y1(X2Y3)(Y2X3)X4〉 and 〈(Y1X2Y3)(Y2X3X4)〉 is the same.
In addition, the qubit indices 2 and 3 are shared by
(I2, I3) and (J1,J2), where I2 = I3 = {2, 3} and J1 =
{1, 2, 3}, J2 = {2, 3, 4}. Therefore, Bi in 〈Y1(X2Y3)(Y2X3)X4〉
and 〈(Y1X2Y3)(Y2X3X4)〉 is cascade measurement equivalent.

For two GHZ-Peres-Mermin-type proofs of the KS theo-
rem {C, |ϕ〉;M(B)} and {C ′, |ϕ〉;M′(B′)}, if the expectation
of each term in the reduced Bell operators BR has its cascade
measurement equivalent counterpart in BR′ and vice versa,
their noncontextual inequalities M(B) and M′(B′) can be

defined as equivalent noncontextual inequalities. Accordingly,
the associated state-dependent noncontextual models can be
defined as equivalent proofs of KS theorem.

These equivalent noncontextual inequalities, say
{M(B),M′(B′),M′′(B′′), . . .}, can be alternatively tested
by the quantum expectation of their respective reduced
Bell operators BR,BR′

,BR′′
, . . . . In other words, One only

needs to test the corresponding simplified noncontextual
inequalities MS (BR), MS ′(BR′), MS ′′(BR′′), . . . . Their
cascade measurement equivalent items can obviously be
tested in the same experiment, which indicates that MS (BR),
MS ′(BR′),MS ′′(BR′′), . . . can be tested in the same
experiment.

APPENDIX D: EXPERIMENTAL DATA

To calculate the fidelity F̄expt, it only needs to measure the
four elements of ρexpt since other elements are zero in theory.
Two off-diagonal elements can be measured with projective
measurements (see Table II), whose real and imaginary parts
of each element can be written as

Re(〈000|ρexpt|111〉) = (〈X oX sX p〉 − 〈X oY sY p〉
− 〈Y oX sY p〉 − 〈Y oY sX p〉)/8, (D1a)

Im(〈000|ρexpt|111〉) = (〈Y oY sY p〉 − 〈X oX sY p〉
− 〈Y oX sX p〉 − 〈X oY sX p〉)/8. (D1b)

Another two diagonal elements, meaning the probabilities
of |000〉 and |111〉 (〈000|ρexpt|000〉 and 〈111|ρexpt|111〉), have
been listed in Table II. In addition, the results of Pauli mea-
surement ZoZsZ p are also listed in Table II.
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