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Simulating complex networks in phase space: Gaussian boson sampling
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We show how phase-space simulations of quantum states in a linear photonic network permit the verification
of measurable probabilities and entanglement. We compare our predictions with recent Gaussian boson sampling
experiments of Zhong et al. These use squeezed inputs and efficient “on-off” detectors, with up to 76th-order
measured coincidence counts in the data. We introduce a general definition of grouped “on-off” detection
probabilities for this purpose. The positive-P phase-space method is used to compute any grouped or marginal
click probabilities. Additional decoherence is included to obtain agreement between theory and experiment.
The only limitation in estimating grouped probabilities is the computational sampling error, which is similar in
magnitude to the experimental sampling error. The results obtained and graphed here are from first-order up to
16 000th-order grouped count probabilities. However, any order between these is also computable. We extend
these results to include grouped probabilities with multidimensional outcomes that have a polynomial number
of points. We also analyze quadrature detection experiments and show how to simulate genuine multipartite
entanglement using Wigner phase-space methods.
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I. INTRODUCTION

Bosonic quantum networks are increasingly useful in quan-
tum technology and quantum computing applications [1].
Linear networks driven either by nonclassical number state
[2–8] or Gaussian inputs [9–12] for boson sampling are be-
coming widely available. The squeezed-state interferometer,
which is a two-mode linear network, is being employed to en-
hance gravitational-wave detection sensitivity [13,14]. More
complex photonic networks are under development, both as
novel interferometers [15,16] and as test beds for multipar-
tite entanglement [17–19]. Other examples include the Ising
machine, used to solve large NP-hard optimization problems
[20–22].

A dramatic increase in scale of a boson sampling quan-
tum network has recently been achieved. Zhong et al. [23]
implemented a 100-mode Gaussian boson sampler (GBS)
with squeezed inputs, and detected the output photon counts,
whose distribution is called the “Torontonian.” They measured
up to 76th-order coincidence counts in the outputs, which they
estimated to take 0.6 billion years to simulate conventionally
on the world’s fastest current supercomputer. This has led
to reports of quantum supremacy by Zhong et al.: that is, a
quantum device implementing a computational task that is not
classically feasible [24,25]. Similar reports have been made
using quantum logic gates [26].

There is an ongoing debate on how to rigorously validate
such technology [27,28]. Validation based on low-order corre-
lations [29] or direct classical simulation may be susceptible
to mock-ups. However, Gaussian inputs to linear networks
[9,30] have a noncomputable discrete count probability for
large mode number. The output distribution is a Hafnian
[10] for photon-number-resolving detectors. In the “on-off”

or saturable detector case, it is the Torontonian [11]. Quesada
et al. [11,31] explained that classical evaluation of the ideal
“Torontonian” distribution is exponentially complex, making
it nearly impossible for more than 50 modes [32].

Since a direct simulation of the output correlations at large
M cannot be achieved in less than exponential time, another
approach is needed to compare theory with experiment in a
reasonable time frame. Theoretical benchmarks are essential,
both to know what output is expected, and to understand any
other physics.

The objective of this paper is to do simply this: to investi-
gate whether the theory agrees with experiment. We show how
one may, in part, solve this problem by simulating Gaussian
boson linear networks in quantum phase space. This provides
a way to verify the output quantum correlations and marginal
probabilities, both in the idealized case and with other known
physics included. It is important to note that we do not sim-
ulate the experiment directly using discrete photon counts
[11,31]. Rather, we verify observable, grouped probabilities
by averaging over many random trajectories in phase space
[33], which have the same correlations and marginal proba-
bilities.

By contrast, an explicit simulation with discrete counts is
feasible, but is currently limited to either small networks or
large decoherence [34]. Our methods provide a way to certify
the measurable probabilities of experimental outputs, even for
systems much larger than the current experimental ones. The
phase-space approach uses the correctness of quantum me-
chanics under a change of basis state to develop an alternative,
powerful algorithm for efficient verification of any grouped
count distribution. We computed all of the grouped probabili-
ties measured by Zhong et al. [23], including 76th-order coin-
cidence counts, as well as other marginal probabilities in their
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data. We calculate these from the model of the apparatus and
experimental parameters measured by the experimentalists.

Differences between theory and experiment appear to be
caused by input pulse decoherence effects. Our phase-space
simulations agree much better with experimental count dis-
tributions [23] after including these decoherence effects and
are scalable. Chi-squared tests were carried out [35,36], which
show an improvement of three orders of magnitude for theo-
retical agreement with experiment.

Results are also obtained for up to 16 000 mode devices.
Computational times and sampling errors are comparable to
those in experiments for the same number of samples, making
them useful for validation of GBS experiments. We computed
marginal, low-order probabilities, as well as higher-order,
measurable grouped probabilities. Our methods can also be
extended if necessary to include other known physics, in-
cluding multiple frequency modes, dispersion, nonlinearity,
decoherence, and Raman-Brillouin scattering [37], allowing
better understanding of these experiments.

Boson sampling outputs are exponentially hard to generate
numerically. Here, we demonstrate how measurable grouped
probabilities can be verified. A key feature of quantum me-
chanics which allows this in GBS is that binary “click”
measurement operators are multimode projection operators
whose averages are probabilities. The positive-P phase-space
representation allows one to calculate these probabilities using
efficient phase-space sampling methods, even though a direct
sampling of the click distribution is exponentially hard. Since
methods used to detect eavesdroppers involve measurement
of moments or probabilities, this also suggests relevance to
cryptographic steganography, in which messages could be
hidden in the random outputs. We further demonstrate, using
simulations in a different phase space, the Wigner representa-
tion, how to certify the genuine M-partite entanglement of all
M = 100 modes of a Gaussian network.

II. GAUSSIAN BOSONIC NETWORKS

We consider an M mode bosonic network, with squeezed-
state inputs to N out of M modes. A linear, unitary
transformation is made to a set of M output modes, com-
bined with decoherence and losses. Measurements are carried
out on the output state ρ̂out. The theoretical problem is to
calculate quadrature correlations and binned counts for the
output quantum state. To solve this, we utilize discrete Fourier
transform methods for ensemble averages of grouped photon
counts [33].

A squeezed-state is a minimum uncertainty state in which
one of the input mode quadratures has its fluctuations reduced
below the vacuum noise level [38–40]. We suppose that the
squeezing of ρ̂ in for each excited mode is in the imaginary part
of α. If each input is independent, the quantum state can be
factorized into a product of single-mode states. Defining input
quadrature operators x̂in

j = âin
j + âin†

j , p̂in
j = (âin

j − âin†
j )/i, so

that [x̂in
� , p̂in

j ] = 2iδ� j , the quantum inputs are defined by a
squeezing vector r = [r1, . . . , rN ].

The variances in each mode are〈(
�x̂in

j

)2〉 = 1 + γ j = e2r j ,〈(
�p̂in

j

)2〉 = (1 + γ j )
−1 = e−2r j . (2.1)

The input photon numbers are n j = sinh2(r j ), with coher-
ences of mj = 〈â2

j 〉 = sinh(r j ) cosh(r j ). Pulsed squeezing
[41] involves multiple longitudinal modes, with mismatches
in time or frequency [23], as well as phase noise [42]. We
model this experimental decoherence by an intensity trans-
missivity 1 − ε into the network, combined with a thermal
input of nth

j = εn j uncorrelated photons per mode. Our model
is similar to thermal squeezing [43], except with an invariant
photon number.

The overall result is that the photon number is unchanged,
and the coherence of each mode is reduced so that 〈â2

j 〉 = m̃ =
(1 − ε)m(r j ).

A. Phase-space representations

At large M, number state expansions of the input state re-
quire exponentially many expansion coefficients to treat this.
Instead, we use phase-space expansions [44] which allow a
probabilistic representation of the input states. Two common
phase-space approaches are used: the Wigner representation
[45] and the generalized P-representation [46]. These methods
do not assume Gaussianity, and applications to non-Gaussian
photonic networks were already demonstrated [33,47].

1. Positive P-representation

P-representations are normally ordered and therefore do
not have any vacuum noise, making them efficient for
simulating photodetection measurements. The most suitable
technique for nonclassical photon-counting measurements is
the generalized P-representation [46,48], which has been ap-
plied to other large-scale bosonic simulations [49].

In this representation, ρ̂ in is expanded over a subspace of
the complex plane defined by

ρ̂ in = Re
∫∫

P(α,β)�̂(α,β)dμ(α,β) . (2.2)

The operator basis �̂ is an off-diagonal coherent state pro-
jector onto multimode Glauber [50] coherent states, and
dμ(α,β) is an integration measure on the 2M-dimensional
complex space of amplitudes α,β, which in some cases re-
duce to simple real amplitudes.

For a squeezed input state ρ̂ in, one obtains a posi-
tive P-distribution on a real subspace with (α,β) = (x, y),
dμ(α,β) = dxdy. If the input is ρ̂1S ≡∏ j |r j〉〈r j |, a product
of single-mode squeezed state density matrices, the solution
for a squeezed state, based on one-dimensional coherent state
expansions [51] is

P(x, y) =
∏

j

Cje
−(x2

j +y2
j )(γ −1

j +1/2)+x j y j , (2.3)

where the normalization constant is Cj = √1 + γ j/(πγ j ).
In this approach, normally ordered operator moments are

equivalent to stochastic moments [46], so that 〈â†
j1
, . . . , â jn〉 =

limS→∞〈β j1 , . . . , α jn〉P, with quantum expectation values de-
noted 〈〉, and probabilistic averages denoted 〈〉P.

To create input samples for a squeezed state distribu-
tion P(x, y), one uses real Gaussian noises with 〈wiw j〉P =
δi j, to generate random phase-space samples �α = [α,β] =
[α1, . . . , α2M ]. The stochastic model for a pure or thermalized
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squeezed state, [α,β], is given by [42]

α j = δ j+w j + iδ j−w j+M

β j = δ j+w j − iδ j−w j+M . (2.4)

The coefficients δ j± must satisfy δ j± = √(n j ± m̃ j )/2, which
gives real amplitudes for n j � m̃ j , and complex amplitudes
for n j > m̃ j .

2. Wigner representation

Other possible phase-space methods include the Wigner
[45,52] and Q-function [53] methods with symmetric and
antinormal ordering, respectively. These give exponentially
larger sampling errors [42] for intensity correlations due to
their extra vacuum noise, while the Glauber P-representation
is singular for squeezed states. These methods have a classical
phase space, in which β j = α∗

j . The Wigner representation is
best for analyzing multipartite entanglement, with data com-
ing from quadrature measurements [54–56], which have been
carried out at an increasingly large scale [17–19,57,58].

For an input quantum density matrix ρ̂ in the Wigner distri-
bution W (α) is written most compactly as [44,59,60]

W (α) = 1

π2N

∫
d2zTr[ρ̂ ineiz·(â−α)+iz∗·(â†−α∗ )]. (2.5)

More generally, σ -ordered classical bosonic representa-
tions [61] are defined using an σ parameter signifying the
relative amount of vacuum noise, with σ = 0 for normal
ordering or P-representations and σ = 1/2 for symmetric
ordering or Wigner representations. For thermalized or pure
squeezed state inputs [42,62], the σ -ordered classical phase-
space stochastic amplitude is

α0
j = δ j+w j + iδ j−w j+M, (2.6)

where δ j± has the requirement that

δ j± = √(n j + σ ± m̃ j )/2. (2.7)

B. Network transmission

Once a set of input states is simulated, it can be trans-
formed and used to sample the output state in any of these
representations. An input density matrix ρ̂ in is changed by
a linear photonic network to an output density matrix ρ̂out.
For unitary transformations T , the phase-space amplitudes are
transformed deterministically, where α′ = Tα, β′ = T ∗β, in
all representations. In the generalized P-representation one
may include a nonunitary transmission matrix to take account
of losses, which is equivalent to a master equation [63].

For normal ordering in a linear network, the output density
matrix has a simple form [64], including linear couplings and
losses

ρ̂out = Re
∫∫

P(α,β)�̂(Tα, T ∗β)dμ(α,β) . (2.8)

The input distribution P(α,β) may no longer be restricted to
the real axes if there are input thermal photons included to
model decoherence with nth 
= 0.

For other types of ordering, vacuum noise must be in-
cluded from the reservoirs that couple to the system modes,
causing decoherence. This is achieved by noting that for a

vacuum state, the input and output correlations are identical,
and for σ -ordering, 〈βiα j〉 = 〈β ′

iα
′
j〉 = σδi j . It is, therefore,

necessary to add additional vacuum noise if σ > 0 and T is
nonunitary. This is achieved through defining an hermitian
decoherence matrix, D ≡ I − T †T , which has a decomposi-
tion D ≡ Uλ2U†, where λ is diagonal and positive. The matrix
square root is B = UλU†, and the output amplitudes are

α′ = Tα +
√

σ

2
B(u + iv). (2.9)

Here u and v are uncorrelated real stochastic noises like w,
which ensure that vacuum noise is unchanged.

III. QUANTUM MEASUREMENTS

We consider two types of measurements in detail, namely
quadrature detection, and efficient photodetectors that saturate
for more than one count.

Phase-space representations of measurement operators

1. Quadrature detectors

For quadrature detection, the quadrature phase amplitudes
of each output mode are x̂θ

i = âie−iθ + â†
i eiθ , with special

cases, for θi = 0, π/2 of x̂i and p̂i, in a rotating frame. The
measurable quadrature correlations are C(m, θ), where m =
(m1, . . . , mn), and θ = (θ1, . . . , θn) :

C(m, θ) =
〈

n∏
j=1

[
x̂

θ j

j

]mj

〉
. (3.1)

This is directly simulated in the Wigner representation. The
phase-space variables are xθ

i = α′
ie

−iθ + α
′†
i eiθ , and the corre-

lations are calculated by replacing x̂
θ j

j → x
θ j

j , and averaging
over the Wigner function.

Hence, one simply has to generate the input amplitudes
according to Eq. (2.6), transform them according to Eq. (2.9),
and average over an ensemble of random events to obtain
the output measured correlations. These are given a detailed
analysis in Sec. V.

2. Photon number detectors

For photon-number-resolving photodetectors, the output
number operator is n̂′

j = â†out
j âout

j . The nth-order Glauber cor-
relation function is [50]

G(n)(c j ) =
〈

:
M∏

j=1

(n̂′
j )

c j :

〉
, (3.2)

where c j = 0, 1, 2, . . . , is the number of counts at the jth
detector and n =∑ c j is the total measurement order. The
corresponding phase-space observable is obtained by replac-
ing n̂′

j → n′
j , where n′

j = α′
jβ

′
j is the output number variable,

sampled with probability P(α,β). To calculate the output
number distribution, there are a number of methods [10]
for transforming these correlations into the observed distri-
butions, but in this paper we focus on saturating, or on-off
detectors, as recent experiments use this type of measurement.
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For saturating photodetectors, all nonzero counts give an
identical output. The “on-off” click projection operator is [65]

π̂ j (c j ) =: e−n̂′
j (en̂′

j − 1)c j :, (3.3)

where c j = 0, 1 is the number of measured counts at the jth
detector. Multimode results are given by an M-digit binary
number c. This has 2M possible patterns available. For a subset
S of MS sites, each binary number cS has an MS-order corre-
lation operator of �̂S (cS ) =⊗ j∈S π̂ j (c j ). The corresponding
expectation

T (cS ) =
〈⊗

j∈S

π̂ j (c j )

〉
, (3.4)

is the Torontonian function [11] for Gaussian inputs, if the
set of sites corresponds to all M output channels. As this
is normally ordered, it has a direct correspondence with a
phase-space function in the positive P-representation. The
corresponding phase-space observable is given by replacing
π̂ j → π j , where π j = exp (−n′

j )[exp (n′
j ) − 1]c j .

In all cases, the corresponding MSth-order moment is sim-
ulated by replacing π̂ j with the randomly sampled complex
number π j . We note that the operators �̂S (cS ) are projectors.
As a result, their expectations are the probabilities [66] of
measuring the count pattern cS.

Since there are exponentially many possible count pat-
terns cS , the probability of measuring any individual pattern,
〈�̂S (cS )〉, becomes infinitesimal for large MS . A direct mea-
surement cannot obtain all such correlations in less than
exponential time. Thus, it is hard to calculate all probabilities,
and it is also hard to measure them [33,47].

3. Grouped or marginal probabilities

Grouped counts are therefore essential for verifying GBS
statistics at large M, in order to obtain measurable probabil-
ities. One must simulate and measure the nth-order grouped
probabilities, G (n)

S (m), where n =∑d
j=1 Mj � M is the total

probability order [50] and

G (n)
S (m) =

〈
d∏

j=1

⎡
⎣ ∑
∑

ci=mj

�̂S j (c)

⎤
⎦〉. (3.5)

These are the d-dimensional grouped count probabilities
of observing m = (m1, . . . , md ) grouped counts in disjoint
sets S = (S1, S2, . . .), of M = (M1, M2, . . .) output modes. If
n < M, they include low-order marginal probabilities often
proposed for verification purposes, with M − n outputs ig-
nored. The first-order correlation with n = 1, S = { j} is the
count probability in the jth channel. Similarly, n = M and
S = ({1}, {2}, . . . , {M}) gives the Torontonian. For sequential
channel groups, the sets S are denoted by their sizes M.
Using this notation, G (M )

M (m) ≡ G (M )
{1,2,...M}(m) is the probability

for observing m clicks in any pattern, as reported in recent
experiments [23].

We use the terminology of quantum optics [50] to define
the measurement order n since the binned correlations involve
simultaneous measurements at n different sites. However, the
G (n)

S (m) are probabilities obtained from some or all of the
detectors. One can extract moments from the resulting dis-

FIG. 1. Theoretical scaling of total grouped count distribution
with M. Results are for MG (M )

M (m) versus m/M, for r = 1, ε =
0, N = M/2, and random unitaries. Mode numbers were M =
24, 26, 28, 210, 212, 214, with sample numbers of 108, 106, 105, 1.6 ×
104, 4 × 103, 2 × 103, respectively. The transmission matrices are
random unitaries.

tributions, and the resulting statistical moments can also have
various orders from 1, . . . , n. It is important to distinguish the
original measurement order which depends on the number of
modes, from the statistical moment orders that are extracted
later.

Calculating these quantities appears intractable at first:
How can one compute the sum of exponentially many terms
if each is exponentially hard? Yet, high-order correlations are
readily simulated on replacing the operator π̂i by the phase-
space variable πi and averaging over the probability P(α,β).
The summation over grouped correlations is achieved through
defining angles θ j = 2π/(Mj + 1), with a Fourier observ-
able G̃ defined for k j = 0, . . . , Mj , where j = 1, . . . , d . The
grouped probability is then obtained from a multidimensional
inverse discrete Fourier transform, so that

G̃ (n)
S (k) =

〈
d∏

j=1

⊗
i∈S j

(
πi(0) + πi(1)e−ik jθ j

)〉
P

,

G (n)
S (m) = 1∏

(Mj + 1)

∑
k

G̃ (n)
M (k)ei

∑
k jθ j m j . (3.6)

All combinations of terms vanish in the inverse Fourier
transform except those terms with m counts. This algorithmic
procedure is highly scalable. To demonstrate this, two simula-
tion codes were written and tested. Exact Torontonians were
simulated for small networks. Analytically tractable inputs
were used to test large networks. Excellent agreement was
found in all cases.

To demonstrate this technique for quantum squeezed in-
puts, we graph the grouped count probability in Fig. 1 for sizes
up to M = 16 000, using squeezed states with r = 1, ε = 0,
for N = M/2 inputs, and random unitaries.

IV. GROUPED COUNT VERIFICATION IN GBS
EXPERIMENTS

The grouped probabilities provide a signature of a quan-
tum state. Clearly, they must be measurable and have a low
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FIG. 2. Comparison of theory with experiment of G (100)
100 (m) for

a 100 channel GBS total count distribution. Solid blue line is the
theoretical prediction with ε = 0.0932 relative decoherence and
1.2 × 106 samples. The orange dashed line is the experimental data
obtained from 5 × 107 samples.

sampling error. To validate results, the theoretical sampling
error, Et ∝ N−1/2

t for Nt samples, must be less than the exper-
imental sampling error Ee, where the experimental sampling
error depends on the number Ne of samples used and scales
as Ee ∝ N−1/2

e . The experiment and simulations have similar
timescales for comparable error bars.

Due to internal averaging, single group measures are less
sensitive to the unitary as n increases, but are very sensitive to
decoherence. Count “fingerprints” with more groups are also
needed for a complete test and one is computed below. Many
such measures are available, both from experimental data and
from simulations.

A. Comparisons with a GBS experiment

To compare theory to experiment, squeezing vectors and
transmission data from a recent 100-mode Gaussian boson
sampling experiment were obtained [23] (corrected data were
downloaded on Oct. 4, 2021) and simulated with 1.2 × 106

samples. The data were a 50-mode vector of amplitudes r,
a 50 × 100 transmission matrix T , and 5 × 107 measured
click patterns. The experimental data were used to calculate
grouped correlations and compared to simulations with a stan-
dard chi-squared test [67], using a lower cutoff of ten counts
per bin [36,68]. Statistical methods and tests of the codes are
given in the Appendix.

For k significant bins, one expects χ2
c /k ≈ 1. Simulating

total counts, G (M )
M (m), with pure squeezed-state inputs gave a

large chi-squared value of χ2
c /k = 9.5 × 103 � 1, with k =

63 valid data points. Additionally, we tested a 100-mode fully
thermalized model. This gave an even larger discrepancy. The
chi-squared value was χ2

th/k = 6.1 × 104 � 1, confirming a
prediction [69] that one can distinguish boson sampling from
uniform distributions.

Better agreement with experiment was obtained with a
small admixture of thermal inputs. For optimal fitting, we in-

FIG. 3. Simulation of a 100 channel GBS count distribution
binned into d = 2 dimensions, G (100)

50,50(m1, m2), with 1.2 × 106 sam-
ples. There are 512 data points in the distribution, leading to over
1000 distinct data points. Including decoherence, the differences
between theory and experiment are negligible on this scale.

cluded an ε = 0.0932 ± 0.0005 thermal component to model
longitudinal mode mismatching. Transmission amplitudes
were multiplied by 1.0235 ± 0.0005. The results of the simu-
lations are given in Fig. 2. This agrees with the experiment
over a range of six orders of magnitude in the measurable
grouped probabilities. A chi-squared value of χ2

ε /k = 6.5 ± 1
was obtained, giving three orders of magnitude lower values
than with pure state inputs. Residual discrepancies may be
from nonlinearities.

Figure 3 shows G (100)
50,50(m1, m2), which is a two-dimensional

binning of the 100th-order probabilities. Any number of bins
(up to M) are feasible, in principle. However, experimental
sampling errors increase as the grouping dimension increases,
giving a limit of d = 6 dimensions with currently avail-
able experimental data. As another comparison, the marginal
count probability per channel G (1)

{ j} (1) = 〈π j (1)〉, is graphed in
Fig. 4. This also shows good agreement with the experiment.

B. Detailed statistical comparisons

We now consider the details of the comparisons and the
inferred decoherence from the grouped 100th-order correla-
tions in a GBS experiment, as compared to a phase-space
simulation. We wish to compare two hypotheses. The first,
H0, is that the correlations are given by the experimental
squeezing and transmission matrices. The second, H1, is that
there is additional decoherence, modeled by a thermal fraction
ε, with an unchanged photon number.

In both cases, the experimental counts are the same.
However, graphing raw experimental and theoretical count
probabilities is not useful for comparative purposes, as the
probabilities appear nearly identical to the naked eye [67].
Due to the accuracy of the data, with over 107 total counts, it is
much more useful to graph the normalized deviation between
theoretical and experimental probabilities, as described in the
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<
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FIG. 4. Comparison of theory versus experiment for a 100 chan-
nel GBS count probability per channel G (1)

{ j} (1) ≡ 〈π̂ j (1)〉 versus
mode j. Blue line is the theory with with ε = 0.0932 added deco-
herence, orange dashed line is obtained from 5 × 107 experimental
data records. Computational sampling errors with 1.2 × 106 samples
were negligible on this scale.

Appendix:

zm = �G (M )
M (m)

σm
= G(m) − Ge(m)

σm
. (4.1)

For good agreement between theory and experiment, one
expects a typical normalized difference of order unity.
Figure 5 shows the normalized discrepancy between
theory and experiment in G (M )

M (m), in a simulation
having no decoherence. An inspection of the graph shows
very significant differences between the theoretical and
experimental count probabilities, with |z| � 1. This is
reflected in the χ2 results for the null hypothesis H0, where
one obtains an extremely large value of 5.9 × 105, out of 63
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FIG. 5. Normalized difference of simulation versus experimen-
tal count distribution, excluding decoherence. Results are for
�G (M )

M (m)/σm versus m, with sample numbers of 1.2 × 106. The up-
per and lower lines indicate theoretical sampling errors. The results
are cutoff for all counts less than 10.
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FIG. 6. Normalized difference of simulation versus experi-
mental count distribution, including decoherence. Results are for
�G (M )

M (m)/σm versus m, with sample numbers of 1.2 × 106. The
error bars indicate errors due to finite experimental counts. The upper
and lower lines indicate theoretical sampling errors. Results are cut
off for counts less than 10, where the count data are less reliable.
The maximum error is reduced by about two orders of magnitude
compared to the coherent model.

valid data points having more than 10 counts. This gives a
discrepancy ratio of χ2

c /k = 9.5 × 103 � 1.
Clearly, when decoherence is excluded, the experiment

strongly disagrees with a simple, coherent GBS model. There-
fore, the hypothesis of no decoherence, apart from losses,
has a vanishingly small probability. The hypothesis of a fully
thermal model with ε = 1 is less likely still. With this model,
the total discrepancy ratio is χ2

th/k = 6.1 × 104 � 1. Hence,
the output is easily distinguishable from a thermal one [69].

Figure 6 shows the differences in G (M )
M (m), between exper-

imental and simulated probabilities with a small decoherence
of ε = 0.0932, as described above. The transmission ampli-
tude was increased by a factor of 1.0235 to improve the fit.
This is a small correction since even small deviations can re-
sult in large chi-squares. The new graph shows much smaller
differences between the theoretical and experimental count
probabilities, with |z| � 5.

For the hypothesis H1, with additional decoherence, the
χ2

ε value is 400 ± 50. The total ratio is χ2
ε /k = 6.5 ± 1 ∼

O(1), more than 1000 times smaller than for a pure state.
This indicates that the hypothesis of additional decoherence
is more compatible with experimental measurements. These
results show good agreement with a model of GBS including
a small thermal decoherence. Other physical effects including
nonlinearities may explain the remaining discrepancies.

The phase-space errors here were 50% less than the ex-
perimental errors, and could be reduced further, at the cost
of longer computation time. There were 40 times more ex-
perimental than theoretical samples. Hence, this simulation is
comparable or better than experimental efficiency. The error
ratio depends on the observations.

The same technique is applicable to any measurable
distribution, including lower-order marginal probabilities
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and multiple partitions. We plotted an example of a two-
dimensional grouped probability distribution in the previous
subsection. This has similar properties, with a distribution
close to the experimental one, and includes thousands of data
points.

In general, it is possible to check the GBS hypothesis for
any set of parameters and marginal or grouped probability
distributions. Measurable, grouped probability distributions of
GBS experimental data can be simulated to high accuracy. We
simulated correlation orders from first up to 16 000th order.
The computational time depends on the complexity of extrac-
tion of the binned correlations, and on the error requirements.

There are many correlation tests possible. Thus, to disprove
a classical mock-up, one could simply use a large, randomly
chosen subset of tests of all orders. Just as with other RNG
tests, it is increasingly unlikely that a range of statistical
tests like this can be faked. We conjecture that the multidi-
mensional grouped probabilities, as in Fig. 3, have the most
potential for this due to their polynomially large number of
probability samples.

V. M-PARTITE ENTANGLEMENT

These experiments typically lead to entangled outputs.
However, the entanglement is demonstrated most directly us-
ing a different type of measurement. We will illustrate this for
one type of M-partite entangled state that is generated from
one or two squeezed vacuum states. In this section, we briefly
outline the known method for generating such a state [54,56].
In short, the squeezed inputs are first combined across a single
beam splitter to create a two-mode Einstein-Podolsky-Rosen
(EPR) entangled state [70]. One of the outputs is then passed
through M − 2 beam splitters [54,56].

A. Multimode entanglement theory

The overall set-up has M inputs âin
j , where the first two

inputs are orthogonally squeezed vacuum states. In particular,
âin

2 is a squeezed vacuum input with �2x̂in
2 = e−2r , and âin

1
is squeezed vacuum input with �2 p̂in

1 = e−2r . Here r > 0 is
the squeezing parameter. All other inputs are vacuum states,
implying �2x̂in

j = �2 p̂in
j . The inputs are combined across a

total of M − 1 beam splitters. We use the notation �2x̂ to
mean the variance of x̂, i.e., �2x̂ = (�x̂)2 = 〈x̂2〉 − 〈x̂〉2.

To create two-mode EPR entanglement, inputs 1 and 2 are
passed through beam splitter BS1, with reflectivity R2

1 and
T 2

1 = 1 − R2
1, according to

â(1)
1 = R1âin

1 + T1âin
2 ,

â(1)
2 = T1âin

1 − R1âin
2 . (5.1)

The output of â1 is â(1)
1 . It is straightforward to show using

the approach developed in Ref. [70] that for R1 = 1/
√

2 the
two outputs are EPR correlated with respect to the quadrature
phase amplitudes, i.e.,

�2
(
x̂1 − x̂(1)

2

) = 2e−2r,

�2
(
p̂1 + p̂(1)

2

) = 2e−2r . (5.2)

More details are given in Refs. [71,72], where EPR steering is
also considered. For large r, both variances become zero. EPR

entanglement can also be created from one squeezed input âin
1

to give

�2
(
x̂1 − x̂(1)

2

) = 2,

�2
(
p̂1 + p̂(1)

2

) = 2e−2r . (5.3)

To generate multipartite entanglement, the field â(1)
2 is

combined across a second BS2 with reflectivity R2
2 and T 2

2 =
1 − R2

2, according to [54]

â(2)
2 = R2â(1)

2 + T2âin
3 ,

â(2)
3 = T2â(1)

2 − R2âin
3 . (5.4)

The output of field â2 is â(2)
2 . For M = 3, there are only two

beam splitters, and the output of â3 is â(2)
3 . For M = 4, the

process continues with another beam splitter

â(3)
3 = R3â(2)

3 + T3âin
4 ,

â(3)
4 = T3â(2)

3 − R3âin
4 . (5.5)

The output of mode â3 is â(3)
3 and the output of mode â4 is â(3)

4 .
It is possible to continue in this way, and to select the

reflectivities of a string of beam splitters so that we obtain,
from two squeezed inputs, the following solution for the fi-
nal outputs âout

i , given by âout
i = âi

(i), i = 1, . . . , M − 1 and
âout

M = âi
(i−1):

ξx = �2

(
x̂out

1 − 1√
M − 1

M∑
i>1

x̂out
i

)
= 2e−2r,

ξp = �2

(
p̂out

1 + 1√
M − 1

M∑
i>1

p̂out
i

)
= 2e−2r . (5.6)

To achieve this, the reflectivity R2
k of the kth beam splitter,

where k = 1, . . . , M − 1, is given by R2
M−1 = 1/2, R2

M−2 =
1
3 , R2

M−k = 1/(k + 1) for k < M − 1, with R2
1 = 1/2. This is

explained in more detail in Refs. [54,56].

B. Unitary matrix

The corresponding unitary matrix for the setup is obtained
by first introducing a vector of reflection amplitudes, defined
by

Rj =
√

1

M − j + 1
, 1 < j � M,

R1 =
√

1

2
,

Tj =
√

1 − R2
j . (5.7)

We express the transformation of the M input modes into M
genuinely entangled output modes as a unitary matrix U . The
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output modes are ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

âout
1

âout
k

. . .

âout
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

âin
1

âin
k

. . .

âin
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.8)

Defining R0 = −1 and RM = 1, the elements Uk j of the M ×
M unitary U matrix for j, k = 1, . . . , M are given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Uk j = 0, j > k + 1,

Uk j = R1, j = k = 1,

Ukk = −RkRk−1,

Uk(k+1) = Tk, k < M,

Uk j = −RkTk−1 . . . TjR j−1, 1 � j < k + 1.

. (5.9)

C. M-partite entanglement simulations

We now consider how to use phase-space simulations
to model an entangled bosonic network, such as the one
described in the last section. This result can be readily sim-
ulated, and we find that one can verify genuine M-partite
entanglement [54,56], where we take M = 100. The optimal
simulation method is the Wigner representation, which for
quadrature measurements is the natural approach, requiring
no ordering corrections. Other methods gave larger sampling
errors. As one might guess intuitively, it is optimal to use the
representation that matches the measurement operator [73].

This case demonstrates the high efficiency of Wigner
phase-space methods for simulating quadrature measure-
ments, although it is a completely different type of measure-
ment to the click detection often used in GBS.

We follow the definitions given in Eq. (5.6). Let û =
x̂1 − 1√

M−1
(x̂2 + x̂3 + · · · x̂M ) and v̂ = p̂1 + 1√

M−1
( p̂2 + p̂3 +

· · · p̂M ), then the observation of

(�û)(�v̂) <
2

(M − 1)
(5.10)

confirms M-partite entanglement for all M. The observation
of

(�û)2 + (�v̂)2 <
4

M − 1
(5.11)

also confirms M-partite entanglement for all M. The proof of
the latter inequality is given in Ref. [54], for full tripartite in-
separability. The proofs for genuine M-partite entanglement,
and for the first inequality involving a product, follow along
similar lines, using the methods developed in Ref. [56]. The
detailed proofs of these threshold points will be given else-
where [71].

The above inequalities suffice to confirm the M-partite
entanglement of the fields created by the ideal network, but
other methods of detection are also possible [55,74,75]. This
is particularly true if one assumes pure or Gaussian states,
or is interested to measure full M-partite inseparability only
[17,55,57,74–76].

Figure 7 shows the result of a Wigner simulation of mul-
tipartite entanglement, plotted against the number of input

20 40 60 80 100
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9.9

9.91

9.92
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9.95
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)2 +
(

 v
)2

10-3

FIG. 7. Graph of simulated multipartite entanglement product
against number of entangled modes, using the Wigner representation.
Sample numbers were 1.2 × 106 with an input squeezing of r = 3,
using a unitary matrix and pure state inputs. The upper and lower
solid lines are sampling errors, the dashed line the exact result.
Sampling errors here are about ±1.0 × 10−5.

modes, for r = 3 and S = 1.2 × 106 samples. The total ratio
of χ2/k = 0.965 < 1, for 99 data points, showing that the
simulation is consistent with the analytic result. The simula-
tion error bars are O(10−5). The threshold for the signature in
this case is 0.0404 at M = 100, so the criterion is satisfied.

This level of precision is not obtained for all phase-space
methods. In a positive-P simulation of multipartite entangle-
ment, otherwise identical to Fig. 7, the total chi-squared ratio
was χ2/k = 0.98 < 1, for 99 independent points, indicating
agreement with the analytic result, but the sampling error bars
were ±2 × 10−3, which is 200 times larger. Similar large er-
rors are found for the Q-function. In both cases, one must add
or subtract corrections to transform the variance to symmetric
ordering, which leads to larger sampling errors.

Phase-space simulations can readily include losses, deco-
herence and inhomogeneity. These all impact the amount of
input squeezing required in realistic experiments. A simple
example is shown in Fig. 8, which simulates an input coupling
amplitude transmission of 0.95. This is sufficient to prevent
the multipartite signature from being achieved for an M = 40
network, with r = 2.

VI. SUMMARY

In summary, we simulated Gaussian bosonic networks
with phase-space methods. This efficiently simulates large
networks with nonclassical inputs and decoherence. Up to
M = 214 = 16 384 modes were treated. There is excellent
agreement with a recent 100-mode Gaussian boson sampling
experiment for the total count probability, provided thermal
decoherence is included. Other tests, including arbitrary order
marginals, are also possible. The main limitation is that the
phase-space sampling errors can be significant if the grouped
probabilities are too small, but it is straightforward to increase
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FIG. 8. Graph of simulated multipartite entanglement product in
the Wigner representation, versus squeezing r = r(1), with an input
amplitude transmission of t = 0.95 and M = 40 modes, so the over-
all transmission matrix was T = tU . The required threshold of 0.44
is not reached even with a large squeezing of r = 2. Other parameters
as in Fig. 7. Sampling errors are negligible: ±10−6. This shows
that input coupling losses can destroy the multipartite entanglement
signature.

sample numbers to reduce this. Similar limitations due to
sampling error hold for the experimental data as well,

More generally, the representation used should be targeted
to the measurement. Positive P-representations are optimal
for the normally ordered photodetectors used in Gaussian
boson sampling, while Wigner representations scale better
for quadrature measurements and entanglement. Following
the submission of our work, preprints have appeared cover-
ing related topics [77,78], including calculations of low-order
marginals of grouped distributions, and improved direct sam-
pling methods.
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APPENDIX: STATISTICS AND NUMERICAL VALIDATION

1. Statistical tests

Statistical tests are essential in comparing theory to ex-
perimental data. In this paper, we compare phase-space
simulations both with exactly known distributions, and with
100-mode experimental observations. The test procedures are
similar in both cases. We use chi-square methods originally
discovered by Pearson [67], which are widely used in proba-
bility and RNG validation [36,68]. Other tests of probability

difference are also feasible since our techniques generate
complete number distributions, but chi-square tests are
preferable for sampled data because they take account of
experimental sampling errors.

Chi-square tests are used to compare a theoretical proba-
bility distribution to a set of experimental measurements [67]
and can also be used to compare two independent samples.
In these tests, experimental observations are grouped into
disjoint classes, with frequencies fi (for i = 1, 2, . . . , k), from
Ne observations.

Let an hypothesis H give a probability Pi for an observation
in the ith class. Defining an experimental probability estimate
as Pe

i = fi/Ne, χ2 =∑k
i=1(Pe

i − Pi )2/(σ 2
e,i ). This has a χ2

distribution with 〈χ2〉/k = 1, provided the counts all have a
nearly Gaussian distribution.

Here, σ 2
e,i = Pi/Ne ≈ fi/N 2

e is the expected variance in
the experimental probabilities, which have Poissonian fluctua-
tions. To deal with small counts, it is commonly recommended
that these should not be included if fi < f min

i . Knuth [36]
suggests f min

i = 20, and f min
i = 5 is recommended by NIST

[68,79]. We take the middle ground, ignoring counts less than
f min
i = 10. Changing this threshold has little effect.

The true theoretical probability Pi is not always available.
In this work, we use an estimated value from phase-space
simulations, which converges to Pi in the limit of a large en-
semble. The theoretical probability is estimated numerically
from its ensemble mean P̄i.

To obtain an error estimate for P̄i, it is computed numeri-
cally [33] by using Ns � 1 sub-ensembles, each with many
samples. From the central limit theorem, subensemble means
are nearly Gaussian distributed, with a standard deviation of
σs,i. These are obtained from the simulations. As a result, the
simulated ensemble mean P̄i has a standard deviation in the
mean of σ̄s,i = σs,i/

√
Ns.

This uncertainty in the true probability Pi implies that the
chi-squared test must be modified, which is similar to the well-
known case of two samples drawn from the same population
[35,80]. For a finite ensemble, we employ an error measure of

χ2
s =

k∑
i=1

z2
i =

k∑
i=1

(
P̄i − Pe

i

)2
σ 2

i

. (A1)

This uses the fact that the experimental and simulated data
are independent and nearly Gaussian. The difference in their
means has a variance of σ 2

i = σ 2
e,i + σ̄ 2

s,i, which is obtained by
adding the two variances. Correlated fluctuations modify the
effective degrees of freedom, so we do not calculate the de-
tailed χ2

s distribution. However, since limNe,Ns→∞〈χ2
s 〉/k =

1, we check if χ2
s /k ∼ O(1).

Fluctuations in the simulated data vanish in the limit of a
large simulation because σ̄ 2

s,i → 0 as Ns → ∞. Such tests can
be applied to any experimental probability, provided the mea-
sured data are binned to give enough counts to be significant.
This requirement also includes marginal distributions which
are included in our general definition.

Binned tests are also used in other RNG tests [68], which
have very similar requirements. The difference between our
tests and other RNG tests is that the comparisons are obtained
through sampling. This is necessary because the exact Toron-
tonian is noncomputable. However, it does raise the question
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of how many samples are needed. This is answered by in-
creasing the sample number until σ̄s,i < σe,i. We found that
1.2 × 106 was sufficient, using 1200 subensembles of 1000
samples.

2. Numerical validation tests

To test our numerical results, independent numerical codes
for simulations were written for two different languages (MAT-
LAB and PYTHON) and computational platforms (a 14 core
desktop, and a supercomputer with GPU hardware). Simula-
tions were checked against known Torontonians for 16-mode
networks with squeezed inputs [11,81]. The 100 mode, mil-
lion sample phase-space simulations took ∼100s on a current
desktop computer.

We validated the theoretical code in larger cases by com-
parison to exact analytic results for squeezed, thermalized,
and thermal inputs. Both unitary and lossy transmission matri-
ces were used, and homogeneous or inhomogeneous squeezed
inputs. For 40 × 40 and 100 × 100 matrices, nine different
types of moment were tested with up to four-dimensional
binning.

A typical example output is plotted in Fig. 9, which shows
a test for a thermalized input with r = ε = 1 and n = m =
40, using a random unitary transmission matrix. The output
is the probability for a 40th-order correlation, binned four
ways, to give 114 = 14 641 click patterns. The graph is a
two-dimensional slice in the m2 − m3 plane, with m1 = 6 and
m4 = 5, of the normalized error.

Plotted data was all within ±2σ . The overall χ2 test gave
χ2/k = 0.99 in 9935 significant data points (P > 10−7), out

FIG. 9. Normalized difference of simulation versus test distri-
bution for a four-fold partition and a thermal input. Results are for
�G (40)

(10,10,10,10)(m)/σm versus m, with sample numbers of 1.2 × 106.
Data are given as a two-dimensional planar slice in (m2, m3) of a
four-dimensional probability space, with m1 = 6 and m4 = 5. No
cutoff was required in this slice.

of 14 641 possible click patterns. These results show complete
agreement with the analytic probability model.

For each matrix, 68 distinct tests with up to 104 data points
were carried out, in P, Q and Wigner phase space. Probability
cutoffs were used of G > 10−7, with 1.2 × 106 total samples,
since small probabilities are non-Gaussian. This effect is re-
duced by increasing the ensemble size. The overall result for
100 × 100 matrices was χ2

s /k = 1.2 ± 0.2. This agrees with
analytic tests, with evidence for nearly Gaussian errors.
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