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We propose a framework to characterize entanglement with quantum discord, both asymmetric and symmetric,
over state extensions. In particular, we show that the minimal Bures distance of discord over state extensions is
equivalent to the Bures distance of entanglement. This equivalence places quantum discord in a more primitive
position than entanglement conceptually in the sense that entanglement can be interpreted as an irreducible part
of discord over all state extensions. Based on this equivalence, we also offer an operational meaning of the Bures
distance of entanglement by connecting it to quantum state discrimination. Moreover, for the relative entropy
part, we prove that the entanglement measure introduced by Devi and Rajagopal [A. R. U. Devi and A. K.
Rajagopal, Phys. Rev. Lett. 100, 140502 (2008)] is actually equivalent to the relative entropy of entanglement.
We also provide several quantifications of entanglement based on discord measures.
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I. INTRODUCTION

Quantum correlations [1,2] are defined from different
viewpoints and they in turn are expected to offer different
advantages. Hence, the characterization and quantification of
quantum correlations are instrumental in exploring and ex-
ploiting the quantum phenomena. The remarkable advantages
that quantum correlations offer make quantum information
theory more powerful than classical theory. Entanglement
[1] is an important quantum resource which plays a crucial
role in quantum information processing, quantum algorithms,
quantum computation, and cryptography [3]. The notion of
quantum correlations and resources beyond entanglement
[2,4–6] such as quantum discord [2,7–10] and quantum coher-
ence [6,11–13] are also very prominent and useful in quantum
information theory. For instance, quantum discord is a gen-
uine resource in the deterministic quantum computation with
one quantum bit algorithm [14,15].

Among several quantum correlations, entanglement and
quantum discord are significant and are usually regarded
as very distinct in nature. While entanglement belongs to
the entanglement-separability paradigm, quantum discord
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belongs to the information-theoretic paradigm. Neverthe-
less, entanglement and quantum discord have both essential
similarities and significant differences. Several remarkable
investigations [16–28] relating to entanglement and discord
have been studied in recent years. In particular, the correspon-
dence between classical states and separable states [29], the
characterization and quantification of entanglement with the
generalized information-theoretic measure [30], the minimal
quantum discord of bipartite state over state extensions [31],
and the minimal correlated coherence over symmetric state
extensions [32,33] are of special interest.

It should be noted that the framework that quantifies en-
tanglement with quantum discord or coherence over state
extensions is quite different from the existing entanglement
measures such as entanglement of formation and entangle-
ment cost [34], distillable entanglement [35], relative entropy
of entanglement and Bures distance of entanglement [36,37],
robustness of entanglement [38], and squashed entanglement
[39,40], which are mostly based on operational meaning,
information principles, and mathematics. Thus far, the in-
terrelationship between these two different categories of
entanglement measures is not clear.

In this paper we study characterization of entanglement
using quantum discord over state extensions. For the meaning
of “over state extensions” see [41]. Our work is different from
and a generalization of previous works [30–32]. In Ref. [30]
the authors introduced quantumness of correlations as an en-
tanglement measure. They proved that for a bipartite state ρab,
the relative entropy of asymmetric discord over all extended
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states is a candidate of entanglement measure, that is, this
quantification is faithful for separable states and nonincreas-
ing under local operations. It also turns out to be an upper
bound to the relative entropy of entanglement. On the other
hand, it was shown in Ref. [31] that the minimal discord over
all extended states is also a valid entanglement measure. These
two investigations revealed the potential relation between en-
tanglement and quantum discord over state extensions. Also,
the conservation law for distributed entanglement and quan-
tum discord [19] hints at some kind of fundamental relation
between them. However, a general formalism relating entan-
glement and discord (quantum correlations regarded as very
distinctive in nature) has been elusive. Our study provides a
natural connection between the two via state extensions. The
main findings of our work can be summarized as follows.

(i) For the Bures distance [42,43], we prove that the
minimal Bures distance of discord over state extensions is
equivalent to the Bures distance of entanglement [37,44,45].
Moreover, the Bures distance of entanglement was proved to
be equal to its corresponding convex roof [45], which plays
a key role in our study. In fact, we prove the equivalence by
showing that the minimal Bures distance of discord over state
extensions is bounded by the Bures distance of entanglement
and its convex roof.

The Bures distance of entanglement is defined from a
geometric viewpoint whose operational meaning is not very
clear. A correspondence, however, between the Bures distance
of discord and quantum state discriminations has been es-
tablished in Ref. [46]. Based on this correspondence and the
equivalence between the Bures distance of entanglement and
discord over state extensions, we offer an operational meaning
of the Bures distance of entanglement by linking it to quantum
state discriminations.

(ii) We propose a framework to characterize entanglement
using quantum discord over state extensions. Actually, for a
generalized discord measure including entropic discord [7,8],
geometric discord [47], measurement-induced geometric dis-
cord [48], correlated coherence [32], and geometric correlated
partial coherence [49], we prove that the minimal discord over
state extensions is a candidate for an entanglement measure.
This provides an alternative perspective to understand entan-
glement from the viewpoint of quantum discord. Results in
previous studies [30–32] are special cases of our framework.

(iii) We show that the quantification of entanglement pro-
posed in Ref. [30] is actually equivalent to the relative entropy
of entanglement [37], which is a well-studied entanglement
measure.

This paper is structured as follows. In Sec. II we recall
various concepts prerequisite for our study. We discuss char-
acterization of entanglement using asymmetric and symmetric
quantum discord in Secs. III and IV, respectively. We give an
operational meaning of the Bures distance of entanglement in
Sec. III C. We summarize our findings in Sec. V. Appendixes
A and B present proofs of Theorems 3 and 4, respectively.

II. PRELIMINARIES

In this section we briefly recall various concepts which are
prerequisite for our study.

A. Separable states

Let H = Ha ⊗ Hb be the composite Hilbert space of a
bipartite system and D(H) be the set of density matrices on
H. A quantum state ρab ∈ D(H) shared between two parties a
and b is called separable if it can be represented as

ρab =
∑

i

piρ
i
a ⊗ ρ i

b, (1)

where pi � 0,
∑

i pi = 1, and ρ i
a and ρ i

b are local states for
parties a and b, respectively. Otherwise, it is called entangled.
We denote the set of separable states by S . Moreover, a bipar-
tite separable state ρab is called classical quantum (CQ) if it
can be written as ρab = ∑

i pi |i〉a 〈i| ⊗ ρ i
b and classical clas-

sical (CC) if ρab = ∑
i, j pi j |i〉a 〈i| ⊗ | j〉b 〈 j|, where {|i〉}, {| j〉}

are two set of orthogonal pure states.

B. Relative entropy

Relative entropy is defined as S(ρ||σ ) := tr[ρ(log2 ρ −
log2 σ )] [3]. For any classical-quantum state σ

(cq)
ab = ∑

j p j

| j〉a 〈 j| ⊗ σ
j

b , it is easy to verity that tr(ρab log2 σ
(cq)
ab ) =

tr[�a(ρab) log2 σ
(cq)
ab ], where �a(ρab) = ∑

i(|i〉a 〈i| ⊗ Ib)
ρab(|i〉a 〈i| ⊗ Ib). As a result, one has

S
(
ρab

∣∣∣∣σ (cq)
ab

) = tr[ρab log2 ρab] − tr
[
ρab log2 σ

(cq)
ab

]
= S(�a(ρab)) − S(ρab) + S

(
�a(ρab)

∣∣∣∣σ (cq)
ab

)
.

(2)

A similar equation is established in block coherence
theory [50].

C. Bures distance

The Bures distance is defined as [42,43]

dB(ρ, σ ) :=
√

2 − 2F (ρ, σ ), (3)

where F (ρ, σ ) is the fidelity F (ρ, σ ) := tr
√√

σρ
√

σ be-
tween ρ and σ . Since F (ρ, σ ) ∈ [0, 1] and is unity if and only
if ρ = σ , dB(ρ, σ ) is non-negative and vanishes if and only
if ρ = σ . Moreover, the monotonicity and joint concavity of
fidelity [3] implies that d2

B is contractive and jointly convex.
Unlike relative entropy, the Bures distance is a bona fide

distance on state space, that is, it is faithful, symmetric, and
satisfies the triangle inequality. Moreover, it is Riemannian
[51] and its metric is given in [51–53]. Quantum Fisher infor-
mation, a quantum analog of Fisher information in statistics,
is defined in terms of the Bures distance metric [54]. These
properties of Bures distance enable it to quantify various
quantum correlations including entanglement [36], discord
[46,55], coherence [11], etc.

D. Entanglement

An entanglement measure E is a functional on D(H) sat-
isfying (i) faithfulness E (ρ) � 0, where the equality holds
if and only if ρ ∈ S , and (ii) monotonicity E (ρ) � E (�(ρ))
for any local operations and classical communication (LOCC)
operation �.
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Bures distance of entanglement. The Bures distance of en-
tanglement is defined as the minimal square of Bures distance
to separable states [36],

EB(ρab) := min
σab∈S

d2
B(ρab, σab). (4)

Obviously, EB(ρab) is non-negative, and vanishes if and only
if ρab is separable. Furthermore, EB is convex and non-
increasing under LOCC operations [34,37]. Note that for
the bipartite pure state |ψ〉 = ∑

i

√
λi |xi〉a |yi〉b, with λ1 �

· · · � λn, EB(|ψ〉) = 2(1 − √
λ1) [45]. In fact, if we assume

that σab ∈ S has a separable pure state decomposition σab =∑
j q j |φ j〉ab 〈φ j |, then

F (|ψ〉 , σab) =
√∑

j

q j |〈ψ | φ j〉|2

�
√∑

j

q j |〈ψ | φmax〉|2 = |〈ψ | φmax〉|, (5)

where |〈ψ | φmax〉| := max j |〈ψ | φ j〉| is the maximal over all
j. Therefore, EB(|ψ〉) = 2(1 − √

λ1) and the corresponding
closest separable state is |x1, y1〉ab.

Convex roof of the Bures distance of entanglement. The
convex roof of the Bures distance of entanglement is defined
as

Ecr
B (ρab) := min

pi,|ψi〉

∑
i

piEB(|ψi〉), (6)

where the minimal is taken over all pure state decompositions
ρab = ∑

i pi |ψi〉 〈ψi|.

E. Quantum discord

Asymmetric quantum discord. A functional D̂ on D(H) is
called a discord measure (asymmetric or local) if it satisfies
the following properties.

(D1) D̂ is faithful, i.e., D̂(ρab) � 0 and the equality holds
if and only if ρab ∈ CQ.

(D2) D̂ is nonincreasing for any quantum operation on
subsystem b, i.e., D̂(ρab) � D̂(Ia ⊗ �b(ρab)) for any local
operation �b.

(D3) D̂ is invariant under local unitary transformations, i.e.,
D̂(Ua ⊗ UbρabU †

a ⊗ U †
b ) = D̂(ρab) for any unitary Ua ⊗ Ub

acting on Ha ⊗ Hb.
(D4) D̂ reduces to an entanglement monotone [56] for pure

states.
Quantum discord has been studied extensively from

different viewpoints in the forms of geometric discord,
measurement-induced geometric discord [57], and geometric
correlated partial coherence [49]. Quantum discord obvi-
ously captures quantum correlation beyond entanglement in
the sense that a separable state may have nonzero quantum
discord.

Symmetric quantum discord. A functional D̃ in state space
is called a (symmetric or global) discord [9,10] measure if it
satisfies the following properties.

(D1′) D̃ is faithful, i.e., D̃(ρab) � 0 and the equality holds
if and only if ρab ∈ CC.

FIG. 1. The minimal discord of extended state ρaa′b between
parties aa′ and b is a quantification of entanglement of ρab between
a and b.

(D2′) D̃ is invariant under local unitary transformations,
i.e., D̃(Ua ⊗ UbρabU †

a ⊗ U †
b ) = D̃(ρab) for any unitary acting

on Ha and Hb.
(D3′) D̃ reduces to an entanglement monotone on pure

states.
Bures distance of discord. The Bures distance of discord

is defined as the minimal square of the Bures distance to
classical-quantum states [46,55],

D̂B(ρab) := min
σab∈CQ

d2
B(ρab, σab). (7)

It has been shown that D̂B is a discord measure, i.e., it satisfies
properties (D1)–(D4).

Remark 1. Quantum interferometric power (QIP) [58] is
a measure of discord-type quantum correlation defined via
quantum Fisher information, which is upper bounded by local
quantum uncertainty (LQU) [59]. Actually, if subsystem a is
a qubit, LQU is equivalent to the Hellinger distance of discord
[57,60] and is upper bounded by the Bures distance of discord.
As a result, QIP is also upper bounded by the Bures distance
of discord in the C2 ⊗ Cd case.

III. CHARACTERIZING ENTANGLEMENT VIA
ASYMMETRIC QUANTUM DISCORD

In this section we propose the framework to quantify
entanglement via quantum discord (asymmetric or local)
and introduce several quantifiers with geometric discord and
measurement-induced geometric discord.

A. General results

In this section we explore and interpret the relationship be-
tween entanglement and quantum discord (asymmetric) over
state extensions.

Definition 1. For a bipartite state ρab ∈ D(H), the minimal
discord over state extensions is defined as

Ê (ρab) := min
tra′ [ρaa′b]=ρab

D̂(ρaa′b), (8)

where the minimization is taken over all state extensions ρaa′b
of ρab [41] along the bipartition aa′ : b (see Fig. 1).

Remark 2. Squashed entanglement [40] and the conditional
entanglement of mutual information [61], two additive entan-
glement measures, are defined using the notion of over state
extensions. Thus, characterizing quantum entanglement using
extended systems has proved an important idea in entangle-
ment theory.
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Theorem 1. If D̂ is a discord measure satisfying (D1)–(D4),
the corresponding minimal discord Ê over state extensions has
the following remarkable properties.

(E1) Ê (ρab) � 0 with the equality if and only if ρ ∈ S .
(E2) Ê is invariant under local unitary transformations.
(E3) Ê is nonincreasing under a local partial trace

Ê (ρab) � Ê (ρaa1b)

for any state extension ρaa1b of ρab.
(E4) Ê is nonincreasing under local operations in party a.
(E5) Ê reduces to an entanglement monotone for pure

states.
Proof. (E1) The non-negativity of quantum discord implies

that Ê is always non-negative. Moreover, any separable state
ρab = ∑

i piρ
i
a ⊗ ρ i

b can be embedded into a larger classical-
quantum state ρaa′b = ∑

i pi |αi〉aa′ 〈αi| ⊗ ρ i
b such that ρab =

tra′[ρaa′b], where a′ is the ancillary system pertinent to party a
and |αi〉aa′ is the purification of ρ i

a for each i [30]. However, an
entangled state does not admit such an extension. Therefore,
Ê is faithful in separable states.

(E2) Assuming ρaa′b is the state extension of ρab,
tra′[Ua ⊗ Ubρaa′bU †

a ⊗ U †
b ] = Ua ⊗ UbρabU †

a ⊗ U †
b and the lo-

cal unitary invariance of D̂ implies that Ê (ρab) � Ê (Ua ⊗
UbρabU †

a ⊗ U †
b ). On the contrary, we can also show Ê (ρab) �

Ê (Ua ⊗ UbρabU †
a ⊗ U †

b ), implying that Ê is invariant under
local unitary transformation.

(E3) This follows trivially because any state extension
ρaa1a′b of state ρaa1b is also the extension of ρab.

(E4) Using the Stinespring representation [62], the local
operation in party a can be realized by adding a pure state
ancilla, followed by a global unitary operation and tracing
out the ancilla system, i.e.,

∑
i Ka

i ρabKa†
i = tra1Uaa1 (ρab ⊗

|0〉a1
〈0|)U †

aa1
. Therefore, one has

Ê (ρab) � Ê (ρab ⊗ |0〉a1
〈0|)

= Ê (Uaa1ρab ⊗ |0〉a1
〈0|U †

aa1
)

� Ê
( ∑

i

Ka
i ρabKa†

i

)
, (9)

where the inequality in the first and the third lines follows
from property (E3).

(E5) First, combining the definition of Ê and property (E3),

Ê (|ψ〉) � min
|φ〉

D̂(|ψ〉 ⊗ |φ〉) � D̂(|ψ〉) = E (|ψ〉). (10)

Further, considering the special case, that is, that the extension
space is one dimensional, Ê (|ψ〉) = D̂(|ψ〉) = E (|ψ〉). �

Remark 3. The above results provide an alternative avenue
to understand quantum entanglement from the viewpoint of
discord over state extensions. We can see that Ê is a good
candidate of an entanglement measure. Moreover, D̂ reduces
to Ê for pure states.

We call a non-negative bivariate function d on state space
pseudodistance if d (ρ, σ ) = 0 if and only if ρ = σ and call
d contractive if it satisfies d (ρ, σ ) � d (�(ρ),�(σ )) for any
quantum operation � and ρ, σ ∈ D(H). Relative entropy and
Bures distance are examples of pseudodistances. We will just
write “distance” for simplicity.

Definition 2. For a bipartite state ρab ∈ D(H), the minimal
geometric discord over state extensions (GDSE) is defined as

Êd (ρab) := min
σaa′b∈CQ

min
tra′ [ρaa′b]=ρab

d (ρaa′b, σaa′b), (11)

where the minimization is taken over all extended states
ρaa′b and classical-quantum states in D(Haa′b). Here d is a
contractive distance in D(Haa′b). Furthermore, the minimal
measurement-induced geometric discord over state extensions
(MIDSE) is defined as

Ê ′
d (ρab) := min

�aa′
min

tra′ [ρaa′b]=ρab

d (ρaa′b,�aa′ ⊗ Ib(ρaa′b)), (12)

where the minimization is taken over extended states and local
projection in subsystem aa′.

Remark 4. For both relative entropy and Bures distance,
the corresponding quantifiers of discord satisfy (D1)–(D4).
Theorem 1 then implies that the corresponding GDSE and
MIDSE are good candidates for entanglement measures.

Next we consider the quantification of entanglement by
performing a partial trace, a slight modification of Eq. (11).
We define quantum correlation by

Ěd (ρab) := min
σaa′b∈CQ

d (ρab, tra′σaa′b), (13)

where the minimum is taken over all classical-quantum
states in D(Haa′b). Obviously, Ěd is equivalent to Ed :=
minσab∈S d (ρab, σab), which is the corresponding entangle-
ment quantification of distance d . In other words, geometric
entanglement can be linked to discord over state extensions.
For measurement-induced geometric discord, however, it is
not the trivial case, as shown below.

Definition 3. For ρab ∈ D(Hab), we define a quantity

Ě ′
d (ρab) := min

�aa′
min

tra′ [ρaa′b]=ρab

d (ρab, tra′[�aa′ ⊗ Ib(ρaa′b)]),

(14)

where the minimal is taken over all extended states ρaa′b and
local projection in subsystem aa′.

This quantity is related to the previous ones, via the follow-
ing inequalities.

Theorem 2. For ρab ∈ D(Hab),

Ê ′
d (ρab) � Êd (ρab) � Ed (ρab), (15)

Ě ′
d (ρab) � Ěd (ρab) = Ed (ρab) (16)

and

Ê ′
d (ρab) � Ě ′a

d (ρab), (17)

Êd (ρab) � Ěd (ρab) = Ed (ρab). (18)

These inequalities can be derived from the definition
directly.

B. Characterization with Bures distance discord

Here we prove two important theorems related to the min-
imal Bures distance discord ÊB over state extensions. In the
following theorem we show that Ea

B is convex.
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Theorem 3. ÊB is convex,

ÊB

( ∑
i

piρ
i
ab

)
�

∑
i

piÊB
(
ρ i

ab

)
, (19)

where pi are probabilities and ρ i
ab are bipartite states shared

between parties a and b.
For the proof of Theorem 3, see Appendix A.
Using Theorem 3, we arrive at the following theorem.
Theorem 4. For ρab ∈ D(H), the minimal Bures distance

of discord over state extensions is equivalent to the Bures
distance of entanglement,

ÊB(ρab) = EB(ρab). (20)

Proof. Since EB(ρab) = Ecr
B (ρab) [45], we just need to show

that for each ρab ∈ D(H), we have

EB(ρab) � ÊB(ρab) � Ecr
B (ρab). (21)

�
See Appendix B for the complete proof.
Having established these results, Theorem 2 for the Bures

distance together with Theorem 4 implies

Ê ′
B(ρab) � Ě ′

B(ρab) � EB(ρab) = ÊB(ρab) = ĚB(ρab). (22)

C. Operational meaning of Bures distance of entanglement

The quest for an operational meaning or interpretation of
an entanglement measure lies at the very heart of the entan-
glement theory. While entanglement of formation, distillable
entanglement, or entanglement cost are measures of entangle-
ment having an operational meaning [1,3], the Bures distance
of entanglement is an entanglement measure defined from the
geometric viewpoint and its physical meaning is not clear. By
means of the equivalence in Theorem 4 and the operational
meaning of the Bures distance of discord [46], we provide an
operational meaning of the Bures distance of entanglement.

Let us briefly review the ambiguous quantum state discrim-
ination (QSD) protocol [63]. Suppose Alice chooses a state
ρi from a set of states {ρi} with probability ηi and sends it
to Bob, who determines which state he receives by perform-
ing a positive-operator-valued measure (POVM). Since the
probability to get the result j with given state ρi is p( j|i) =
tr(Mjρi ), the corresponding optimal success probability is

Popt
s

({ρi, ηi}N
i=1

)
:= max

Mi

∑
i

ηitr(Miρi ), (23)

where the maximization is done over all POVMs. Similarly,
Popt (vN )

s ({ρi, ηi}N
i=1) = max�i

∑
i ηitr(�iρi ) is the optimal

success probability to discriminate {ρi, ηi}N
i=1 with von Neu-

mann measurement.
Based on the operational meaning of the Bures distance of

asymmetric discord [46], the connection between geometric
entanglement and QSD is as follows.

Corollary. For a bipartite quantum state ρab ∈ D(H), the
square of the maximal fidelity to the set of separable states
F (ρab,S ) := maxσab∈S F (ρab, σab) is equal to the optimal
success probability to discriminate a set of quantum states
with von Neumann measurement, i.e.,

F 2(ρab,S ) = max
ρaa′b,|αi〉

Popt(vN )
s ({ρi, ηi}), (24)

where ηi = tr 〈αi| ρaa′b |αi〉, ρi = η−1
i

√
ρaa′b |αi〉 〈αi| √ρaa′b,

and the maximum is taken over all possible extended states
ρaa′b, von Neumann measurement �i, and orthogonal basis
{|αi〉} on Haa′ .

This offers an operational meaning to the Bures distance of
entanglement.

D. Characterization with relative entropy discord

We define relative entropy of discord by D̂r (ρ) :=
minσ∈CQ S(ρ||σ ) and measurement-induced relative entropy
of discord by D̂′

r (ρ) := min�a S(ρ||�a(ρ)).
Remark 5. In [11] the authors provided a framework to

quantify quantum coherence with respect to a chosen orthog-
onal basis. Although discord and coherence seem different,
they have essential similarities. Discord can be regarded as
the basis-independent coherence [64], and relative entropy
of discord is equivalent to the minimal relative entropy of
partial coherence [65]. Moreover, quantum discord can also
be explained as an upper bound to the quantum correla-
tions generated from partial coherence via partial incoherent
operations [66].

In the following theorem, we show that D̂r and D̂′
r are

equivalent.
Theorem 5. For a bipartite state ρab ∈ D(H), the relative

entropy of discord is equivalent to the measurement-induced
relative entropy of discord, i.e.,

D̂r (ρab) = D̂′
r (ρab). (25)

Proof. Since any classical-quantum state has the form
σ

(cq)
ab = ∑

i pi |i〉a 〈i| ⊗ σ i
b, using Eq. (2) we have

D̂r (ρab) = min
π i

a

min
pi,σ

i
b

S
(
ρab||σ (cq)

ab

)
= min

π i
a

[
S
(
�a(ρab))−S(ρab)+min

pi,σ
i
b

S(�a(ρab)||σ (cq)
ab

)]
= min

π i
a

S(�a(ρab)) − S(ρab)

= min
π i

a

S(ρab||�a(ρab)) = D̂′
r (ρab), (26)

where �a(ρab) = ∑
i(|i〉a 〈i| ⊗ Ib)ρab(|i〉a 〈i| ⊗ Ib). �

Next, for the relative entropic quantities Er , Ê ′
r , Êr , Ě ′

r , and
Ěr , where symbols have their usual meanings, Theorems 2 and
5 lead to the following result.

Theorem 6. For a bipartite state ρab ∈ D(H),

Ê ′
r (ρab) = Êr (ρab) � Er (ρab) = Ě ′

r (ρab) = Ěr (ρab). (27)

Proof. From Theorem 5 we have

Ê ′
r (ρab) = Êr (ρab) (28)

and

Ě ′
r (ρab) = Ěr (ρab) = Er (ρab). (29)

The inequality follows from Theorem 2. �
Remark 6. In Ref. [30] the authors proved that Ě ′

r (ρab) =
mintra[σ (sep)

ab ]=ρb
S(ρab||σ (sep)

ab ) � Er (ρab), where the minimum

is taken over all separable states σ
(sep)
ab with tra[σ (sep)

ab ] = ρb.
Our results affirm that they are equal.
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FIG. 2. The minimal discord of an extended state ρaa′bb′ shared
between parties aa′ and bb′ is a quantification of entanglement of ρab

between a and b.

IV. CHARACTERIZING ENTANGLEMENT VIA
SYMMETRIC DISCORD

In this section we quantify entanglement via symmetric or
global quantum discord. In the symmetric or global quantum
discord of a bipartite system, the local measurement is per-
formed on both subsystems. All the content developed in the
asymmetric case will be recalled here, with the only difference
that now quantum measurement or other treatment will be on
both parties.

A. General results

In the following, we define the minimal quantum discord
over state extensions. In the asymmetric case, the state exten-
sion was in party a. Here we consider state extension in both
parties.

Definition 4. For bipartite state ρab ∈ D(H), the minimal
discord over state extensions is defined as

Ẽ (ρab) := min
tra′b′ [ρaa′bb′ ]=ρab

D̃(ρaa′bb′ ), (30)

where the minimization is taken along the bipartition aa′ : bb′
with tra′ρaa′bb′ = ρab (see Fig. 2).

Theorem 7. If D̃ is a symmetric discord measure satisfying
(D1′)–(D3′), the minimal discord, Ẽ , over state extensions has
the following desirable and remarkable properties.

(E1′) Ẽ (ρab) � 0 with the equality if and only if ρ ∈ CC.
(E2′) Ẽ is invariant under local unitary transformations.
(E3′) Ẽ is nonincreasing under a local partial trace,

Ẽ (ρab) � Ẽ (ρaa1bb1 ), (31)

for any state extension ρaa1bb1 of ρab.
(E4′) Ẽ is nonincreasing under local operations.
(E5′) Ẽ reduces to an entanglement monotone for pure

states.
The proof is similar to that of Theorem 1.

B. Minimal Bures distance of symmetric discord

In this section we define the minimal Bures distance of
symmetric discord.

Definition 5. For a bipartite state ρab ∈ H, the minimal
Bures distance of discord over state extensions is defined as

ẼB(ρab) := min
σ∈CC

min
tra′b′ [ρaa′bb′ ]=ρab

d2
B(ρaa′bb′ , σ ), (32)

where the minimum is taken with respect to the bipartition
aa′ : bb′.

In the following, we state that the minimal Bures distance
of symmetric discord is convex and is equivalent to the Bures
distance of entanglement.

Theorem 8. ẼB is convex,

ẼB

(∑
i

piρ
i
ab

)
�

∑
i

piẼB
(
ρ i

ab

)
, (33)

where pi are probabilities and ρ i
ab are bipartite states shared

between parties a and b.
The proof is similar to that of Theorem 3. With Theorem 8,

one has the following result.
Theorem 9. For ρab ∈ D(H), ẼB(ρab) = EB(ρab).
The proof is similar to that of Theorem 4.
Remark 7. It is interesting to note that EB(ρab) = ÊB(ρab) =

ẼB(ρab), which means that the Bures distance of entanglement
is equivalent to the minimal Bures distance of discord over
state extensions, both on one subsystem and two subsystems.

Remark 8. It was Luo who first proposed to quantify entan-
glement as the minimal quantum discord over state extensions
[31]. Theorem 9 offers affirmative evidence that this kind of
entanglement quantification is consistent with the previous
entanglement measures. However, it is not clear whether this
equivalence still holds for other entanglement measures such
as entanglement measures based on distances [1] and relative
entropy of entanglement [36].

C. More definitions

Definition 6. For a bipartite state ρab ∈ D(H), the minimal
GDSE is defined as

Ẽd (ρab) := min
σaa′bb′ ∈CC

min
tra′b′ [ρaa′bb′ ]=ρab

d (ρaa′bb′ , σaa′bb′ ), (34)

where the minimum is taken with respect to the bipartition
aa′ : bb′. Moreover, the minimal MIDSE is defined as

Ẽ ′
d (ρab) := min

�aa′ ,�bb′
min

tra′b′ [ρaa′bb′ ]=ρab

× d (ρaa′bb′ ,�aa′ ⊗ �bb′ (ρaa′bb′ )), (35)

where the minimum is taken over all local projections in both
subsystems aa′ and bb′ and along the bipartition aa′ : bb′.

Remark 9. For relative entropy or Bures distance, the
corresponding geometric discord satisfies (D1′)–(D3′). From
Theorem 7 the corresponding quantification is a good candi-
date of entanglement measure.

Next let us consider the quantification by performing a
partial trace,

Ĕd (ρab) := min
σaa′bb′ ∈CC

d (ρab, tra′b′σaa′bb′ ), (36)

where the minimum is taken over all classical-classical states.
It is easy to see that Ěd is equivalent to the general geometric
entanglement measure Ed , which is defined as the minimal
distance between the state and the set of separable states.
Nevertheless, it is not the case for the measurement-induced
geometric discord, as shown below.

Definition 7. For ρab ∈ D(Hab), we define a quantity
Ĕ ′

d (ρab) := min�aa′ ,�bb′ mintra′b′ [ρaa′bb′ ]=ρab d (ρab, tra′b′ [�aa′ ⊗
�bb′ (ρaa′bb′ )]), where the minimum is taken over all extended
states ρaa′bb′ and local projection in both subsystems aa′ and
bb′.
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Certainly, we obtain Ĕ ′
d (ρab) � Ed (ρab) for any ρab ∈

D(Hab). Moreover, based on the discussion in Remark 6,
the equality holds for relative entropy. Whether the equality
holds for other distances as well would be an interesting
investigation.

In conclusion, we have the following result.
Theorem 10. For ρab ∈ D(Hab), the following inequalities

are true:

Ẽ ′
d (ρab) � Ẽd (ρab) � Ed (ρab), (37)

Ĕ ′
d (ρab) � Ĕd (ρab) = Ed (ρab) (38)

and

Ẽ ′
d (ρab) � Ĕ ′

d (ρab), (39)

Ẽd (ρab) � Ĕd (ρab) = Ed (ρab). (40)

The inequalities can be derived directly from the
definitions.

D. Characterization with Bures distance discord
and relative entropy discord

For the Bures distance, Theorem 9 implies

Ẽ ′
B(ρab) � Ĕ ′

B(ρab) � EB(ρab) = EB(ρab) = ĔB(ρab), (41)

and for relative entropy,

Ẽ ′
r (ρab) = Ẽr (ρab) � Er (ρab) = Ĕ ′

r (ρab) = Ĕ ′a
r (ρab).

V. CONCLUSION

In this paper we have proposed a framework to quantify
entanglement from the viewpoint of discord, which unifies
previous works including [29–31]. Several quantifications
of entanglement were introduced based on quantum discord
over state extensions. In particular, for the Bures distance,
we proved that the minimal discord (both asymmetric and
symmetric) over state extensions is equivalent to the Bu-
res distance of entanglement, which not only establishes an
equivalence between this kind of entanglement quantification
with existing entanglement measure but also provides an op-
erational meaning for the Bures distance of entanglement.
Moreover, for relative entropy, by proving that the correspond-
ing discord measure is equivalent to the measurement-induced
relative entropy of discord, we showed that the MIDSE (both
asymmetric and symmetric) is equivalent to the relative en-
tropy of entanglement, which reinforces the result in Ref. [30].
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APPENDIX A: PROOF OF THEOREM 3

Proof. Note that

ρaa′a′′b :=
∑

i

piρ
i
aa′b ⊗ |i〉a′′ 〈i| (A1)

is a state extension of ρab = ∑
i piρ

i
ab whenever ρ i

aa′b is a state
extension of ρ i

ab for all i. Without loss of generality, suppose
ρ i

aa′b is the optimal state extension of ρ i
ab for each i and σ �

i
is the corresponding closest classical-quantum state. Then we
have ∑

i

piEa
B

(
ρ i

ab

) =
∑

i

pid
2
B

(
ρ i

aa′b, σ
�
i

)
(A2)

=
∑

i

pid
2
B

(
ρ i

aa′b ⊗ |i〉a′′ 〈i| , σ �
i ⊗ |i〉a′′ 〈i| ) (A3)

�d2
B

(∑
i

piρ
i
aa′b ⊗ |i〉a′′ 〈i| ,

∑
i

piσ
�
i ⊗ |i〉a′′ 〈i|

)
(A4)

�D̂B

( ∑
i

piρ
i
aa′b ⊗ |i〉a′′ 〈i|

)
(A5)

�ÊB

( ∑
i

piρ
i
ab

)
, (A6)

where the first inequality follows from the joint convexity of
d2

B and the second inequality is based on the definition of
D̂B and the fact that

∑
i piσ

�
i ⊗ |i〉a′′ 〈i| is a classical-quantum

state along the bipartition aa′a′′ : b. The last inequality fol-
lows because

∑
i piρ

i
aa′b ⊗ |i〉a′′ 〈i| is a state extension of∑

i piρ
i
ab. �

APPENDIX B: PROOF OF THEOREM 4

Here we restate the claim to be proved, that is, for each
ρab ∈ D(H),

EB(ρab) � ÊB(ρab) � Ecr
B (ρab). (B1)

Proof. Suppose ρ�
aa′b is the optimal state extensions of ρab

and σ � is the corresponding closest classical-quantum state.
Then

ÊB(ρab) = d2
B(ρ�

aa′b, σ
�) � d2

B(ρab, tra′σ �) � EB(ρab). (B2)

The first inequality is the result of the contractibility of the
Bures distance and the second inequality is because tra′σ �

is a separable state. In fact, if σ � = ∑
i pi |αi〉aa′ 〈αi| ⊗ ρi,

where |αi〉aa′ = ∑
k λi

k |xi
k〉a |yi

k〉a′ , then tracing out the sub-
system a′ will lead to a decomposition of the form tra′σ � =∑

i,k piλ
i
k |xi

k〉a 〈xi
k| ⊗ ρi, which must be a separable state.

In particular, let us consider the pure state case. Suppose
|ψ〉 = ∑

i

√
λi |xi〉a |yi〉b, with λ1 � · · · � λn. Then

ÊB(|ψ〉) � min
σaa′b∈CQ

d2
B(|ψ〉ab 〈ψ | ⊗ |u〉a′ 〈u| , σaa′b)

� d2
B(|ψ〉ab 〈ψ | ⊗ |u〉a′ 〈u| , |x1, y1〉ab

× 〈x1, y1| ⊗ |u〉a′ 〈u|)
= EB(|ψ〉). (B3)

Combining the above two results, one has ÊB(|ψ〉) = EB(|ψ〉)
for any pure state |ψ〉.
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On the other hand, for any mixed state with pure state de-
composition ρab = ∑

i pi |ψi〉ab 〈ψi|, Theorem 1 tells us that

ÊB(ρab) �
∑

i

piÊB(|ψi〉) =
∑

i

piEB(|ψi〉). (B4)

Taking the minimum over all pure state
decompositions,

ÊB(ρab) � Ecr
B (ρab). (B5)

�
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