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Quantum key distribution (QKD) is theoretically secure using the principle of quantum mechanics; there-
fore, QKD is a promising solution for the future of secure communication. Although several experimental
demonstrations of QKD have been reported, they have not considered the polarization-dependent loss in state
preparation in the key-rate estimation. In this study, we experimentally characterized polarization-dependent loss
in realistic state-preparation devices and verified that a considerable polarization-dependent loss exists in fiber-
and silicon-based polarization modulators. Hence, the security of such QKD systems is compromised because
of the secure key rate overestimation. Furthermore, we report a decoy-state BB84 QKD experiment considering
polarization-dependent loss. Finally, we achieved rigorous finite-key security bound over up to 75 km fiber
links by applying a recently proposed security proof. This study considers more realistic source flaws than most
previous experiments; thus, it is crucial toward a secure QKD with imperfect practical devices.
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I. INTRODUCTION

Quantum key distribution (QKD) has received great inter-
est as it is an information-theoretic security communication
technology [1]. With much effort, QKD has been experimen-
tally demonstrated over fiber-based [2-9], free-space [10-12],
and underwater channels [13]. Various quantum field net-
works have been reported worldwide [14—18]. Interestingly,
an integrated space-to-ground quantum network, based on
a trusted-relay structure enabling multi-user secure commu-
nication over a total distance of 4600 km, was recently
implemented [19]. Even more recently, the record-breaking
distances of QKD have been pushed to 511 km for field-
deployed fiber [20] and 605 km for fiber spool [21] based
on an efficient version of a measurement-device-independent
QKD protocol [22] called twin-field QKD [23-26].

The security of QKD is provided by the principle of
quantum physics, assuming that the features of real-life com-
ponents conform to the theoretical models in the security
proof [27]. However, existing imperfections in practical im-
plementations break these ideal assumptions, leaving several
considerable vulnerabilities to eavesdropping by Eve. Indeed,
multiple quantum hacking attacks [28-32] have been pro-
posed by exploiting such realistic security loopholes (see
Ref. [33] for a recent review on this topic).

In the current security proofs of QKD, a fundamental
assumption is that the intensity of a quantum signal is not
relate to its actual encoded state [27]. The goal is to pre-
vent Eve from learning the encoded bit by performing an
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unambiguous state discrimination attack [34]. Unfortunately,
this key assumption cannot be guaranteed by state-of-the-art
polarization-encoding modulators, which are mainly inte-
grated using several fiber or silicon photonics components.
This is because almost all of the above optical components,
arising from physical structures, inevitably have some amount
of polarization-dependent loss (PDL). For instance, according
to Ref. [35], the PDL due to carrier-depletion modulators was
approximately 1 dB.

In this study, we experimentally characterized PDL in real-
istic polarization state preparation schemes and verified that
PDL exists in fiber- [36,37] and silicon-based polarization
modulators (PMs) [38]. Furthermore, we report a decoy-state
BB84 QKD experiment that considers the PDL. Our demon-
stration exploits a novel theoretical proposal of Li et al. [39],
which enables long-distance QKD through the postselection
of signals. We call this proposal a polarization-loss-tolerant
protocol. With the refined security proof, we successfully
distributed secure key bits over different fiber links up to a
75 km. In contrast, no secure key bits can be generated using
standard Gottesman-Lo-Liitkenhaus-Preskill (GLLP) analysis
[27]. The theoretical and experimental contributions are de-
tailed below.

Theoretically, we combine the one-decoy-state method
with the polarization-loss-tolerant protocol. This can sig-
nificantly simplify the experimental complexity of the
polarization-loss-tolerant protocol. Note that the one-decoy-
state method has recently been proven to outperform the
two-decoy-state method for almost all experimental settings,
and only one decoy is easier to implement [40]. Thus,
our analysis is crucial for implementing a polarization-loss-
tolerant protocol and ensuring the security of practical QKD
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existing in the PDL. In addition, we quantify the security of
QKD systems in the presence of PDL using a standard GLLP
approach. This provides a quantitative observation for relating
the security to specific values of PDL in PM.

Experimentally, we verified that PDL exists in recently
proposed fiber- and silicon-based polarization modulation
schemes. Furthermore, we performed the first decoy-state
BB84 QKD demonstration using a homemade QKD sys-
tem by considering the PDL. We quantified the PDL in
state-preparation devices and considered it into the key rate
formula. Using the polarization-loss-tolerant protocol, we
successfully distributed secure key bits over up to 75 km of
commercial fiber spool.

The remainder of this paper is as follows: In Sec. II,
we present the one-decoy-state polarization-loss-tolerant pro-
tocol. In Sec. III, we describe our experimental setup and
present the experimental results. Finally, we summarize our
work in Sec. IV.

II. POLARIZATION-LOSS-TOLERANT PROTOCOL
WITH ONE-DECOY-STATE METHOD

A. Original protocol

The key idea of the polarization-loss-tolerant protocol is
that the photons unbalanced by the PDL can be randomly
discarded. Hence, the final secret key is only extracted from
the single-photon components whose density matrices are
maximally mixed [39]. In this manner, the destroyed assump-
tion due to the PDL is restored. Furthermore, a postselection
scheme is introduced to reduce the consumption of error cor-
rection, and a higher secret key rate is obtained. With the
refined security proof in the polarization-loss-tolerant proto-
col, the final secret key bits can be given as

R>q{ -0 fEHHE)+O[1-H(EEM]), D

where ¢ is the efficiency of the protocol, O; and el " are the
gain and phase error rate of the single-photon states, respec-
tively, 0,, and E,, denote the gain and overall QBER of the
signal states, respectively, f (Eu) is the efficiency of error
correction, and H (x) is the binary Shannon entropy.

The parameters required in Eq. (1) can be estimated using
the decoy-state technique [41,42] for different polarizations,
which can be summarized as
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Y, Y,
Y, = L.+ 11y ’
2
o Yipeip+Yiaeia
el = , )
Yip+Yia (2
A P x QILH + qu
O, = — 5
A P x E E
QH.E;L — QMH Ii; + Qﬂv Hy ,

where wy with M € {H, V, D, A} represents the intensities
of the signal state prepared in a given polarization M. P
is the postselection probability to compensate the single-
photon components loss of the V base, given by puye™ =
P x pge .Y,y and ey denote the yield and QBER of

the single-photon state prepared in the given polarization M,
respectively. Moreover, Q,,,, and E,,, are the gain and QBER
of the signal states prepared in the given polarization M,
respectively.

B. Parameter estimation using one-decoy-state method

In Ref. [39], the parameters required in Eq. (1) were
estimated using the two-decoy-state method, which has a
relatively complex implementation. Here, we used the one-
decoy-state method [40] for parameter estimation, which
significantly reduced the experimental complexity. Based on
the framework presented in Ref. [40], the final secure key is
given by

1> syt shy[1—h(el)]
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.where sf o 18 the lower bound of the detection counts by Bob
given that Alice sent the vacuum pulses in the z basis, si | 1s
the analytical lower bound of the single-photon pulses in the
z basis, and ef_hl is the phase error rate. Ag¢ is the number of
announced bits in the error correction stage, and &g, and o
are the secrecy and correctness criteria, respectively.

Due to the presence of the PDL, according to Eq. (2),
{sto. sy, ezhl} can be estimated from the measured quantities
for different polarizations. In detail, let s, _, 3 be the number of
detection counts measured by Bob given that Alice prepares
n-photon states in basis A € {z, x} and polarization M. In the
asymptotic case, we obtained the number of detected pulses
when Alice sends states in basis A and polarization M with
intensity k € {u, v} as

00

*

nyky = E Phy\nSx,n,M» “4)
n=0

—kpg g
where py,jn = 2=

e is the conditional probability of
selecting intensity k provided that Alice prepares an n-
photon pulse in polarization M, and the subscript * denotes
the presence of an asymptotic case. Furthermore, 7, =
Zkew pre ™Kkl /n! is the probability that Alice prepares an
n-photon pulse for polarization M, where kj; represents the
intensity of the state prepared in a particular polarization M.
Correspondingly, let v, , be the number of errors detected by
Bob when Alice sends an n-photon pulse and m; = Z;’io Vin
is the total number of errors in the A basis. In the asymptotic
case corresponding to different polarizations, the number of
error pulses when Alice sends states in basis A and polariza-
tion M with intensity k can be obtained as

o0
*
m; ky = E Py \nVUr,n.M - &)
n=0

Here, we adopt the observed counts in the z basis to distill
the secret key. When Alice sends n-photon pulses in z ba-
sis, n, = Zzio(szynﬂ + 5;.,.v) is the all number of detection.
Based on the polarization-loss-tolerant protocol, we have

n; = Z Nz ky X P + Mz ky - (6)

ke
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TABLE I. Concrete descriptions for one-decoy-state polarization-loss-tolerant protocol.

Definitions:

A: basis choice, A € {z, x}.

k: intensity choice for signal and decoy state, k € {u, v}.

M: polarization choice, M € {H,V, D, A}.

kys: intensity choice for given polarization M.

ps.: probability choice for basis A, p; € {p,, (1 — p,;)}.

Dr: probability choice for intensity &, px € {p,, pv}-

Py: post-selection probability choice for intensity k, P, € {P,, P,}.

L, : polarization-dependent loss coefficient for basis A.

Measured quantities:

n.: total number of detected pulses when Alice sends states in basis z .

1y, k,, - Number of detected pulses when Alice sends states in basis A and polarization M with intensity k.
m, x,,: number of error pulses when Alice sends states in basis A and polarization M with intensity k.

Statistical fluctuations:

§: statistics, §(x, €) := +/x In(1/¢e)/2.
nko: upper and lower bounds of n, 4,,, nko = Nyt £ 8o u, €1).

+ . =+ —
m; . upper and lower bounds of m, 4,,, ny = My, + 85(m;_uy, 2).

T,m : n-photon-state probability for polarization M, 1,y = Zke” ) pre MMkl /n!.

Decoy-estimation results:
st o2 lower bound of vacuum events in basis z according to Eq. (7).

sL ,: lower bound of single-photon events in basis z according to Eq. (8).

e’ hl: phase error rate in the z basis according to Eq. (9).

Here, P, is the postselection probability, which is helpful for
obtaining a superior secure key length, particularly with a
large PDL. Since the detection events of x basis are only used
to estimate single-photon phase error rate, the postselection
probability on x basis is needless. The lower bound of the
vacuum events s*, can be achieved as follows:

L ._ L L
S0 =S.0m TS0y @)

where sZ ; (s ) is the lower bound of the vacuum events
estimated by the set of detection events for polarization H (V).
Provided that the number of detection counts n,y, exceeds

ngk,, the lower bound of single-photon events si, can be
found as follows:
L L
s s
: LH LV
sty i=min [t 4, Tl,V]( o 4 Z—) ®)
T1L,H v

where sé \H (sZL’ 1.v) 1s the lower bound of single-photon events
estimated by the set of detection events for polarization H (V),
and 71 gy = puume " x P, + p,vge™"" x P,.

For the phase error rate, eZ hl is estimated from the number
of detections in the x basis [43], which can be expressed as

U U

P U Viip TV 14 9

1 X €1 = L +sL ®
Sx,1,D T 5% 1.4

where v¥, , (WY, ,) is the upper bound of the single-photon
error events by’ the set of error detection events for po-
larization D (A). The concrete descriptions and formulas
are summarized in Table I. More details on the one-decoy-
state polarization-loss-tolerant protocol can be found in
Appendix A.

III. EXPERIMENT AND DISCUSSION
A. Setup

We implemented the polarization-loss-tolerant protocol us-
ing a homemade polarization-encoding QKD system [7]. A
schematic diagram of our setup is shown in Fig. 1. Alice
generated laser pulses at a clock frequency rate of 50 MHz
using a commercial laser source (LD, WT-LD, Qasky Co.
LTD). The pulses were coupled into a Sagnac-based intensity
modulator actively modulating the intensities of each pulse
for the decoy-state method. Subsequently, the laser pulses
entered a Sagnac-based polarization modulator (Sagnac-PM)
[37], which modulates four polarization states for the BB84
protocol. Then, the encoded pulses are were attenuated by a
variable optical attenuator (ATT) to single-photon levels.

The receiver Bob possessed a PC to actively compen-
sate for the deflection of polarization during transmission
over fiber spools. The QBER of the system was used as
the error signal for the active compensation. The received
pulses were de-encoded using a customized polarization anal-
ysis module (PAM) integrated with a 90/10 beam splitter
and two polarization-maintaining polarized beam splitters.
The photons were detected using four InGaAs single-photon
avalanche detectors (SPADs, WT-SPD2000, Qasky Co. LTD)
with a detection efficiency of 8.8%, a dark count rate of 1076
per pulse, and after pulsing probabilities of 3%. The detection
events were recorded using a time-to-digital converter (TDC,
quTAG100, GmbH). An optical misalignment error of approx-
imately 1% was achieved by carefully calibrating the system.

B. Quantifying polarization-dependent loss

We quantified the PDL in the source by measuring the
intensity of each polarization generated by the Sagnac-PM.
The measurement process was as follows: We first calibrated
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FIG. 1. Schematic diagram of BB84 QKD experimental setup. LD: 1550 nm commercial laser source; BS: beam splitter; 6-M: phase
modulator; CPM: customized polarization module; ATT: variable attenuator; PM fiber, polarization-maintaining fiber; SM fiber, single-mode
fiber; PC: polarization controller; PBS: polarized beam splitter; SPAD: single-photon avalanche detector; TDC: time-to-digital converter.

the expected voltages for different polarizations and deter-
mined that the voltages {0, V., 0.5V, —0.5V;} modulate the
expected polarization {H,V, D, A}, where V, = 3.8 V. Our
calibration follows a custom procedure where we scan the
applied voltages of a phase modulator and record the photon
detection counts D; and D,. Then V,; is determined when the
maximal visibility of V = (D; — D,)/(D; + D») is reached.
Subsequently, the Sagnac-PM was directly connected to a
high-precision optical power meter. Alice scanned the volt-
ages applied to her Sagnac-PM and recorded the mean power
of the optical power meter. These values were denoted by Py,.
The polarization-dependent loss L.y, for basis z(x) was then
calculated as follows:

L;xy = Puwy — Pya)- (10)

For comparison, we also measured the PDL in recently pro-
posed PM schemes, including an all-fiber self-compensating
polarization encoder (AS-PM) [36] and a silicon-based PM
(Silicon-PM) [38]. The AS-PM was re-engineered with
commercially available products, including a circulator and
polarized beam splitter (Optizone Ltd.), phase modulator
(iXblue Ltd.), and polarization controller (Thorlabs, Inc.).
The Silicon-PM was manufactured by the standard fabrication
service offered by IMEC foundry. The measurement process
was similar to that for the Sagnac-PM. When we measured
the PDL of AS-PM and Silicon-PM, the launch power of laser
pulse is set to —26.557 dBm. Since the loss of Sagnac-PM is
larger than previous schemes (this rises from our customized
CPM), we enhanced the laser power to —20.408 dBm for
making the responsivity of power meter in the linear region.
All measured power and corresponding L, values are listed
in Table II. The table shows that all realistic PMs exhibited
a PDL. In particular, the PDL was as large as 2.24 dB for
a Silicon-based PM. In the table, we listed the results of the
PDL in x basis. These can be applied in other protocol [43]

where the x basis is used to generate key bits. We also noticed
that the PDL of Sagnac-PM is larger than that of a fiber-based
polarization modulation. This arises from the imperfections
of our in-house-designed, customized polarization module
(CPM) in the Sagnac-PM. A detailed analysis can be found
in Appendix B.

C. Implementation of polarization-loss-tolerant protocol

We implemented the polarization-loss-tolerant protocol
over commercial fiber lengths of 25, 50, and 75 km. For each
distance, we optimize the implementation parameters through
a numerical simulation tool, including the intensities of the
signal and decoy states, the probabilities of sending them, and
the postselection probability P. The optimization routine was
similar to that in Ref. [39], except we used the one-decoy-state
method.

For each distance, we sent a total number of N = 100
pulses. As indicated in Table I, we collected the counts
for different polarizations, and the details are provided in
Appendix C. By inputting the experimental counts into the
one-decoy-state method presented in Sec. II, we obtained the
experimental results listed in Table III and plotted in Fig. 2. In
Table III, the obtained QBERS for each distance are monotoni-
cally increasing because of calibration systematic error, which
ranges from 0.8% to 1.1%. With the polarization-loss-tolerant
protocol, we achieved a secure key rate of 9.58 kbps at a
distance of up to 75 km. The security of these keys considers
the PDL in the PM.

To illustrate the implications of our results, as shown in
Fig. 2, we also plotted the simulation results following a stan-
dard GLLP analysis with PDL [27]. That is, we considered
the PDL as small source basis-dependent flaws and applied
it to the standard GLLP key rate formula, as in the study on
GLLP analysis for state modulation flaws [44—46]. A detailed

TABLE II. Power and PDL for different polarization encoding modules. /L (dB) denotes an average insertion loss. The output power
Py (dBm) represents the mean power for polarization M. L., is the restored polarization loss in the z(x) basis.

Module 1L PH PV P[) PA LZ Lx
Sagnac-PM 23.4 —43.488 —44.324 —43.907 —43.832 0.836 —0.075
AS-PM 8.2 —34.775 —34.658 —34.666 —34.853 -0.117 0.187
Silicon-PM 53 —31.08 —33.32 —32.02 —30.82 2.24 —1.36
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TABLE III. Implementation parameters and experimental results. L and Loss are the channel lengths and channel loss, respectively. N is
the total number of sent pulses. (v) is the intensity of signal (decoy) state, p,, (p,) is the send probability of the signal (decoy) state, and
P, (P,) is the postselection probability for the signal (decoy) state. ezhl is estimated phase error rate. EM is obtained QBER. / denotes the final

key rate.

Channel Parameter Results
L (km)  Loss (dB) N n v Pu P P, P, e E, l
25 4.720 1.0020x 101 0.626 0.157 0.85 0.15 0.9196 0.8476 2.90% 1.04% 1.43x10°
50 9.812 1.0026x 1010 0.619 0.155 0.78 0.22 0.9189 0.8475 5.97% 1.14% 4.06x10*
75 14.970 1.0001 %1010 0.611 0.153 0.67 0.33 0.9171 0.8470 8.63% 1.11% 9.58x10°

analysis can be found in Appendix D. The simulation ex-
ploited experimental parameters obtained in our setup and
the PDL listed in Table II. Figure 2 shows that with
increasing L,, the key generation rate rapidly decreased
using a standard GLLP analysis. In particular, the key
generation rate dropped to zero with L, =2.24 dB, ob-
tained in the Silicon-PM. The maximal tolerant distance
was 25 km for our setup (L, = 0.836 dB) using a previous
standard GLLP analysis. In contrast, our security analy-
sis ensures that the QKD setup is secure over 100 km,
implying that for the 75-km demonstration, not even a
single bit could be extracted using the previous GLLP
analysis.

In our experiment, we also measure the PDL of SPADs,
which is equal to zero in common sense. A value of less than
0.14 dB is obtained. However, since the PDL of SPADs results
in a polarization dependency on the detection efficiency of
detectors, it can be treated as a kind of detector efficiency
flaws. Hence it did not influence the experimental demonstra-
tion of the polarization-loss-tolerant protocol, which focuses
on the source flaws. In fact, in our previous work [30],

100 : : : : :
= = Without PDL
N AS-PM
~ AN
"g . RN — Sagnac-PM
o S IR .
3 105 L N T Silicon-PM )
7] N Y .
5 Y \‘\\_ AS-PM with GLLP
\ R
N \ N = = Sagnac-PM with GLLP
2 \ N A Experiment
s \ RSN P
= \ RN
S10% ' N !
g N\
g N\
=) N
> N
O "\
M 3L “\‘ E
10 W)
\“‘
L L L L L
0 20 40 60 80 100 120

Transmission distance (km)

FIG. 2. Secure key rate with PDL in a practical setting. The
black solid curve, green and blue dotted curves represent the key
rates using the one-decoy-state polarization-loss-tolerant protocol.
The green and black dashed curves denote the one-decoy-state BB84
QKD with the standard GLLP analysis for PDL. The red triangles
represent the obtained experimental results.

we have analyzed the impact of the polarization-dependent
efficiencies on superconducting nanowire single-photon de-
tector, and proposed some solutions to remove such a
loophole.

IV. CONCLUSION

In summary, we demonstrated a decoy-state BB84 QKD
experiment considering PDL. Following the one-decoy-state
polarization-loss-tolerant protocol, we successfully generated
secure key bits over different fiber links of up to 75 km. In
contrast to previous experiments, which ignored the PDL in
polarization modulator, the proposed study showed the feasi-
bility of distributing secure key bits in the presence of PDL.
Although we demonstrated the polarization-loss-tolerant pro-
tocol using a homemade polarization-encoding system, this
method could be easily applied to other BB84-QKD systems
[47]. Furthermore, it will be interesting to combine our results
with other types of QKD systems, such as measurement-
device-independent or twin-field QKD systems.
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APPENDIX A: PARAMETER ESTIMATION
USING ONE-DECOY-STATE METHOD

In this section, we present our one-decoy-state parameter
estimation for a polarization-loss-tolerant protocol. The finite-
data size was also included using the framework in Ref. [43].

The total number of detections in the A basis is given by
n, = Z;’io s,.n (A € z,x), where s, _, are the detection events
when Alice sends an n-photon pulse. When PDL is present,
the protocol assigns the detection counts corresponding to
each polarization state n, ) separated from the data set n,,
where M € {H,V, D, A}. In the asymptotic limit, the number
of detections with a specific intensity k € {u, v} is given by

9]
n;kM = Z Py |nSz,n,M - (Al)
n=0

Here, pg,» is the conditional probability, which can
—k,
pi MKy

be expressed as Dikyin = 7 0~ > where
n,. N

TaM =
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Zkew pke‘kMkZ’,, /n! is the probability that Alice prepares an
n-photon pulse for polarization M. Here, py, is the probability
of choosing the signal or decoy state, and ky, represents the
intensities k of the state prepared in a given polarization M.

However, the observed data n; j,, are different from the cor-
responding asymptotic case when considering a finite-statistic
scenario. By employing Hoeffding’s inequality [48] for in-
dependent variables to bind the fluctuation, the experimental
data satisfy

|”§,kM — Mg, | < 8 m5 €1), (A2)

with the probability at least 1 — 2g;, where §(ny 1, &1) 1=
/n, In(1/¢1)/2. The above equation allows us to obtain the
upper and lower bounds of the counts nj , as follows:

Tk S Miky +8(Man, 1) = n;kM, A3
5 = Maky — S(am, €1) =15

For the error detection events, we consider that the value
v, 1s the number of errors detected by Bob when Alice sends

J

TI,MMM
L . .
SaM 2S5 im =

vy (pr — V)

where i, is the upper bound of the vacuum counts
through the error events that can be bound by S,(\],O,M =

ekm

2T0.m 5 My + (s €1).
Considering a specific scenario, the following formula can
be used to estimate the phase error in the z basis [49]:

U U
ph i Ux,l Uy
€. S e =7 +V<Esem ST,sz,1,sx,1), (A8)
x,1 x,1
where
d)(1 —b)b d 212
y(a’b’c’d)z Mlogz L_ .
cdlog? cd(1 — b)b a?

(A9)

By applying the result in Ref. [43], the upper bound of the
number of single-photon error events in the x basis for polar-
ization D is given by

T1,D
Hp — Vp
Similarly, the upper bound of the single-photon error events
vfi 1.4 can be obtained. Combining with Eq. (A7), we obtain

+ —
(meMD — mx_vD).

Vet SV p = (A10)

L =0 p VY4 (ALD)

APPENDIX B: CONCISE ANALYSIS OF THE SOURCE
OF SAGNAC-PM POLARIZATION-DEPENDENT LOSS

The Sagnac-PM has a larger PDL than that of a fiber-based
PM to conform our customized polarization module (CPM) in
the Sagnac-PM, as shown in Fig. 1. We experimentally quan-
tified the parameters including the splitter ratio o = 0.872

an n-photon pulse and m;, = Z;io v, 1s the total number of
errors in the A basis. In the asymptotic case corresponding to
the polarization, we have

(o]
Mgy = D PhaginVints ¥ k € {11, v} (A4)
n=0

In reference to the previous case, we can determine the
difference between the experimental values m; ,, and the
corresponding asymptotic case mj , , as follows:

1M} 4, — Mok | < 8(ma s €2), (A5)

with the probability of at least 1 — 2¢5.

Based on an estimation method proposed in Refs. [40,43],
the lower bound of the vacuum counts in the A basis can be
expressed as follows:

To.M
KM — Vm
and the lower bound of the single-photon counts for polariza-
tion M on the basis of A is given by

S0M = Sy = (un;,, —vuny, ), (A6)

(Mzzw - V@) Si],o,M)’ (A7)

wa 2

2
Vi ¥
— —=n
2 A,
(2574 12574 To.M

(

and the orthogonal deviation angle & = 0.091 and found that
these specific parameters of the CPM are larger than that of
a standard commercial component. This would be the main
reason for the PDL of Sagnac-PM being considerably larger
than that in a fiber-based system. The detailed analysis is as
follows:

When there is a deviation angle 6 between orthogonal
components |H) and |V'), the output light from the CPM can
be expressed as

|E;) = A1 |H), (B1)
and
|E>) = aA T sinO|H) + ad e cosO|V),  (B2)

where ¢ is the encoded phase. Finally, the mean intensity of
the light can be expressed as

2
1= /0 (Bl + EDIED) + |E)do.  (B3)

Then, the PDL of Sagnac-PM in the z basis is given by

L,=101 I#)
: = 10log 735 (B4)

Using the measured data, we get the theoretical value L, =
0.780 dB, which is close to the measured value of PDL of
Sagnac-PM (L, = 0.836 dB).

APPENDIX C: DETAILED EXPERIMENTAL RESULTS

Table IV details the experimental results.
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TABLE IV. Experimental raw counts.

Distance My p Ny y ng ngy my My, mg mg,
25km 1302170 65577 87895811 3945456 13094 945 889766 61921
50km 377232 26907 31562239 2278091 4933 690 346762 38516
75km 87033 13457 8632164 1074008 2137 858 84805 20998
Ny up Ny jia Ny vp Ny vy Nz up Nz oy Nz vy vy
25km 610001 692169 37460 28117 45962402 41933409 2485621 1459835
50km 192261 184971 15120 11787 16950343 14611896 1441686 836405
75km 41745 45288 7455 6002 4633555 3998609 635057 438951
My, up M, 1y My, vp My vy My Mz iy mz vy Mz vy,
25km 8591 4503 715 230 285548 604218 19337 42584
50km 1732 3201 208 482 160264 186498 16339 22177
75km 1561 576 661 197 37191 47614 7422 13576

APPENDIX D: SECURITY BOUNDS AGAINST PDL USING
STANDARD GLLP ANALYSIS

In this section, we discuss how we can bound information
leakage caused by PDL using standard GLLP security anal-
ysis. We consider the PDL in state-preparation devices as a
type of source flaw. Hence, the key rate formula is similar to
that in Eq. (1) in the main text, except that the phase error rate
needs to include the correction due to source flaws. Based on
the GLLP analysis, PDL can be quantified using the so-called
quantum coin A, which is given by

A= 1 _F(pz’px)’

2

where F (p., py) is the fidelity of the density matrices for the
z and x bases. The balance of a quantum coin quantifies the
basis-dependent flaws of Alice’s single-photon components or
the ability to discriminate the bases that Eve possesses. For
simplicity, we introduce the idea of an entanglement-based
scenario to provide an imperfect parameter value, which is
equivalent to a prepare-and-measure protocol. Here, Alice
first generates an entangled state as follows:

1 l
IT2)ap = wlmIOZ)A ®10:)p + ﬁllz)A ®|1:)p

(D2)
and sends System B to Bob. Here, the coefficient /, depends
on the polarization-dependent loss L., which can be expressed
by L. = 107%/19 In the virtual protocol, Alice can measure
system A after Bob detects and Eve makes a disturbance. In
Eq. (D2), we consider the PDL, from which the coefficient of
the state is related to L,, satisfying normalization. Similarly,
for each x basis emission, Alice prepares the entangled states
as follows:

1 I,
TX = —Ox 0)( _1x 1)(
Ix)ap "lx+1| Ja ® | >B+‘,lx+1| Ja ®11:)p

(D3)

(D1)

and sends System B to Bob. The coefficient /, depends on the
PDL on the x basis. Evidently, the states | ;)45 and | Yy)ap
are no longer equal because of the imperfect state preparation.
Furthermore, by introducing a quantum coin, Alice prepares
an entangled state following [50]

IT)cas = 30T a5 + 1) ap) + [Le)e
X (ITZ>AB - |Tx>AB)]a

where system C is “a quantum coin,” determining that each
signal is encoded on a z or x basis. If the quantum-coin system
collapses into the state |1,)c, we can obtain the probability
quantifying how well the basis dependence of Alice’s and
Bob’s single-photon pairs, so that we have

(D4)

A =ProbXe = —1) = |c(1, | D)eapl®

_1<1_ (1+JE)(1+JD>
T2 C+DI+1) )

(D5)

In our QKD system, with L) = 0.836(—0.075), we
have A =5.82 x 107*. Thus, based on Eq. (D1), the fi-
delity F(p;, p,) =1 —1.16 x 1073, In the GLLP analysis,
the basis-dependent flaws of Alice’s signals associated with
single-photon events can be enhanced in principle by Eve
by exploiting the channel loss; thus, A is replaced by A’ as
follows:

A

A==
Y,

(Do)
where Y| is the yield of the one-photon pulses. The revised
phase error rate can be expressed as

e’ < efél +4A" +4 A’efc{l + €pn-

z

(D7)

By substituting Eq. (D7) into Eq. (1), we obtain the final key
rate using the standard GLLP approach while considering the
PDL. The simulation results are presented in Fig. 2.
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