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Among the list of major threats to quantum computation, quantum decoherence poses one of the largest
because it generates losses to the environment within a computational system which cannot be recovered via
error correction methods. These methods require the assumption that the environmental interaction forces the
qubit state into some linear combination of qubit eigenstates. In reality, the environment causes the qubit to enter
into a mixed state where the original is no longer recoverable. A promising solution to this problem bases the
computational states on the low lying energy excitations within topological materials. The existence of these
states is protected by a global parameter within the Hamiltonian which prevents the computational states from
coupling locally and decohering. In this paper, the qubit is based on nonlocal, topological Majorana fermions
(MF), and the gate operations are generated by swapping or braiding the positions of said MF. The algorithmic
calculation for such gate operations is well known, but, the opposite gates-to-braid calculation is currently
underdeveloped. Additionally, because one may choose from a number of different possible qubit definitions,
the resultant gate operations from calculation to calculation appear different. Here, the calculations for the two-
and four-MF cases are recapitulated for the sake of logical flow. This set of gates serves as the foundation for the
understanding and construction of the six-MF cases. Using these, a full characterization of the system is made
by completely generalizing the list of gates and transformations between possible qubit definitions. A complete
description of this system is desirable and will hopefully serve future iterations of topological qubits.
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I. INTRODUCTION

The current generation of superconducting (SC) qubits that
form the basis of computation for state of the art systems has
generated great strides for the field of quantum computation
(QC). They satisfy the criteria for a “good enough” qubit
because one possesses a sufficient degree of control over
the individual qubit state, and they scale better than other
options [1,2]. However, there may exist an absolute ceiling for
the scalability and tolerance of SC-qubit-based systems due
to the problem of decoherence which particularly threatens
the future of QC since the field deals with the manipulation
of information [3]. One would hope to minimize these effects
in order to maintain the integrity of the information provided
to the computer. If the computer flipped a bit or deleted
information without the user knowing, what good is this
system?

One may attempt to bolster the system by secluding the
qubits from the environment as much as possible. Whatever
decoherence that remains is dealt with by utilizing a number
of error correction methods at one’s disposal. However, these
all require the assumption that the true state of the system
remains a linear combination of qubit Hamiltonian energy
eigenstates [4–8]. This would mean that the true state of the
system is recoverable via a unitary transformation. In other
words, we hope that the state remains pure when all is said and
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done. In actuality, environmental fluctuations force the qubit
into a mixed state which is not at all a linear combination of
the energy eigenstates of the qubit Hamiltonian [9,10].

For these reasons, an alternate solution to the decoherence
problem has been proposed which makes use of topolog-
ical states of matter [11]. As their name suggests, these
are condensed matter systems equipped with a degenerate
ground-state manifold based on some associated topology
that is separated from the remaining spectrum by an energy
gap [12,13]. If it is possible to construct a quantum computer
based on a topologically invariant parameter, the computa-
tional states could not couple via local perturbations. Such a
system is fault tolerant or decoherence proof [14].

The methods which outline direct calculation of unitary
operators from a braid are well documented in several other
publications [14–19]. This paper supplements these works
by providing the complete description of the computational
space of the system. Such a description includes a completely
generalized list of gate operations along with the transforma-
tions between possible qubit definitions. This description will
assist the construction of the opposite directional algorithmic
process, quantum gates to MF braids.

Here, the calculations for the two- and four-MF cases are
recapitulated for the sake of logical flow. This set of gates will
serve as the foundation for our understanding and construction
of the gate operations for the six-MF cases. Then, we will
extend the list of gates to the general qubit and MF setting
where we will list the general forms of all possible gates.
Finally, we will demonstrate how one transforms the list of
possible gates between different qubit definitions.
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FIG. 1. Majorana fermion setup. The system is located in a 2D
px + ipy-wave SC which is induced on the surface of a TI by an
s-wave SC adjacent to the system. The qubits are defined by col-
lecting two MF into one fermionic operator, depicted here as gray
boxes. Vortices are made by allowing a magnetic field to penetrate
the system with some strength in between the two critical values.
Braids are made by switching positions of the vortices where one
must cross the arbitrary branch cuts, depicted as dotted lines.

II. DESCRIPTION OF SYSTEM

There exist copious examples of well-studied systems with
varying flavors and temperaments that exhibit topological
qualities; however, it is not so common to discover one with
the proper conditions for quantum computation.

A promising setting and the subject of this work makes
use of nonlocal MF pairs within the induced 2D SC formed
by adhering a 3D type-II, s-wave SC to a strong topological
insulator (TI) [20] (see Fig. 1). The induced system is likewise
type-II SC which is known to support local gap closures for
points where the magnetic field is in between the first and
second critical field values [21]. These may be thought of as
pointwise boundaries which are accompanied by Abrikosov
vortices, and, since the gap must close at these points, each
vortex hosts a MF [22].

These modes exist purely two dimensionally and, due to
this fact, MF exchange statistics may be qualitatively different
from 3D statistics. In three dimensions, k indistinguish-
able particles have two choices of exchange: symmetrically
(bosons) or antisymmetrically (fermions). However, 2D parti-
cles do not have the same constraints which force symmetric
or antisymmetric exchange. 2D exchanges can in principle
generate any phase in between 0 and π , obeying anyonic
statistics instead [23]. In some special non-Abelian cases
these exchanges rotate a manifold spanned by the degenerate
ground states. Exchanges within a system of k non-Abelian
anyons are described by the Braid group Bk , which have
unitary operator representations U (k)

i [14,18,19].
This setting provides one of these special cases, and, as one

vortex encircles another, the path taken generates a total Berry
phase of π to the state of the system. This winding number is
represented by branch cuts depicted as dotted lines in Fig. 1,
starting at each vortex and ending somewhere on the borders
of the region [24]. These cuts are made arbitrarily and will
not affect the total calculation as long as everything remains
consistent.

One may only interact with these vortices through some
macroscopic means [25–29], and the only actions one may
take in regards to the MF operators γi are

(1) Relabeling: γi → γ j

(2) Crossing branch cuts: γi → −γ j

These actions are achieved by a physical exchange of MFs.

III. BRAID CALCULATION

A. Ground-state quasiparticle

Working within the adiabatic limit, we assume that there
are no quasiparticle excitations other than those at the Fermi
level [30]. In other words, the only quasiparticles within our
system are the MF. A pair of MF are simply a single ground-
state mode split into two locations in real space. In order for a
single electron to occupy the ground state, it must magically
split into two locations at once.

The first step in gate calculation is to then redefine the
ground-state electron in terms of MF operators,

an = 1√
2

(γi + iγi+1),

a†
n = 1√

2
(γi − iγi+1),

where each pair of γ ’s is associated with a, a highly nonlocal
fermionic operator [19]. We keep Fig. 1 in mind as we index
each MF and fermion. We note here that the only requirement
in making this definition is that each γ is associated with one
a at a time. Aside from this, the definition that one makes is
absolutely arbitrary. Transformations from one definition to
another are discussed in the final section where it is shown
that a definition transformation is simply a rotation of the
coordinate system of the Bloch sphere representation of a
single qubit.

The occupation of a, either |0〉 or |1〉, defines the com-
putational space for this system. When one is ready to take
a measurement of this system, bringing the vortices together
removes the degeneracy in the ground state. The resulting two
energy eigenstates are situated above and below the Fermi sur-
face, and the occupation number associated with this operator
represents the occupation of the final upper energy state once
a fusion is made between the two MFs [14].

Since the thing that occupies that final state is a simple
electron, the a operators must obey regular fermion anticom-
mutator rules,

{an, a†
n} = 1, (1)

{an, an} = {a†
n, a†

n} = 0. (2)

From these relationships, the MF operators inherit their own
anticommutation relationship [19],

{γi, γ j} = 2δi, j, (3)

yielding two rules for Majorana operators: (i) Two identical γ

operators in a row will annihilate to 1 and (ii) exchanging any
two adjacent operators produces a negative sign.

B. Braid group representation

The representation that maps the braid group to linear
operators, ρ : Bk → LO, is an exponentiation of the MF
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FIG. 2. Braid group. Bk may be divided into equivalence classes
[bi], where the equivalence relation is defined as the braids which
may be deformed into one another via some smooth operation. This
system only has access to such classes of braids. Each braid is defined
as the movement of one vortex around another.

operators [14,19,24],

ρ([bi]) = Ui = e
π
4 γiγi+1 = 1√

2
(1 + γiγi+1), (4)

where a Taylor expansion of the exponential leads to the right-
hand side of Eq. (4). The specific use of [bi] instead of bi is
meant to be precise with the fact that one cannot access any
arbitrary braid from the braid group. We only have access to
the equivalence classes of braids depicted in Fig. 2. If the braid
is deformable into one of these classes then it is not possible
to determine the difference between them.

One may verify that this operator indeed has the correct ac-
tion on the MF by performing a similarity transform on some
arbitrary γk , Since γi → γi+1 and γi+1 → −γi, Ui represents
a counterclockwise braid where γi+1 crosses a branch cut as
depicted in Fig. 2.

C. Two- and four-MF systems

Defining a1 in terms of γ1,2 operators,
(

a1

a†
1

)
= 1√

2

(
1 i

1 −i

)(
γ1

γ2

)
,

and, by taking the inverse,
(

γ1

γ2

)
=

(
1 1

−i i

)(
a1

a†
1

)
,

the MF operators may be expanded in terms of qubit oper-
ators. We then define the computational basis as {|0〉, |1〉} =
{|0〉, a†

1|0〉}.
To calculate the matrix representation of the only braid

for a two-MF system U (2)
1 , simply rewrite Eq. (4) in terms

of the qubit operators, and operate on all members of the
basis to determine the braid’s effect on the ground state. In
this document, the number within the superscript parenthesis
labels the number of MF’s within the computational system,
and the subscript labels the braid in accordance with Fig. 2.
The states then transform as

U (2)
1 |0〉 = 1√

2
(1 + i)|0〉,

U (2)
1 |1〉 = 1√

2
(1 − i)|0〉.

In both cases, the operator is expanded in terms of fermionic
operators, and the commutation rules, Eqs. (1) and (2) have
been used [19]. Dividing out a global phase factor of ei π

4 , U (2)
1

in matrix form is

U (2)
1 = S =

(
1 0

0 i

)
.

This and the opposite braid, U (2)†
1 are the only two braids

accessible to a two-MF system.
Using analogous methods from above, one may specify

more gate operations by collecting more MF into the com-
putational region of the 2D SC. For a four-MF system, form a
new basis,

{|00〉, |01〉, |10〉, |11〉} = {|0〉, a†
2|0〉, a†

1|0〉, a†
1a†

2|0〉},
and MF operators [19],

γ1 = a†
1 + a1,

γ2 = i(a†
1 − a1),

γ3 = a†
2 + a2,

γ4 = i(a†
2 − a2).

Transforming the operators in an identical way to the two-MF
case leads to linear operators,

U (4)
1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 i 0

0 0 0 i

⎞
⎟⎟⎟⎟⎠ = S ⊗ I,

U (4)
2 = 1√

2

⎛
⎜⎜⎜⎜⎝

1 0 0 i

0 1 i 0

0 i 1 0

i 0 0 1

⎞
⎟⎟⎟⎟⎠ = 1√

2
(I ⊗ I + iX ⊗ X),

and

U (4)
3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 i 0 0

0 0 1 0

0 0 0 i

⎞
⎟⎟⎟⎟⎠ = I ⊗ S.

One important observation is that the odd labeled braids, U (4)
1

and U (4)
3 , involve MF defined under the same qubit operator

while the only even labeled braid, U (4)
2 , shares MF from differ-

ent qubits. This observation provides the qualitative difference
between the equivalence classes of a given braid group. The
specific scalar elements within the matrix are completely de-
termined by how one defines the qubit operators from MF,
but the “shape” of each gate, i.e., diagonalized or coupling,
are determined by whether or not MFs are shared between the
qubits. This fact remains true regardless of the initial qubit
definitions.
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D. Parity and subspaces

The peculiar locations of nonzero entries within U (4)
2 are

explained via parity, which, in this context, refers to the even
or odd number of electrons in the SC bulk [17,18,31].

Within a SC system, it is known that the electrons form
Cooper pairs. If the system is sufficiently cooled and the gap
is large enough, it is reasonable to expect that there must be an
even number of electrons within the system. The only way that
the system could potentially have an odd number of electrons
would be if quasiparticle excitations were present.

Since we base the computational space on counting particle
numbers found within a given mode, this even-odd number
rule constrains the computational space as well [32]. The
number operator, n = a†

1a1 = 1
2 (1 + iγ1γ2), has two possibil-

ities, 0 or 1, which also determines the even or odd nature of
the total system. More specifically,

Even: 1
2 (1 + iγ1γ2) = 0 → iγ1γ2 = −1,

Odd: 1
2 (1 + iγ1γ2) = 1 → iγ1γ2 = 1.

These are the parity constraints placed upon the γ ’s, and,
since the braids are fermion conserving processes, the number
of electrons remains unchanged throughout the braid. There-
fore, the only states that are permitted to couple are those
with equivalent parity [17]. For this reason, a state with even
parity, |11〉 cannot become a state of odd parity, |10〉. The
U (4)

2 transformation above demonstrates this property as even
states become coupled with even states and odd states become
coupled odd states. In other words, the final qubit in the ket,
|00...0〉, couples with the parity state of the system [31].

One then has a choice to work with states that include this
last so-called ancillary qubit or to exclude it. These two ways
of performing calculations are called sparse or dense encod-
ing, respectively [31,33]. For a more rigorous approach and a
general discussion of anyonic dense to sparse scheme transfor-
mations see Ref. [33]. It is typical to work in the dense scheme
so that a more useful single qubit may be defined [14,17]. This
is done by redefining the computational states as |0̃〉 ≡ |00〉
and |1̃〉 ≡ |11〉, and ignoring the odd subspace. The gates from
above then become

Ũ (4)
1 = Ũ (4)

3 =
(

1 0

0 i

)
= S,

and

Ũ (4)
2 = 1√

2

(
1 i
i 1

)
= 1√

2
(I + iX),

where the tilde denotes the even space reduced matrices. Once
this convention is employed, a single qubit may be defined
using four MF rather than two.

These gates are decomposed above and shown to be in-
timately related to the phase gate and Bloch sphere x-axis
rotation operator,

Rx(θ ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
X,

evaluated for a specific rotational value, θ = −π
2 . When

defining a qubit with four MF, this braid generates quarter
counterclockwise rotations about the Bloch sphere’s x axis,
and, in combination with the phase gate, it is only possible
for the qubit state to visit the six poles of the Bloch sphere.

One may therefore create any of the quarter rotation Pauli X,
Y, and Z gates. This single-qubit case highlights that S and
Rx(−π

2 ) emerge naturally as native gates, a property which
extends to higher dimensional computational spaces as well.

E. Six-MF system and beyond

The two- and four-MF systems reveal a pattern regarding
the calculation of even and odd braids. When braiding two MF
from the same qubit, the resulting diagonal matrix imparts a
phase factor on the |1〉 state defined within the qubit operator
which contains the MF being swapped. For example, when
braiding γ1 and γ2 defined under a1, the computational states
|1...〉 receive the phase factor i and states |0...〉 are unaffected.
The ellipses in the above kets are meant to demonstrate that it
is irrelevant how the other states are populated when using the
U1 braid. Similarly, the coupling braids mix adjacent qubits in
the ket. For example, the U2 braid couples even states |00...〉
and |11...〉, or odd states |01...〉 and |10...〉 equivalently, with a
phase factor of i placed off diagonal. These observations allow
one to easily construct the matrix form for any number of MF
or qubits.

Increasing the number of MF once more and implementing
these observations, the compact forms of a six-MF system are

Ũ (6)
1 = S ⊗ I,

Ũ (6)
2 = 1√

2
(I ⊗ I + iX ⊗ X),

Ũ (6)
3 = I ⊗ S,

Ũ (6)
4 = 1√

2
(I ⊗ I + iI ⊗ X),

Ũ (6)
5 = S ⊕ iS†,

where now patterns become noticeable for the compacted
form of each gate as well. Aside from the final two “ancillary”
qubit braids, the odd braids contain a phase gate in the position
of the tensor product that will only apply the gate to the qubit
for which the braiding occurred. The even braids are similar in
that the double tensor X product occurs in the tensor product
in such a way that the Rx( π

2 ) is applied only to the qubits
which shared the MFs.

In other words, for a general n qubit system, the nonancil-
lary odd gates will fall into the following pattern,

Ũ (n+2)
1 = S ⊗ I ⊗ I ⊗ . . . ,

Ũ (n+2)
3 = I ⊗ S ⊗ I ⊗ . . . ,

Ũ (n+2)
5 = I ⊗ I ⊗ S ⊗ . . . ,

...

and,

Ũ (n+2)
2 = 1√

2
(I ⊗ I ⊗ . . . + iX ⊗ X ⊗ I ⊗ I ⊗ . . .),

Ũ (n+2)
4 = 1√

2
(I ⊗ I ⊗ . . . + iI ⊗ X ⊗ X ⊗ I ⊗ . . .),

Ũ (n+2)
6 = 1√

2
(I ⊗ I ⊗ . . . + iI ⊗ I ⊗ X ⊗ X ⊗ . . .),

...
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The total number of gates within each tensor product is exactly
equal to n, the number of nonancillary qubits.

When using the sparse encoding, the ancillary braids will
continue this pattern, but the dense encoding breaks out of
the established pattern due to the fact that the even space
reduction process partially excludes the states of the final
qubit. The last even braid in a system, which shares MFs from
the last data qubit and the ancillary, has the effect of applying
the X gate to the final data qubit only,

Ũ (n+2)
final even = 1√

2
(I ⊗ . . . ⊗ I + iI ⊗ . . . ⊗ X).

The final odd braid, which swaps MF within the ancillary
qubit, results in patterned tensor sum of the phase gate with
its adjoint. This is easiest to demonstrate by lining the final
odd gates side by side for the four-, six-, eight-, and 10-MF
systems like so,

Ũ (4)
3 = S,

Ũ (6)
5 = S ⊕ iS†,

Ũ (8)
7 = S ⊕ iS† ⊕ iS† ⊕ S,

Ũ (10)
9 = S ⊕ iS† ⊕ iS† ⊕ S ⊕ iS† ⊕ S ⊕ S ⊕ iS†.

IV. GENERALIZING GATES

To completely generalize these statements, for any n × n
quantum gate acting on a system of n

2 qubits, one needs n + 2
MFs for a dense encoding (n for sparse). Including their undo
action, there are then 2(n + 1) types of equivalence class
braids accessible. This collection of braids may be subdivided
into the n + 2 odd, noncoupling gates and n even, coupling
gates. These braids only allow the multiqubit state to visit the
six poles of their individual Bloch spheres. Therefore, unitary
gates which place the single-qubit state anywhere in between
these poles have no representation as a braid, and they are
not possible with this implementation of qubit. Finally, one
may condense the patterns for the ith braid observed into
compact equations. For nonancillary braids (i < n), odd and
even braids take the forms,

Ũ (n+2)
i = I⊗ 1

2 (i−1) ⊗ S ⊗ I⊗ 1
2 (n−i−1),

Ũ (n+2)
i = 1√

2
(I⊗ n

2 + iI⊗( i
2 −1) ⊗ X⊗2 ⊗ I⊗ 1

2 (n−i−2)),

respectively, and the ancillary (i � n) odd and even braids take
the form,

Ũ (n+2)
i = Ũ (n)

i−2 ⊕ iŨ (n)†
i−2 ,

Ũ (n+2)
i = 1√

2
(I⊗ n

2 + iI⊗( i
2 −1) ⊗ X).

These are compact statements of the previous section and
represent the main findings of this work.

V. DEFINITION TRANSFORMATION

As mentioned previously, the qubits here are defined by
pairing MF adjacently, but this choice is completely arbitrary.
Using the sparse encoding for simplicity, let the collection of

gates for a four-MF system with our definition be D0, where

D0 = {S ⊗ I, Rx

(
− π

2

)
, I ⊗ S},

and let an alternate definition D1 be to define γ1, γ3 and γ2,
γ4 together. To change definitions, simply determine which
braid from D0 would move γ2 into the γ3 position and vice
versa. The braid which accomplishes this is U2. Once this
determination is made, perform a similarity transformation on
the entire set D0, D1 = U †

2 D0U2,

U †
2 U1U2 = 1√

2

⎛
⎜⎜⎜⎝

1 0 0 −1

0 1 1 0

0 −1 1 0

1 0 0 1

⎞
⎟⎟⎟⎠= 1√

2
(I ⊗ I−iX ⊗ Y),

U †
2 U2U2 = U2,

U †
2 U1U2 = 1√

2

⎛
⎜⎜⎜⎝

1 0 0 −1

0 1 −1 0

0 1 1 0

1 0 0 1

⎞
⎟⎟⎟⎠= 1√

2
(I ⊗ I−iY ⊗ X).

This supports the general notion that qubit coupling will only
occur when sharing MF between qubits. D1 braids always
couple since the neighboring MF are always from a different
qubit. We also note that the dense encoding matrices reduce to
Rx(−π

2 ) and Ry( π
2 ) now. These braids are the same as before;

however, by changing the definition, we rotated the coordinate
axis that the Bloch sphere is measured against. This makes the
braids appear different.

Another alternate definition D2 could be where the middle
and outer two MF are defined together. To acquire this defini-
tion from D0, one would make the D0 → D1 transformation
and then determine the braid from D1 which swaps the new
γ3 and γ4. In math, let Ui′ be the new gates under the D1

definition,

U3′D1U
†
3′ = U3′ {U2D0U

†
2 }U †

3′ ,

= U2U3{U †
2 U2}D0{U †

2 U2}U †
3 U †

2 ,

= U2U3D0U
†
3 U †

2 ,

where we have used unitarity of the operators in the last line.
This transformation acts on the D0 gates like so,

U1 → 1√
2

(I ⊗ I − iX ⊗ Y),

U2 → I ⊗ S†,

U3 → 1√
2

(I ⊗ I − iY ⊗ X),

where the U2 gate is the only one which does not share MF
and is diagonal as expected.

It is even possible to switch the definitions of MF within
each qubit and to swap qubit one and two using the same
process, but the calculations are identical to the above math.
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VI. CONCLUSION

With a full description of braids and transformations be-
tween possible definitions, the computational space of this
system is fully characterized. These results allow one to have
better intuitions when implementing this example of a fault-
tolerant system. Of course, the above gates do not form a
universal set, but, as research into fault-tolerant systems con-
tinue, a better system may include either a full or partial

implementation of MF. In order to use these qubits of the
future, one will require a road map and intuitive understanding
of the computational space.

It is more likely that the next generation of qubit designs
will be some composite between conventional SC and topo-
logical qubits. This combination will hopefully lead to a more
universal and robust qubit design. A complete description
of this system is desirable and will hopefully serve future
iterations of such qubits.
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