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Quantum imaginary-time evolution algorithm for quantum field theories with continuous variables
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We calculate the energy levels and corresponding eigenstates of an interacting scalar quantum field theory
on a lattice using a continuous-variable version of the quantum imaginary-time evolution algorithm. Only a
single qumode is needed for the simulation of the field at each point on the lattice. Our quantum algorithm
avoids the use of non-Gaussian quantum gates and relies, instead, on detectors projecting onto eigenstates of
the photon-number operator. Using Xanadu’s Strawberry Fields photonic simulator, we obtain results on energy
levels that are in very good agreement with results from exact calculations. We propose an experimental setup
that can be realized with existing technology.
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I. INTRODUCTION

Quantum fields are fundamental constituents of the physi-
cal world describing quantum many-body systems of matter at
all energy scales, as well as electromagnetic and gravitational
radiation. Quantum field engineering has enabled unprece-
dented measurement sensitivities, epitomized by the use of
squeezed light to lower the noise floor of the Laser Interfer-
ometer Gravitational-Wave Observatory below the shot-noise
limit [1].

The encoding of quantum information in continuous-
variable (CV) quantum fields, a.k.a. qumodes [in lieu of
discrete-variable (DV) qubits], has enabled multipartite entan-
glement over millions of qumodes. This scale, unparalleled in
any qubit architecture, defines new horizons and paradigms
for quantum computing, quantum communication, and quan-
tum sensing. Nanophotonic integrated devices based on
qumodes have the potential to define future quantum tech-
nology by surpassing the performance of qubit-based Noisy
Intermediate-Scale Quantum (NISQ) [2] computing devices.

A natural implementation of qumodes uses quantum light,
which also lends itself to sensing [3–6] and communication
[7,8]. The coming of age of low-loss, high-nonlinearity in-
tegrated optics paves the way for implementing large-scale,
fault-tolerant quantum computing and communication devices
on chips, at room temperature, and within a few years [9].

Over the last 20 years, since the introduction of the first
quantum algorithm by Deutsch and Jozsa [10], even though
a tremendous number of DV quantum algorithms has been
proposed that are capable of solving various problems more
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efficiently than their classical counterparts, there has been
far less activity in the development of CV quantum com-
puting. Examples of quantum algorithms generalized to CV
substrates include the Deutsch-Jozsa [11] and Grover’s search
[12] algorithms and, more recently, the quantum approximate
optimization algorithm [13] and a CV quantum algorithm for
solving linear partial differential equations [14].

There has also been an effort to extend quantum machine
learning algorithms to a CV substrate [15] followed by the
singular value decomposition of nonsparse, low-rank matrices
in [16] and topological data analysis [17]. CV quantum neural
networks were introduced in [18] and used in applications
such as fraud detection with a CV classifier, a hybrid classical-
quantum auto encoder.

Considering the recent experimental breakthroughs in CV
photonic quantum computing [19] and the development of
a programmable photonic quantum computer chip by the
Xanadu team [20], it is important to explore CV quantum
algorithms applied to realistic experimental setups.

Here, we propose a CV quantum imaginary-time evolution
(QITE) algorithm which can be used to calculate the energy
levels and corresponding energy eigenstates of an interacting
scalar quantum field theory (QFT) on a lattice. A QFT for
a massive self-interacting scalar field φ with a φ4 interac-
tion was studied in [21], where it was shown that quantum
algorithms for scattering amplitudes provided an exponential
speedup over known classical algorithms. QFTs were further
studied in [22–24] with DV quantum algorithms and in [25]
and [26] on a CV substrate for a φ4 scalar QFT as well as
scalar quantum electrodynamics. There is growing interest in
simulating lattice gauge theories using quantum computers as
well [27].

There have been a few alternative approaches. In Ref. [28],
quantum computation of two-dimensional quantum chro-
modynamics was discussed without introducing a lattice.
A different perspective was offered in [29], where it was
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proposed that the noise of NISQ hardware can be avoided by
simulating the dynamics of QFTs using classical simulators
and tools such as matrix product states.

CV quantum algorithms for QFTs have important ad-
vantages over their DV counterparts. Their implementation
generally relies on optical elements which operate at room
temperature. Moreover, while DV algorithms require a whole
register of qubits, only a single qumode is needed at each point
on the lattice to simulate the field at that point. However, CV
quantum algorithms that have been proposed so far involve
non-Gaussian quantum gates which are hard to implement
with existing technology [30–33]. Here, we avoid the intro-
duction of non-Gaussian gates by employing a CV adaptation
of the QITE algorithm making use of detectors projecting onto
eigenstates of the photon number operator, which is readily
available technology.

Imaginary-time evolution has been extensively used in
studying quantum many-body systems as a useful tool for
various tasks, such as the calculation of the ground-state en-
ergy and the creation of finite-temperature states. Evolution in
imaginary time τ is implemented with the nonunitary operator
U (τ ) = e−τH , where H is the Hamiltonian of the system of
interest. Starting with an initial state that has nonzero over-
lap with the ground state of the system, the evolved state
converges to the ground state in the limit τ → ∞. Excited
states can also be reached with an appropriate choice of ini-
tial state (one that is orthogonal to the ground state). The
calculation of the energy spectrum of a many-body quantum
system is a daunting yet important task, as it provides impor-
tant information about the system. As the number of particles
increases, the calculation becomes exponentially harder. Then
it becomes imperative to employ the quantum version of the
imaginary-time evolution algorithm, as it outperforms its clas-
sical counterpart.

Simulating the imaginary-time evolution on a quantum
computer is not straightforward because U (τ ) is a nonunitary
operator. Various approaches to the implementation of U (τ )
have been proposed. A variational version of QITE was pro-
posed in [34] in which the Wick-rotated Schrödinger equation
was solved for parameterized states and a classical optimiza-
tion loop was used to estimate the parameters for the ground
state of molecular hydrogen and the LiH molecule. Although
this method offers shallow quantum circuits, the classical opti-
mization of the parameters becomes prohibitive as the number
of particles in the system increases. Motta et al. [35] proposed
a QITE algorithm that did not require classical optimization or
an ancilla qubit. They expressed the Hamiltonian in terms of
local terms and used Trotterization to implement U (τ ). Then
the nonunitary evolution operator for a small imaginary-time
interval was approximated by a unitary operator which was
expressed in terms of Pauli spin operators with coefficients
calculated from measurements on quantum hardware. The
problem with this method is that the number of measurements
increases exponentially with the system size and the quantum
circuit becomes longer with each QITE step, making it hard to
implement on NISQ devices. Various attempts to bypass this
problem have been made [36–42].

We implement the QITE algorithm by approximating
the nonunitary evolution operator with a Gaussian operator,
U (τ ) ≈ e−τA, where A is a Hermitian operator and a function

of one of the two quadratures, q. After Trotterization, the
ansatz A is determined at each step in a manner similar to
the DV approach in [35]. The nonunitary Gaussian operator
e−τA is realized with the aid of ancilla qumodes. Only a single
ancilla is needed at each step regardless of the size of the
system. As the number of steps increases, the length of the
quantum circuit does not increase indefinitely, unlike in the
DV case, because the contributions to the Gaussian operator
A at each QITE step commute with each other. Thus the quan-
tum circuit only involves a finite number of parameters which
are determined by quantum measurements at each QITE step.
Thus, we avoid the use of non-Gaussian elements and rely on
quantum measurements that involve detectors projecting onto
photon-number eigenstates. We explain how our quantum al-
gorithm can be realized with existing technology.

Our discussion is organized as follows. In Sec. II, we
review the discretization of the massive φ4 self-interacting
scalar QFT. In Sec. III we discuss the details of our CV
quantum algorithm. In Sec. IV, we discuss our results using
Xanadu’s Strawberry Fields CV photonic quantum simulator
[43,44] and show that they are in agreement with exact results.
Henceforth, we refer to this simulator as the photonic simula-
tor for short. We also outline an experimental realization of
the quantum circuit with existing technology. We present our
conclusions and outlook in Sec. V.

II. THE MODEL

For definiteness, we concentrate on the simplest QFT de-
scribing a massive self-interacting scalar field in one spatial
dimension with a quartic interaction. Our results can be gen-
eralized to more complicated QFTs, including gauge theories
that describe elementary particle interactions.

To study the QFT on a quantum computer, we discretize the
system in space with coordinate x = 0, 1, . . . , L − 1, where L
is the length of the spatial dimension in units in which the
lattice spacing is a = 1. The Hamiltonian for a massive scalar
field φ(x) with a quartic interaction term is

H =
L−1∑
x=0

[
1

2
π2(x) + 1

2
[∇φ(x)]2 + m2

0

2
φ2(x) + λ

4!
φ4(x)

]
,

(1)
where m0 is the bare mass of the scalar field, λ is the interac-
tion strength, and π (x) is the conjugate momentum obeying
the commutation relations

[φ(x), π (x′)] = iδxx′ . (2)

The scalar field and its conjugate momentum can be expressed
in terms of creation and annihilation operators obeying com-
mutation relations [a(k), a†(k′)] = δkk′ as

φ(x) = 1√
L

L−1∑
k=0

1√
2ω(k)

[a†(k)e−2π ikx/L + H.c.], (3)

π (x) = i√
L

L−1∑
k=0

√
ω(k)

2
[a†(k)e−2π ikx/L − H.c.], (4)

where

ω(k) =
√

m2 + 4 sin2 πk

L
. (5)
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The mass parameter m is arbitrary as long as m2 > 0. One
may choose m = m0, but this is often not possible in physi-
cally interesting cases in which m2

0 < 0. If m is chosen as the
physical mass parameter, m = mphys (note that in an interact-
ing system mphys �= m0, due to quantum effects), then in the
continuum limit, ω(k) is the energy of a relativistic particle of
momentum 2πk

L . No physical quantities depend on the choice
of m, although spurious dependencies enter if one simulates
the system with qubits due to the truncation of the Hilbert
space. This is not an issue with CV quantum algorithms.

Having chosen m, we define the mass counter term δm by
m2 = m2

0 + δm. The Hamiltonian splits into a noninteracting
(H0) and an interacting (HI ) piece,

H = H0 + HI , (6)

where

H0 = 1

2

L−1∑
x=0

[π2(x) + [∇φ(x)]2 + m2φ2(x)],

HI =
L−1∑
x=0

[
−δm

2
φ2(x) + gφ4(x)

]
.

(7)

The noninteracting Hamiltonian is diagonal in the momentum
representation,

H0 =
∑

k

ω(k)

(
a†(k)a(k) + 1

2

)
, (8)

whereas the interaction part is diagonal in the position repre-
sentation.

For the CV quantum calculation, it is convenient to work
with the quadratures

q(k) = 1√
2

[a†(k) + a(k)], p(k) = i√
2

[a†(k) − a(k)],

(9)
in terms of which the noninteracting Hamiltonian reads

H0 =
∑

k

ω(k)

2
[p2(k) + q2(k)]. (10)

Its ground state can be written as

|�0〉 = |0〉0 ⊗ |0〉1 ⊗ . . . ⊗ |0〉L−1, 〈q|�0〉 = 1

πL/4
e−q2/2,

(11)
where q = (q(0), . . . , q(L − 1)). It has zero energy, by de-
sign.

Alternatively, we can work with the quadratures in the
position representation, φ(x) and π (x). The two sets of
quadratures are related to each other by a Bogoliubov trans-
formation that can be implemented with beam splitters and
squeezers,

φ(x) = 1√
L

L−1∑
k=0

1√
ω(k)

[
q(k) cos

2πkx

L
− p(k) sin

2πkx

L

]
,

π (x) = 1√
L

L−1∑
k=0

√
ω(k)

[
p(k) cos

2πkx

L
+ q(k) sin

2πkx

L

]
.

(12)

III. CV QUANTUM ALGORITHM

In this section, we introduce our CV quantum algorithm for
the calculation of energy levels and corresponding eigenstates
of the scalar QFT.

A. Ground state

We start by introducing a CV version of the QITE algo-
rithm. We choose the initial state, (11),

|	[0]〉 = |�0〉 (13)

and obtain the estimate of the ground-state energy of H ,

E [0] = 〈	[0]|H |	[0]〉. (14)

The imaginary-time evolution operator can be factored into
small (Trotter) steps,

e−τH = (e−
τH )n, (15)

where τ = n
τ . We wish to approximate each step that in-
volves non-Gaussian operations with an operator that can
be efficiently computed with a CV quantum algorithm. To
describe the iterative process, suppose that after s − 1 steps,
we arrive at the state |	[s − 1]〉. In the sth step, we evolve
this state in a small imaginary time, 
τ . The evolved state is

|	s(
τ )〉 ≡ e−
τH |	[s − 1]〉
‖e−
τH |	[s − 1]〉‖ . (16)

To approximate this non-Gaussian state, we introduce the sth
step Gaussian ansatz,

|	[s]〉 = e−
τ
∑

k γs (k)q2(k)/2|	[s − 1]〉
‖e−
τ

∑
k γs (k)q2(k)/2|	[s − 1]〉‖ , (17)

and choose the parameters γs(k) (k = 0, . . . , L − 1) that min-
imize the distance ‖|	[s]〉 − |	s(
τ )〉‖ at first order in 
τ .
We obtain

‖|	[s]〉 − |	s(
τ )〉‖2 ≈ (
τ )2
∑

k

Xs(k) + const., (18)

where

Xs(k) = 1
4 (〈q4(k)〉 − 〈q2(k)〉2)γ 2

s (k)

− (〈q2(k)H〉 − 〈q2(k)〉〈H〉)γs(k), (19)

with all expectation values calculated with respect to |	[s −
1]〉. The distance is minimized for the choice of parameters

γs(k) = 2
〈q2(k)H〉 − 〈q2(k)〉〈H〉

〈q4(k)〉 − 〈q2(k)〉2
. (20)

These parameters can be calculated at each step from expec-
tation values obtained from CV quantum hardware. Thus, the
state starting with (11) after s QITE steps, (17), is a squeezed
state [45],

〈q|	[s]〉 ∝ ⊗
L−1∏
k=0

e− q2 (k)
2 σ 2

s (k), σ 2
s (k) = 1 + 
τ

s∑
s′=1

γs′ (k),

(21)
and can be realized on a CV substrate with single-mode
squeezers of the respective squeezing parameters rs(k) =
log σs(k).

012412-3



YETER-AYDENIZ, MOSCHANDREOU, AND SIOPSIS PHYSICAL REVIEW A 105, 012412 (2022)

Although the above method leads to fast convergence in
the QFT considered here, for completeness we present an
alternate method that can be applied to a general choice of
initial state, since more complex initial states may be needed
for convergence in more complicated systems. Starting from
an unspecified initial state |	[0]〉, we introduce an ancil-
lary qumode in the vacuum state |0〉anc. Then we apply the
controlled-addition (XC) gate (a Gaussian),

XC (s(k)) = eis (k)panc⊗q(k), (22)

where s(k) ∈ R is a parameter to be determined. XC () is
a two-mode gate that can be decomposed into single-mode
squeezers (S) and beam splitters (B) as

XC () = B
(π

2
+ θ, 0

)
(S(r, 0) ⊗ S(−r, 0))B(θ, 0), (23)

where sin 2θ = − 1
cosh r , sinh r = −

2 , and r is a squeezing
parameter.

After the implementation of the XC gate, the state becomes
entangled:

XC (s(k))|	[0]〉|0〉anc =
∫

dLq	[0](q)|q〉|s(k)q(k)〉anc.

(24)
We then measure the ancilla qumode with a photon detector.
If the detector detects no photon, the state collapses to (unnor-
malized)

anc〈0|XC (s(k))|	[0]〉|0〉anc ∝ e−2
s (k)q2(k)/2|	[0]〉. (25)

We repeat the above process with different parameters for all
modes and arrive at the (unnormalized) state

e− ∑
k 2

s (k)q2(k)/2|	[0]〉. (26)

This matches the desired state |	[s]〉 with the choice of pa-
rameters determining the XC gate,

2
s (k) = 
τ

s∑
s′=1

γs′ (k). (27)

Next, we discuss the quantum computation of the param-
eters γs(k). They are given in terms of expectation values of
even powers of the quadratures for the various modes in the
state |	[s − 1]〉 obtained after s − 1 QITE steps.

For 〈q2n(k)〉 (n = 1, 2, . . . ), we work as follows. We intro-
duce an ancillary mode in the vacuum state, |0〉anc, and apply
the XC gate,

XC (η)|	[s − 1]〉|0〉anc =
∫

dLq	[s − 1](q)|q〉|ηq(k)〉anc.

(28)
Then we measure the photon number in the ancillary mode.
If the measurement outcome is nanc = 0, the state is projected
onto

anc〈0|XC (η)|	[s − 1]〉|0〉anc = e−η2q2(k)/4|	[s − 1]〉. (29)

The probability of this outcome is

P0(k) = ∥∥e−η2q2(k)/4|	[s − 1]〉∥∥2

= 〈	[s − 1]|e−η2q2(k)/2|	[s − 1]〉. (30)

Therefore, we managed to express the expectation value
〈e−η2q2(k)/2〉 as the probability P0(k) of a measurement out-
come projecting the ancillary mode onto a photon-number
eigenstate. By varying η, we obtain the expectation value of
any even power 〈q2n(k)〉,

〈q2n(k)〉 = (−2)n dn

d (η2)n
P0(k)

∣∣∣∣
η=0

. (31)

By repeating this process for a second mode, we obtain all
expectation values of the form 〈q2n(k)q2n′

(k′)〉, and similarly
for products involving more modes. To calculate the deriva-
tives on CV quantum hardware, a finite-differences method
can be used. One may also use the parameter shift rule for
CVs discussed in [46]. In each case, the circuit is repeatedly
run with different XC gate parameters to obtain the gradient or
higher-order derivatives of the physical quantities of interest.

We obtain expectation values involving the p quadrature
by following the above procedure with XC replaced by the ZC

gate,

ZC () = eiqanc⊗q. (32)

These results can be used to calculate all expectation values
in (20) and therefore yield γs(k). We also obtain the energy at
each step converging to the ground state of the system.

B. Mass gap

The above method may also be used to compute minimum
energies of states with an odd number of excitations. There are
L such states corresponding to the L qumodes in the system.
To obtain each of these energies, we may start from the state

|�(k)〉 ∝ q(k)|�0〉, 〈q|�(k)〉 ∝ q(k)e−q2/2 , (33)

where k = 0, 1, . . . , L − 1, which has energy ω(k) in the non-
interacting system. Note that all these states are orthogonal to
the ground state and form an orthonormal set (〈�0|�(k)〉 = 0,
and 〈�(k)|�(k′)〉 = δkk′ ). Therefore, the QITE algorithm is
expected to converge to different energy levels of the system if
we choose one of these states corresponding to single-particle
states of momentum 2πk

L . By momentum conservation, there
can be no transitions between these states or between one of
these states and the ground state. This is confirmed by an
explicit calculation showing that transition amplitudes vanish
(〈�0|H |�(k)〉 = 0, and 〈�(k)|H |�(k′)〉 = 0 if k′ �= k).

To calculate the mass gap, apart from the ground-state
energy E0, we need the first-excited-state energy E1. Then
the mass gap is mphys = E1 − E0. To calculate E1, we apply
the same QITE algorithm outlined above for the ground-state
energy E0, except that we choose |�(0)〉 as the initial state. It
is orthogonal to the ground state and has energy ω(0) = m
in the noninteracting system. Thus, we initialize the QITE
algorithm with the state

〈q|	[0]〉 ∝ q(0)e−q2/2. (34)

Following the same procedure as before, we adopt the ansatz,
(17), at the s − 1 QITE step and obtain the expression, (20),
for the parameters γs(k). To create the state |	[s]〉, we start
with the even state |�0〉 and introduce an ancilla qumode
in the vacuum state. Then we apply the XC gate, (22), thus
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obtaining the entangled state, (24). Then we measure the
photon number in the ancilla qumode, but unlike in the case
of the ground-state energy, for k = 0, we project onto the
single-photon state. Thus, instead of (26), we obtain the (un-
normalized) state

q(0)e− ∑
k 2

s (k)q2(k)/2|�0〉, (35)

with the choice of parameters given by (27) for the desired
state. This state approximates the first excited state of the
system.

C. Excited states

The states |	[s]〉 found in the course of implementing
QITE can be used to extract information about the excited
states of the system via the QLanczos algorithm. It should be
noted that one obtains states in different sectors of the Fock
space depending on the choice of initial state, e.g., the ground
state |�0〉 or one of the single-particle states |�(k)〉 of the free
system.

To illustrate the QLanczos algorithm, let us select two
states obtained via QITE, |	[s1]〉 and |	[s2]〉, where s2 − s1

is an even number. We then find the 2 × 2 Hamiltonian, which
is the restriction of H in the subspace (Krylov space) spanned
by the chosen QITE states,

Hi j = 〈	[si]|H |	[s j]〉, i, j = 1, 2. (36)

We also calculate the overlap matrix

Ti j = 〈	[si]|	[s j]〉, i, j = 1, 2. (37)

We obtain estimates of the energies of the ground and second
excited states by solving the generalized eigenvalue equation,

Hx = ET x, (38)

and estimates of the corresponding eigenstates from the cor-
responding eigenvectors x(E ),

	[E ] = x1(E )	[s1] + x2(E )	[s2]. (39)

The matrix elements Hi j and Ti j can be deduced in the course
of the QITE algorithm. The state |	[s]〉 is an approximation
to the state

|	[s]〉 ≈ cse
−s
τH |	[0]〉 ≈ cs

cs−1
e−
τH |	[s − 1]〉, (40)

where cs is a normalization constant, and(
cs

cs−1

)−2

= 〈	[s − 1]|e−2
τH |	[s − 1]〉. (41)

Therefore, the normalization constants can be calculated re-
cursively, starting with c0 = 1. We need 〈e−2
τH 〉 ≈ 1 −
2
τ 〈H〉, which is found in the QITE algorithm.

The matrix elements are obtained from QITE using

T11 = T22 = 1, T12 = T21 = cs1 cs2

cs̄
, s̄ = s1 + s2

2
(42)

and

Hii = 〈	[si]|H |	[si]〉, H12 = T12〈	[s̄]|H |	[s̄]〉. (43)

For higher excited states, we need to consider a higher-
dimensional Krylov space spanned by a subset of QITE states
|	[s]〉.

measure

measuremeasure

(a)

(b)

FIG. 1. (a) The quantum circuit for the implementation of QITE
steps starting from the initial state |�0〉 [Eq. (11)] for L = 1. The
squeezer S(rs) applied on the vacuum state implements the sth step
of the algorithm. A XC (θη, rη ) gate and a photon detector measuring
the vacuum state on the ancilla qumode with probability P0 is used
to calculate the expectation values of the 〈q2n(k)〉 quadrature of
Eq. (31). (b) The quantum circuit for the implementation of QITE
steps starting from an odd initial state |�(k)〉 [Eq. (33)] for L = 1.
A XC (θe, re) gate and a photon detector measuring the single-photon
state on the ancilla qumode project on the state |�(k)〉. Note that the
XC (θ, r) gates are decomposed into beam splitters and single-mode
squeezers in the figures.

IV. SIMULATION RESULTS AND EXPERIMENTAL
REALIZATION

In this section, we present our photonic simulator results
for the calculation of ground- and excited-state energies in φ4

self-interacting massive scalar quantum field theory using our
CV QITE algorithm. The quantum circuits depicted in Fig. 1
create approximations to the ground and first excited states,
respectively, as outlined above. Although these figures are
for the L = 1-point case, generalization to the L-point case is
straightforward. These circuits can be easily simulated with a
photonic simulator where the required states, Gaussian gates,
and measurement tools are readily available. They can also be
realized experimentally with existing technology.

The energy expectation value obtained at each QITE step
is plotted in Fig. 2 as a function of the imaginary time for
the single-point lattice, L = 1, a toy model. We compare the
values obtained from the photonic simulator to exact analytic
calculations for strength of interaction λ = 4.8, cutoff for the
Hilbert-space dimension in the photonic simulator ncutoff =
20, and XC gate parameter η = 0.1. Starting the CV QITE
algorithm with initial state |	[0]〉 = |�0〉, the energy expec-
tation values are seen to converge to the ground-state energy.
Due to the cutoff in the Hilbert-space dimension needed due
to the limitations of the photonic simulator, there is a 1.75%
error in the ground-state energy.

Using the approach discussed in Sec. III B, the mass gap

gap is plotted as a function of the imaginary time in the inset
in Fig. 2, comparing photonic simulator results with exact
values. Convergence of the mass gap to its theoretical value
is observed. There is a 0.59% error in the mass gap obtained
with the photonic simulator. As discussed above, by choosing
one of the odd wave functions |�(k)〉 [Eq. (33)] as the initial
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FIG. 2. Energy expectation value as a function of the imagi-
nary time obtained using the photonic simulator and compared with
theoretical values for the single-lattice-point toy model (L = 1).
Convergence to the ground-state energy for λ = 4.8 is observed
with cutoff dimension ncutoff = 10 and XC gate parameter η = 0.1
starting with initial state |	[0]〉 = |�0〉. Inset: The convergence of
the mass gap, 
gap, i.e., the difference between the ground-state and
the first-excited-state energies, to its exact value as a function of the
imaginary time.

state, the QITE algorithm approximates excited states of the
system. The quantum algorithm in this case relies on the
experimental setup depicted in Fig. 1(b), which can also be
realized experimentally with existing technology. In Fig. 3,
we demonstrate the convergence of the energy expectation
values to the ground-, first-excited-, and third-excited-state
energies, starting with initial states |�0〉, |�(0)〉, and |�(1)〉,
respectively, for the case of two lattice points (L = 2). We
used the photonic simulator to obtain the simulator results.
The parameters used were m2 = 0.1, λ = 1, and η = 0.1.
We ran the CV quantum circuit in Fig. 1(a) at each QITE
step for initial state |�0〉 and the one in Fig. 1(b) for initial
states |�(k)〉 (k = 0, 1). Calculation of the various terms con-
tributing to the parameters γs(k) [Eq. (20)] requires additional
measurements, which were done with the aid of quantum
circuits depicted in Fig. 1. In these calculations we only used
the contributions coming from γs(0) since it contributes the
most to the convergence of the energy expectation value. For
this reason, the generalization of the quantum circuit to the

FIG. 4. Relative uncertainty in the value of the third derivative in
terms of the imprecision 
r in the squeezing parameter in the XC

gate [Eq. (23)].

L = 2-point case is just repetition of the circuit in Fig. 1
except for the initial squeezer in the second qumode. We cal-
culated the derivatives needed [Eq. (31)] using the differential
quadrature method [47]. We evaluated the probability P0 using
the parameters η2

i ∈ [0, 0.1, 0.2, 0.3, 0.4], which means even
spacing η2

i+1 − η2
i = 0.1.

It should be noted that the calculation of high-order deriva-
tives requires very good precision in the parameters of the
XC gate [Eq. (23)], i.e., the squeezing parameter r and the
beam-splitter angle θ , as well as the measured probability
P0(k) [Eq. (30)]. In Fig. 4, we show the relative uncertainty

d3
d3

in the value of the third derivative d3 = d3P0
d (η2 )3 (as it is

the highest-order derivative in our calculations and thus the
most difficult to experimentally implement) in terms of the
uncertainty in the squeezing parameter r, for even and opti-
mized sample spacing η2

i+1 − η2
i values. Although we observe

a sensitivity in the calculated value of the third derivative,
we still achieve a low relative uncertainty with a reasonable
sample spacing, which can be further reduced by selecting
appropriately optimized, unevenly spaced samples η2

i .
Figure 5 depicts the mass gap for the two-point lattice

model (L = 2) with parameters m2
0 = −0.1, δm = 0.2, and

λ = 1. It converges rapidly to the expected value. However,
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FIG. 3. Energy expectation values as a function of the imaginary time obtained with the photonic simulator and compared with analytic
values for L = 2 lattice points. The convergence to the ground-state (left panel), first-excited-state (middle panel), and third-excited-state (right
panel) energies was obtained with initial states |	[0]〉 = |�0〉, |	[0]〉 = |�(0)〉, and |	[0]〉 = |�(1)〉, respectively. Here, |�0〉 is the ground
state of the free system [Eq. (11)] and |�(k)〉 denotes the single-particle excited states [Eq. (33)]. The parameters used are λ = 1, m2

0 = 0.1.
We chose the cutoff dimension of Hilbert space in the photonic simulator ncutoff = 10.
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FIG. 5. Mass gap values as a function of the imaginary time ob-
tained with the photonic simulator and compared with analytic values
for L = 2 lattice points. The parameters used are λ = 1, m2

0 = −0.1,
and δm = 0.2.

as discussed above, the convergence of the energy expectation
value is sensitive to the spacing value chosen for the derivative
calculations. In Figs. 3 and 5, we chose even spacing with
spacing value 0.1. This resulted in a nice convergence in the
ground-state and third-excited-state energy plots. However,
there was a slight increase in the first-excited-state energy
plot after around β = 0.9 and in Fig. 5 after β = 2. This
increase does not occur when smaller spacing values are used.
However, one needs to keep in mind that there is a limitation
to the experimental squeezing parameter values. The spacing
value we use requires squeezing of less than 10 dB, which is
experimentally reasonable. To obtain better convergence, one
needs higher squeezing.

V. CONCLUSION

In this work, we developed a CV QITE algorithm to cal-
culate the ground- and excited-state energies of a φ4 scalar
QFT on a one-dimensional spatial lattice. Unlike with DV
quantum computing, where a register of qubits is needed at
each lattice point and the Hilbert space is truncated, only a
single qumode at each lattice point was needed. The algo-
rithm required ancilla qumodes for its implementation. The
ancilla qumodes did not add a significant overhead, as their

number was comparable to the number of qumodes needed
for the system. Our CV quantum algorithm avoided the use of
non-Gaussian gates, which are technologically challenging to
implement. It only relied on Gaussian operators and measure-
ments projecting onto photon-number eigenstates. Therefore,
it can be implemented with existing technology. Figure 1
shows the CV quantum circuits involved.

We implemented our algorithm in simple cases of lattices
with L = 1 (toy model) and L = 2 points using Xanadu’s
Strawberry Fields photonic quantum simulator. We observed
convergence of energy expectation values to the ground- and
excited-state energies depending on the choice of initial state,
|�0〉 [Eq. (11)] and |�(k)〉 [Eq. (33)], respectively. Higher
energy levels can also be reached by using the states derived in
CV QITE as input to a CV version of the QLanczos algorithm.

Our results provide the basis for the development of CV
quantum algorithms that rely on Gaussian operators and pho-
tonic measurements which can be implemented with existing
technology. Our method can be extended to QFTs such as
gauge theories that describe elementary particle interactions,
and the states derived with our CV QITE algorithm can be
used for the calculation of various physical quantities of inter-
est, such as scattering amplitudes. Work in this direction is in
progress.
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