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Entropic entanglement criteria in phase space
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We derive entropic inseparability criteria for the phase-space representation of quantum states. In contrast to
criteria involving differential entropies of marginal phase-space distributions, our criteria are based on a joint
distribution known as the Husimi Q distribution. This distribution is experimentally accessible in cold atoms,
circuit QED architectures, and photonic systems, and bears practical advantages compared to the detection of
marginals. We exemplify the strengths of our entropic approach by considering several classes of non-Gaussian
states where second-order criteria fail. We show that our criteria certify entanglement in previously undetectable
regions, highlighting the strength of using the Husimi Q distribution for entanglement detection.
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I. INTRODUCTION

Entanglement is the distinguishing feature of quantum
systems and its detection is critical for characterizing them
[1]. Fundamental problems such as the thermalization of
isolated quantum systems and characterizing quantum phase
transitions strongly rely on a deep understanding of how en-
tanglement manifests and evolves [2,3]. However, a central
problem in studying entanglement is being able to derive
experimentally accessible witnesses to detect it [4,5]. The
complexity of such a problem depends upon the Hilbert space
size, such that continuous variable systems with an infinite-
dimensional Hilbert space pose a particular challenge.

For continuous quantum variables, many entanglement cri-
teria rely on measuring the second-order moments of two
marginal distributions [6–11]. These criteria are most pow-
erful when the state is Gaussian but are often insensitive
elsewhere [12,13]. This can pose significant problems as
there are many important classes of highly entangled non-
Gaussian states that cannot be witnessed by second-order
criteria [14–16].

To capture higher-order moments of measured distribu-
tions [17,18], one can use differential entropies of measured
marginal distributions [19,20]. Differential entropies reach
beyond the scope of second-order criteria since they are a
functional of the full probability density function. Examples
include criteria that rely on entropic uncertainty relations
[21–25] as well as the complexity-based criterion [26]. Other
approaches are predicated on entropic uncertainty relations
with (quantum) memory [27,28] or as entropic steering
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inequalities [29,30]. Entropic criteria have also been derived
and experimentally tested for discrete variables [31–36].

One disadvantage to these methods is that measuring
marginals of a distribution is often costly and impractical as
it requires angle tomography. This is particularly difficult in
ultracold quantum gas experiments where statistics are limited
[37]. In this paper, we take a conceptually different approach
and characterize the inseparability of a given bipartite state not
by its marginal distributions, but by its joint probability distri-
bution. This distribution, known as the Husimi Q distribution,
is a quasiprobability distribution that contains the full infor-
mation about the state [38–42]. Unlike the Wigner function, it
is non-negative and hence has an associated entropy known as
the Wehrl entropy [43,44].

The detection of marginal distributions (via Wigner) and
the simultaneous detection of phase-space variables (via
Husimi) for quantum state tomography are considered as two
complementary, but in principle equally powerful, approaches
[45]. For jointly measured observables, the full informa-
tion about correlations between different directions in phase
space is simultaneously available; for sequentially measured
marginals, a direction needs to be preselected. This suggests
the Husimi Q distribution offers unexplored opportunities to
derive entanglement witnesses for systems where experimen-
tal statistics are limited.1

Crucially, the Husimi Q distribution (and hence the Wehrl
entropy) is an experimentally accessible quantity that can
be measured via tomographic methods [47]. This is well
established within quantum optics and has been realized in
experiments [48–50]. Recently, the measurement of Husimi
Q distributions has been demonstrated on a variety of other
platforms, including ultracold Bose gases [51,52], atoms in
optical cavities [53,54], and circuit QED architectures [55],

1The Wehrl entropy in the context of entanglement has only been
discussed to define an entanglement monotone [46].
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showing practical advantages with respect to the detection of
marginals.

Here, we derive entanglement criteria in terms of entropies
of the Husimi Q distribution. We show that these criteria are
stronger than previously known ones for certain classes of
states within the non-Gaussian regime. We discuss various
experimental platforms where we expect our criteria could be
most powerful in terms of implementation and state detection.

Notation. We set h̄ = 1 and disregard operator hats. We use
capital letters for quantum operators Xj and small letters for
their corresponding eigenvalues x j and eigenvectors |x j〉.

II. HUSIMI Q DISTRIBUTION AND WEHRL ENTROPY

We consider a set of continuous quantum variables Xj and
Pj that fulfill the bosonic commutation relation [Xj, Pk] = iδ jk

where the subindices denote the two subsystems j, k ∈ {1, 2}.
A canonical transformation can make rotations in the local
phase spaces by angles ϑ j ,(

Rj

S j

)
=

(
cos ϑ j sin ϑ j

− sin ϑ j cos ϑ j

)(
Xj

Pj

)
. (1)

To a set of (possibly rotated) position and momentum op-
erators Rj and S j , we define annihilation operators Aj =
(Rj + iS j )/

√
2 such that coherent states are their eigenstates

Aj |α〉 = α j |α〉. The complex eigenvalues α j are parametrized
as α j = (r j + is j )/

√
2. One can associate a positive operator-

valued measure (POVM) to pure coherent-state projectors of
the form Eα = |α〉 〈α|. This POVM is experimentally acces-
sible through tomographic schemes [47] or the heterodyne
detection protocol commonly used in quantum optical sys-
tems [12,39,40], which corresponds to measuring the state ρ

in the pure coherent-state basis.
The distribution associated to the measurement outcomes

for a set of conjugate quantum variables is the global Husimi
Q distribution

Q(r1, s1, r2, s2) = Tr{ρEα} = 〈α|ρ|α〉 . (2)

Due to the nonorthogonality of the coherent states, the Husimi
Q distribution is a quasiprobability distribution in phase space.
The readout angles ϑi can then be chosen in a postmea-
surement analysis unlike measuring marginals of the Wigner
distribution where these angles need to be preselected. Also,
the Husimi Q distribution is bounded, 0 � Q � 1, and nor-
malized to unity with respect to the phase-space measure∏

j dr jds j/(2π ).
Hence, an entropy associated to the Husimi Q distribution

exists, known as the Wehrl entropy [43,44],

SW(Q) = −
∏

j

∫
dr j ds j

2π
Q ln Q. (3)

The Wehrl entropy is strictly monotonous under partial trace
and can therefore be regarded as a classical (differential) en-
tropy [56].

The Wehrl-Lieb inequality bounds the Wehrl entropy from
below [57,58] (for 2N-dimensional phase space),

SW(Q) � N, (4)

and can therefore be understood as an entropic uncertainty
relation in the quantum mechanical phase space. In contrast to
many common uncertainty relations, it is not invariant under
one-mode squeezing but is instead preserved under rotations
in phase space.

It is useful to make a linear transformation to nonlocal
Einstein-Podolsky-Rosen (EPR)-type variables [59],

r± = r1 ± r2, s± = s1 ± s2. (5)

By integrating over half of these variables one obtains from
Eq. (2) marginalized distributions

Q±(r±, s∓) =
∫

dr ds

2π
Q(r, s,∓r ± r±,±s ∓ s∓). (6)

These are normalized to unity with respect to the measure
dr±ds∓/(2π ) but, because of the twisted assignment (r±, s∓),
they are not themselves Husimi Q distributions.2 One can
associate to them an entropy SM(Q±) that is defined in anal-
ogy to Wehrl’s entropy in Eq. (3) even though s∓ is not the
conjugate momentum of r±.

III. INSEPARABILITY CRITERIA

We first derive criteria for pure states and show they gen-
eralize to mixed states. We consider pure separable states, for
which the density operator is a product ρ = ρ1 ⊗ ρ2. Here, the
global Husimi Q-distribution factorizes

Q(r1, s1, r2, s2) = Q1(r1, s1) Q2(r2, s2), (7)

where Qj (r j, s j ) denotes the marginals of the global Husimi
Q distribution.

Inserting Eq. (7) in Eq. (6) yields

Q±(r±, s∓) = (Q1 ∗ Q(±)
2 )(r±, s∓), (8)

where ∗ denotes a convolution and Q(±)
2 ≡ Q2(±r,∓s). In-

voking the two-dimensional entropy power inequality [60–62]

eS(QA∗QB ) � eS(QA ) + eS(QB ), (9)

for any two two-dimensional Husimi Q distributions QA and
QB, as well as the invariance of the Wehrl entropy under
mirror reflections in phase space allows us to write

eSM(Q± ) � eSW(Q1 ) + eSW(Q2 ). (10)

Thus, we find the pair of inequalities

SM(Q±) � ln(eSW(Q1 ) + eSW(Q2 ) ), (11)

which provide a state-dependent lower bound on the entropies
SM(Q±) obeyed by all pure product states. Hence, pure states
for which SM(Q±) violates this bound are necessarily entan-
gled. We call Eq. (11) the strong criteria.

To obtain a state-independent bound, we apply the Wehrl-
Lieb inequality Eq. (4) to both subsystems, leaving us with the
criteria

SM(Q±) � 1 + ln 2. (12)

2The appearance of the mixed variable pairs (r+, s−) and (r−, s+)
can be understood when employing the positive partial transpose
criterion for continuous quantum variables [6].
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As the latter relations are in general less tight than Eq. (11),
we call them the weak criteria.

We can generalize the weak criteria to mixed states by
starting with a general mixed separable state ρ = ∑

i pi(ρ i
1 ⊗

ρ i
2), where pi � 0 and

∑
i pi = 1. On the level of the global

Husimi Q distributions, one has an analogous decomposition,
leading, via Eq. (6), to

Q±(r±, s∓) =
∑

i

pi Qi
±(r±, s∓). (13)

Using concavity of the entropy SM(Q±) [63], we find

SM(Q±) �
∑

i

piSM(Qi
±) � 1 + ln 2, (14)

where we have employed the strong pure state criteria Eq. (11)
and then the Wehrl-Lieb inequality Eq. (4). Therefore, the
weak Wehrl entropic criteria for pure product states Eq. (12)
generalize identically to mixed states. One could derive a set
of strong criteria for mixed states, however this requires the
knowledge about the decomposition of ρ, which is inaccessi-
ble in experiments. The violation of inequality Eq. (14) thus
flags entanglement, rendering it an inseparability criterion.

IV. EXAMPLE STATES

A. Gaussian states

An important class of states to consider is Gaussian states,
which can be fully characterized by their first- and second-
order moments. Since entropies are generally invariant under
constant shifts of variables, we assume without loss of gen-
erality that the mean values vanish 〈r〉 = 〈s〉 = 0. Hence, we
only need to specify the covariance of the state

γ =
(〈r2〉 〈rs〉

〈sr〉 〈s2〉
)

≡
(

σ 2
r σrs

σrs σ 2
s

)
, (15)

which is also the covariance matrix of the Wigner W dis-
tribution. The diagonal entries contain the variances of the
corresponding marginal distributions, while the off-diagonal
elements contain the covariance. One can always choose rota-
tion angles ϑi such that σrs = 0, which aligns the coordinate
axes along the principal axes.

For the Husimi Q distribution, we define the covariance
matrix as

Vi j ≡ 1
2 〈{ui, u j}〉Q , (16)

where u = (r, s) and the subscript Q indicates the expectation
value with respect to the Husimi Q distribution. Given that
the Husimi Q distribution can be obtained via a Weierstrass
transform of the Wigner W distribution with respect to the
vacuum W0, we can reconcile the two covariance matrices
Eqs. (16) and (15) as V = γ + γ0. Then, expressed in terms
of the twisted variables (r±, s∓), the Husimi Q distribution of
a general Gaussian quantum state leads to

Q±(r±, s∓) = 1

Z
e− 1

2 (r±,s∓ )T V −1
± (r±,s∓ ), (17)

where Z = det1/2 V± is a normalization constant.
The entropy SM of a state with covariance matrix V± is

maximized by a Gaussian distribution of the form Eq. (17),

FIG. 1. Regions where the MGVT criteria Eq. (20) and the
second-order criteria Eq. (19) are fulfilled, plotted against the two
marginal variances σr± and σs∓ . The regions below the covering
curves indicate entanglement. (a) We vary σr±s∓ and fix a = 1.
The second-order criteria Eq. (19) automatically account for an
impractical alignment of the coordinate axes, while the MGVT cri-
teria Eq. (20) can become less tight for an improper alignment.
(b) We vary a and fix σr±s∓ = 0. The MGVT criteria Eq. (20) are
invariant under an equal amount of local squeezing a, whereas the
second-order criteria Eq. (19) must be optimized over a. We have
additionally marked the two-mode squeezed state for all squeezing
parameters λ (gray line) from the vacuum state σr± = σs∓ = 1 (gray
square) up to the fully correlated EPR state σr± = σs∓ = 0 (black
dot).

such that

1 + 1
2 ln det V± � SM(Q±) � 1 + ln 2 (18)

holds for all Q±(r±, s∓). Therefore, the weak entropic criteria
Eq. (14) imply a set of second-order based criteria and the two
are equivalent for Gaussian states.

Our criteria are invariant under rotations (see Appendix A),
however they are not invariant under local squeezing. If we
consider equal amounts of local squeezing a > 0, the second-
order criteria can be rewritten as

(
σ 2

r± + a2)(σ 2
s∓ + 1

a2

)
� 4 + σ 2

r±s∓ . (19)

After optimizing over the local squeezing parameter a and
choosing angles ϑi such that the coordinate axes are parallel to
the principal axes (i.e., σ 2

r±s∓ = 0) these criteria are equivalent
to the Mancini-Giovannetti-Vitali-Tombesi (MGVT) criteria
[8]

σr±σs∓ � 1, (20)

which themselves are equivalent to the entropic criteria in
Ref. [24] for Gaussian states. In contrast to our second-order
criteria Eq. (19), the MGVT criteria are invariant under equal
amounts of local squeezing. However, they are not invariant
under rotations in the ±-phase space as they do not contain
the covariances. In this sense, the two second-order criteria
Eqs. (19) and (20) behave complementary under rotations and
squeezing. This is summarized in Fig. 1.

Note that both second-order criteria Eqs. (19) and (20) are
only sufficient criteria for inseparability. This implies that the
criteria by Simon [6] and Duan et al. [7] (after optimization
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FIG. 2. (a) Wehrl entropic criteria for the first 15 NOON states.
Entanglement is witnessed when the points (blue diamonds) are be-
low the bars. The strong criterion Eq. (11) witnesses entanglement up
to N = 11, while the weak criterion Eq. (14) does not witness any en-
tanglement. (b) Testing the weak criterion Eq. (14) for the dephased
cat state Eq. (22) with s = 0. Negative W = SM(Q±) − 1 − ln 2
witnesses entanglement. Entanglement is detected for Re[α] > 0 and
z < 1, but the difference W converges quickly to zero for Re[α] �
3/2. In both cases ϑ1 = ϑ2 = 0.

over local squeezing parameters and angles) are generally
stronger in the Gaussian regime.

B. Non-Gaussian states

To exemplify the strengths of our entropic criteria, we
consider a set of non-Gaussian entangled states that cannot be
witnessed by second-order criteria to test the weak [Eq. (14)]
and strong criteria [Eq. (11)].3

First, we consider the planar NOON states that are given
by

|ψN 〉 = 1√
2(1 + δ0N )

(|N, 0〉 + |0, N〉), (21)

with N ∈ N0.
We plot the behavior for the two criteria in Fig. 2(a)

up to N = 15 for Q+(r+, s−). Our strong Wehrl criteria
Eq. (11) witnesses entanglement up to N = 11. This goes
beyond the capabilities of entropic criteria based on marginal
distributions. For example, the witness in Ref. [24] detects en-
tanglement up to N = 5, while the generalization in Ref. [25]
is capable of certifying entanglement up to N = 6. The weak
criteria Eq. (12) do not witness any entanglement, which is
analogous to the results in Refs. [24,25].

As a second example, we consider the Schrödinger cat state

ρ = N (α)[|α, α〉 〈α, α| + |−α,−α〉 〈−α,−α|
−(1 − z)(|α, α〉 〈−α,−α| + |−α,−α〉 〈α, α|)], (22)

where 0 � z � 1 and N (α) = [1 + (1 − z)e−4|α|2 ]/2 normal-
izes the state. For z = 0, Eq. (22) is a pure Schrödinger cat
state and for z > 0 it is a dephased cat state that is mixed.

In Fig. 2(b), we show that entanglement is witnessed for all
values of Re[α] > 0, Im[α] = 0, and z < 1 by the weak crite-
ria Eq. (14). In principle, detecting entanglement in Eq. (22)
depends on Im[α] too. However, one can choose arbitrary ϑi

3When the state is pure, however, the Wehrl mutual information
already provides a perfect entropic witness [56].

such that the optimal α only depends upon its real component.
The inseparability criteria in Eq. (14) are violated most in
the region 0 � Re[α] � 3/2, while for larger Re[α] � 2, the
difference between a superposition and a mixture becomes
suppressed exponentially. In contrast, the entropic criteria in
Refs. [24,25] certified entanglement only for Re[α] � 5/3 and
z < 1 when using ϑ1 = ϑ2 = 0.

V. POSSIBLE EXPERIMENTAL REALIZATIONS

The protocol for applying our entropic witnesses in exper-
iments is to measure the full Husimi Q distribution Eq. (2)
and to estimate from the obtained data the entropies of the
EPR-type variables Eq. (5). Techniques for measuring Husimi
Q distributions are well established in quantum optics and
include (i) tomographic schemes applying displacements to
the prepared states before measuring its vacuum projection
[64] and (ii) heterodyne measurements [48]. Recently, these
schemes have been realized in other experimental systems
including ultracold spinor Bose gases [52], cold atoms in
cavities [53,54], and circuit QED architectures [55]. Addi-
tionally, measurements of the Q distribution via coherent
displacements and measurements of the vacuum state [47]
could readily be realized in trapped-ion systems [65]. The
works listed here have measured (or have the potential to
measure) Husimi distributions for a monopartite system (i.e.,
a single mode). Therefore, further work would need to be
carried out to extend measurements to a bipartite system
(i.e., two modes) so that the witness presented here could be
applied.

Both schemes could carry practical advantages—
particularly for cold atom systems—compared to the
detection of marginals: Scheme (i) overcomes the problem of
the high detector resolution, necessary for accurate entropy
estimation, by requiring only the technically easier and more
scalable task of detecting the probability of all particles
being in the same state or mode (vacuum detection). Both
schemes avoid determining the detection angles ϑi in Eq. (1),
which is costly in terms of experimental runs in cold atom
experiments. Additionally, tomography angles are often
difficult to control precisely here. Due to these features, our
entanglement criteria will potentially enable the experimental
certification of entangled states beyond the reach of currently
available methods.

We note that our derivation uses the Husimi Q distribution
with respect to the harmonic oscillator coherent states. This
accurately describes the distribution obtained from hetero-
dyne measurements in quantum optics, however, for many of
the aforementioned experimental platforms, the applicability
of this description is limited due to finite particle numbers and
will require a generalization to SU(2) coherent states. Addi-
tionally, the extraction of entropies from experimental data is
a challenging task in the presence of finite detector resolution
and statistical noise [33]. The required measurement statistics
for a given experimental platform, prepared state, and suitable
entropy extraction scheme need to be evaluated carefully in
order to make statements about the actual experimental cost
and feasibility. These aspects are subject to ongoing and future
research in our group.
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VI. CONCLUSIONS

We have derived inseparability criteria in terms of variants
of the Wehrl entropy, which can be applied when measur-
ing the Husimi Q distribution. In contrast to most (entropic)
criteria, we have shown that our criteria are invariant under
rotations in phase space while depending on the local squeez-
ing parameters. As a consequence, the criteria witnessed some
entangled states that are undetectable using entropic criteria
based on marginal distributions. We have discussed the imple-
mentation of our witness for a wide variety of experimental
platforms and expect it to perform strongly in comparison
with previous marginal criteria. Future theoretical studies
should generalize the presented approach to spin operators
fulfilling a SU(2) algebra to formulate entropic criteria for
discrete quantum spin systems.
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APPENDIX A: SYMPLECTIC TRANSFORMATIONS

To validate our second-order criteria, we consider how
symplectic transformations in the ± variables affect the
Husimi Q distribution. A general symplectic transformation
S ∈ Sp(2,R) fulfilling ST �S = �, with � being the sym-
plectic form, can easily be applied to the original Wigner
W distribution [6]. This causes the corresponding covariance
matrix γ to transform as

γ → γ ′ = Sγ ST . (A1)

In contrast, the distribution Q± does not transform in a
straightforward manner. We therefore restrict our analy-
sis of the symplectic group to only Gaussian states. The

second-order criteria Eq. (18) then transform as

det V± → det V ′
± = det(Sγ±ST + γ0)

= det[γ± + γ0(ST S)−1], (A2)

where we used det S = det ST = 1 and that the vacuum
covariance matrix is the identity γ0 = 1. This shows that
invariance of det V± is equivalent to S being an orthogonal
matrix ST S = 1 corresponding to a rotation. Therefore, the
orientation of the axes is unimportant for the analysis of
entanglement. This result generalizes to arbitrary marginals
of Husimi Q distributions since any two-dimensional (differ-
ential) entropy is invariant under a rotation.

APPENDIX B: EXPLICIT HUSIMI Q DISTRIBUTIONS

Our first example in the main text was the set of NOON
states, given in Eq. (21). The global Husimi Q distribution for
ϑ1 = ϑ2 = 0 is

Q(r1, s1, r2, s2) = e− 1
2 (r2

1 +s2
1+r2

2 +s2
2 )

2N+1 N!(1 + δ0N )

× [(r1 − is1)N + (r2 − is2)N ]

× [(r1 + is1)N + (r2 + is2)N ]. (B1)

The second example that we considered was the
Schrödinger cat state given in Eq. (22). Recall that for z = 0,
Eq. (22) is a pure Schrödinger cat state and for z > 0 it is a de-
phased cat state that is mixed. The full Husimi Q distribution
for ϑ1 = ϑ2 = 0 is

Q(r1, s1, r2, s2)

= N (α)[e− 1
2 [(r−r1 )2+(s−s1 )2+(r−r2 )2+(s−s2 )2]

+ e− 1
2 [(r+r1 )2+(s+s1 )2+(r+r2 )2+(s+s2 )2]

+ 2(1 − z)e−r2−s2− 1
2 (r2

1 +s2
1+r2

2 +s2
2 )

× cos[r(s1 + s2) − s(r1 + r2)]], (B2)

where we use the parametrization α = (r + is)/
√
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