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Digital signatures are widely used for providing security of communications. At the same time, the security of
currently deployed digital signature protocols is based on unproven computational assumptions. An efficient way
to ensure an unconditional (information-theoretic) security of communication is to use quantum key distribution
(QKD), whose security is based on laws of quantum mechanics. In this work we develop an unconditionally
secure signature scheme that guarantees authenticity and transferability of arbitrary length messages in a QKD
network. In the proposed setup, the QKD network consists of two subnetworks: (i) an internal network that
includes the signer and with limitation on the number of malicious nodes and (ii) an external network that has
no assumptions on the number of malicious nodes. A consequence of the absence of the trust assumption in
the external subnetwork is the necessity of assistance from internal subnetwork recipients for the verification of
message-signature pairs by external subnetwork recipients. We provide a comprehensive security analysis of the
developed scheme, perform an optimization of the scheme parameters with respect to the secret key consumption,
and demonstrate that the developed scheme is compatible with the capabilities of currently available QKD
devices.
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I. INTRODUCTION

An essential task for modern society is to guarantee the
identity of a sender and the authenticity of a message within
electronic communications. This problem can be solved with
the use of digital signatures [1]. Importantly, digital signatures
also guarantee that messages are transferable, so a forwarded
message could also be accepted as valid. Currently deployed
digital signatures are mostly based on unproven computa-
tional assumptions such as the computational complexity of
factoring large integers or computing discrete logarithms.
This task is believed to be computationally hard for classical
computers, but it appeared to be solved in polynomial time
using a large-scale quantum computer [2]. This has stimulated
active research on the possibility of realizing digital signatures
which are resistant to attacks with quantum computers.

One particular option is to use quantum signatures that
provide an unconditional (information-theoretic) level of se-
curity. In the seminal theoretical proposal [3] a quantum
version of Lamport’s one-time signature scheme [4] based on
a one-way quantum function was considered. An alternative
scheme that is based on a quantum one-way function and
the involvement of a trusted party was proposed in Ref. [5].
Theoretical proposals were followed by the first experimental
demonstration reported in Ref. [6]. Unfortunately, all these
schemes require efficient quantum memory, which is still at an
immature stage in its technology. The important step towards
developing quantum signatures is removing the demanding re-

quirement of quantum memory considered both theoretically
[7–12] and experimentally [13–18].

An important class of quantum signature schemes (see
Refs. [11,15]) is the one based entirely on the technology
of quantum key distribution (QKD) [19–22], which is cur-
rently available at the commercial level. In a sense, this
approach follows the development of classical (traditional)
unconditionally secure signature schemes [12,23–28] that
provide authenticity and transferability of (classical) mes-
sages based on some resource such as authenticated broadcast
channels and secret authenticated classical channels. Since the
QKD provides legitimate parties with unconditionally secure
symmetric keys, any unconditionally secure signature (USS)
scheme that requires secret authenticated classical channels
appears to be suitable for implementation in contemporary
QKD networks.

However, several obstacles prevent the practical deploy-
ment of QKD-assisted USS schemes [11,15] as well other
quantum signature schemes [8,10,13,14]. The first one is that
all these schemes are analyzed for a network consisting of
three parties only. The second one is that messages of the
length of only a single bit are considered. These two issues are
covered in Refs. [29,30]: Specifically, in Ref. [29] a multiparty
QKD-assisted USS scheme was introduced, while Ref. [30]
proposed employing almost strongly 2-universal families to
sign messages of practically arbitrary length. Nevertheless,
as we show in our work, these schemes suffer from security
loopholes that appear in the realization of these schemes in
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FIG. 1. Organization of the QKD network used in the developed
USS scheme. The signer and the set of N internal recipients are
connected within an all-to-all topology. Each of the M external recip-
ients is necessarily connected with at least 2ω + 1 internal recipients.
The requirement on the secret key generation rate for the QKD links
connecting nodes of the internal subnetwork is higher compared to
all other QKD links.

practice. Moreover, the security bounds derived in security
proofs in [30] are based on the simplified case of two-bit
authentication tags and though they demonstrate good asymp-
totic behavior of secret key consumption, they appear to be
impractical for deployment in realistic QKD networks.

In the present work we improve the practicality of USS
schemes. By revising the results of Ref. [30], we develop
an unconditionally secure signature scheme that guarantees
authenticity and transferability of practically arbitrary length
messages in a QKD network of more than four nodes. In
contrast to previous designs of USS schemes, we consider the
global network consisting of two subnetworks (see Fig. 1):
the internal network that includes the signer and with upper
bound ω on the number of malicious nodes and the external
network that has no assumptions on the number of dishonest
users (in these terms, previously proposed schemes consider
the internal subnetwork only). We introduce a concept of the
delegated verification that allows external recipients to verify
and forward message-signature pairs by means of assistance
from internal subnetwork recipients. We provide a full se-
curity analysis of the developed scheme, perform numerical
optimization of the scheme parameters with respect to the
secret key consumption, and demonstrate that the developed
scheme is compatible with the capabilities of contemporary
QKD devices.

Our work is organized as follows. In Sec. II we describe a
general scheme of the proposed QKD-assisted USS scheme.
In Sec. III we introduce the main security definitions and
formulate security statements. In Sec. IV we analyze the per-
formance of the proposed quantum digital signature scheme.
We summarize our results and conclude in Sec. V.

II. QKD-ASSISTED USS SCHEME: WORKFLOW

A. Organization of the network

We consider an operation of the USS scheme in a QKD
network consisting of N + M + 1 nodes, where N � 4 and
M � 0 (see Fig. 1). Here, by the QKD network, we understand
a set nodes (devices) which are able to communicate with
classical messages and also are connected with pairwise QKD

setups producing unconditionally secure symmetric keys. We
refer to the whole network of N + M + 1 nodes as the global
QKD network. Within this global network we distinguish two
subnetworks: (i) a set of N + 1 nodes labeled by {Pi}N

i=0 and
called an internal subnetwork and (ii) the remaining part of
the global network consisting of M nodes labeled by {Ei}M

i=1
and called an external subnetwork. In our USS scheme a
message is signed by a distinguished node P0, named the
signer. Other nodes {Pi}N

i=1 and {E}M
i=1 are called internal and

external recipients, respectively.
The difference between internal and external subnetworks,

in addition to the fact that the signer belongs to the internal
one, is in (i) the trust assumptions, (ii) the connectivity, (iii)
the symmetric secret key consumption, and (iv) the general
verification principle. Below we discuss all these points in
detail.

Trust assumptions. We assume that the number of dishon-
est (malicious) internal nodes does not exceed some positive
integer ω, which is one of the basic parameters of our scheme.
In the next section we introduce a strict bound on ω, but for
now we note that ω is definitely less than N/3. In contrast
to the internal subnetwork, the number of dishonest nodes in
the external subnetwork is unbounded. In this way, the global
network can be considered as a moderately trusted internal
subnetwork surrounded by an untrusted external one.

Connectivity. All the nodes in the internal network (the
signer and internal recipients) have to be connected with each
other via pairwise QKD setups in an all-to-all fashion. All
that is required from external recipients is to be connected by
pairwise QKD setups with at least 2ω + 1 internal recipients.
Other connections between nodes are of course possible, but
are not necessary for the operation of the scheme.

Symmetric key consumption. In our scheme, uncondition-
ally secure symmetric keys obtained from QKD links are
employed for two basic purposes: (i) providing uncondition-
ally secure symmetric encryption with one-time pads (OTPs)
and (ii) providing unconditionally secure authentication with
almost strongly 2-universal (AS2U) family of functions [31].
We note that although the whole mechanism of the considered
USS scheme is based on AS2U families as well, we separate
the goals of providing authenticity of pairwise classical chan-
nels used in communication between nodes and providing
transferability of signatures. Next we assume that all messages
between nodes in the global network are transmitted via pair-
wise perfect authenticated channels. We discuss a practical
justification of this assumption in more detail in Sec. IV. The
crucial point is that in our scheme the OTP encryption is
used only in a communication between nodes of the internal
subnetwork. In Sec. IV we show that the corresponding key
consumption turns out to be much higher than the one for
providing unconditionally secure authentication. That is why
secret key rate requirements for QKD links connecting inter-
nal with external and external with external recipients appear
to be weak compared to the links between internal subnetwork
nodes.

Verification principle. The verification of a message-
signature pair, produced by P0, and its forwarding within
the global network can be performed by both internal and
external recipients; however, the corresponding verification
processes are different. Internal recipients are able to verify
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received message-signature pairs directly without additional
communication with other nodes. External recipients have
to communicate to 2ω + 1 internal recipients for verification
purposes. We call this verification process run by external
nodes delegated verification.

B. Basic idea of the scheme

Before going into the technical description of the scheme,
here we sketch the general principle of the USS scheme op-
eration. It is based on employing special asymmetric keys
distributed among the internal subnetwork. In contrast to tra-
ditional digital signature schemes, where the signer possesses
a secret (private) key and recipients possess a common pub-
lic key, in the USS scheme, all internal recipients possess
different keys that have to be kept secret as well. Next we
refer to the key owned by the signer and used for generat-
ing signatures as the signing key, while the keys possessed
by each internal recipient, used for validating signatures, are
called verification keys. The external recipients do not have
any special verification keys and they seek assistance from
internal recipients to verify a signature, that is, delegate the
verification. The additional communication in the delegated
verification can be considered as a consequence of the lack
of any trust assumption with respect to the external recipients
and milder conditions on their connectivity.

We separate the workflow of the USS into two basic
stages: (i) the preliminary distribution stage, where signing
and verification keys are distributed throughout the internal
network, and (ii) the main messaging stage, at which the
signer generates a signature for some message and transmits
the message-signature pair to (some) internal or external re-
cipients, who then are able to forward this message-signature
pair to each other. Stage (ii) can also include a special majority
vote dispute resolution process that is a consequence of the
finite transferability of the considered USS scheme.

In our work we consider a one-time scenario, where each
distributed set of keys provides security for a single message-
signature pair only. Surely, the developed scheme can be
applied for multiple messages by means of parallel commu-
nication.

As already mentioned, our scheme is based on employing
AS2U families that are commonly used for providing un-
conditionally secure authentication given that the signer and
recipient share symmetric keys, which we refer to as authenti-
cation keys. These keys are used to choose a function from an
AS2U family and compute the corresponding authentication
tag that is an output of the chosen function for a given mes-
sage to be sent. The general idea behind the considered USS
scheme is that both the signing and verification key consist of
a number of authentication keys and the message’s signature
consists of a number of authentication tags computed with
different authentication keys. Each of the internal recipients
knows only some of the authentication keys and therefore is
able to verify the signature but is not able to forge a signature
for some alternative message. At the same time, the signer
knows all the authentication keys but does not know a partic-
ular subset of keys possessed by a particular recipient. This
condition is necessary to avoid nontransferability and repu-
diation of a generated message-signature pair. The required

uncertainty in keys is achieved by first transferring different
authentication keys (different parts of the signing key) from
the signer to each of the internal recipients and then by random
shuffling of the obtained keys between internal recipients in
secret from the signer. The idea behind this delegated veri-
fication is that in order to verify a message-signature pair, an
external recipient communicates to 2ω + 1 internal recipients,
the majority of whom are definitely honest. So the result of
the verification can be determined by the result of verification
obtained by the majority of requested internal recipients.

It what follows we consider the workflow of the scheme
in detail. We note that, in general, the same notation as in
Ref. [30] is used. The main differences in the workflow of our
scheme compared to the proposal in Ref. [30] are summarized
in Appendix A.

C. Preliminary distribution stage

We begin with a formal definition of the AS2U family that
is the basis of the whole QKD-assisted USS scheme.

Definition 1 (AS2U family). Let A, B, and K be finite
sets. A family of functions F = { fκ : A → B}κ∈K is called
ε-almost strongly 2-universal (ε-AS2U) if the two following
requirements are satisfied.

(i) For any m ∈ A and t ∈ B one has Pr[ fκ (m) = t] =
|B|−1 for κ picked uniformly at random from K.

(ii) For any distinct m1, m2 ∈ A and any t1, t2 ∈ B one has
Pr[ fκ (m1) = t1| fκ (m2) = t2] � ε for κ picked uniformly at
random from K.

If ε = |B|−1, then F is called strongly 2-universal (S2U).
Let a be an upper bound on the bit length of signed

messages. In our scheme we employ a 2−b+1-AS2U family
F = { fκ}κ∈{0,1}y of functions from {0, 1}a to {0, 1}b, where the
tag bit length b > 1, y = 3b + 2s, and the integer s satisfies
the inequality a � (2s + 1)(b + s). The explicit construction
of the family is presented in Appendix B.

The workflow of the distribution stage is the following (see
also Fig. 2).

Step 1. Using a true random number generator, the
signer P0 generates N2k y-bit keys (κ1, κ2, . . . , κN2k ), where
an integer k is the basic parameter of the scheme. This
set is the signing key, and each κi is an authentication
key used later for defining functions from the family F .
Then P0 transmits to each Pi (i = 1, 2, . . . , N) a subset
(κ(i−1)Nk+1, κ(i−1)Nk+2, . . . , κiNk ) using QKD-assisted OTP
encryption.

Step 2. Each internal recipient Pi randomly splits the ob-
tained keys into N disjoint ordered subsets of size k. Let
Ri→ j ⊂ {(i − 1)Nk, . . . , iNk}, with i, j ∈ {1, . . . , N}, be an
ordered subset of k key indices belonging to the chosen jth
subset of Pi’s keys with respect to the original set generated
by the signer. Then Pi transmits to every P j ( j �= i, 0 < i,
and j � N) all the keys belonging to the jth subset and the
corresponding indices Ri→ j . All the messages at this step are
also secured with OTP encryption. The keys with indices from
Ri→i remain with Pi.

In the end of the distribution stage, each internal recipient
possesses a set of Nk authentication keys from the original
signing key generated by P0: k keys of this set come directly
from the signer and the remaining (N − 1)k keys come from
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FIG. 2. Scheme of the distribution stage run within the internal subnetwork. (a) At step 1 the signer P0 generates N2k authentication keys,
which define elements from the AS2U family, and transmits Nk keys to each of the recipients. (b) Then at step 2 each recipient Pi randomly
splits the obtained keys into N disjoints chunks of k keys, sends N − 1 chunks accompanied by the corresponding key indices (in respect to
the original signing key) to other recipients (one chunk for each recipient), and leaves a single chunk for oneself. All the communication is
secured by the OTP encryption supported by pairwise QKD links. Here P2 is dishonest and sends corrupted keys to P1 and P3 at the second
step.

the other N − 1 recipients. We note that, due to the fact that at
step 2 recipients exchange indices Ri→ j , each recipient knows
the indices of each of their Nk keys with respect to the original
set of N2k keys (signing key) generated by the signer.

D. Signature generation

In order to generate a signature Sigm for a message m ∈
{0, 1}a, the signer applies N2k functions from the family F ,
specified by generated authentication keys in the signing key,
and obtains N2k authentication tags:

Sigm := (t1, . . . , tN2k ), ti := fκi (m). (1)

In our scheme, the transmission of a message-signature pair
is accompanied by sending the verification level at which this
pair was accepted by the current sender. We describe the con-
cept of verification levels below, but for now we just require
that in order to send the signed message to some internal or
external node, the signer transmits a triple (m, Sigm, lmax),
where the positive integer lmax is another basic parameter of
our scheme, also to be discussed further.

E. Signature verification

To describe the verification procedure, we first require the
introduction of two important concepts: verification levels and
block lists.

1. Verification levels

In contrast to standard computationally secure signature
schemes, in the USS scheme, the verification rule is specified
by an integer parameter l ∈ {0, 1, . . . , lmax} called verification
level. The idea is that if a message-signature pair is accepted
by an honest internal or external recipient at verification level
l � 1, then the security properties of the developed scheme
ensure that the same message-signature pair will be accepted
(with a probability close to 1) by any other internal or external

honest recipient at some verification level l ′ � l − 1. At the
same time, the scheme is developed in such a way that if
the signer is honest and publishes a message-signature pair
(m, Sigm), then no one is able to produce (up to negligible
probability) a message-signature pair (m�, σ �) with m� �= m
that is accepted by some honest internal or external recipient
at verification level l � 0.

We note that in a forwarding chain R1 → R2 → · · · →
Rs of length s > 2, where the Ri are some internal or external
recipients, the fact that R1 accepts a message-signature pair
(m, σ ) at the verification level l � 1 implies that all other
honest recipients in the chain accept (m, σ ) at verification lev-
els � l − 1. This is because if some Ri (2 < i � s) does not
accept (m, σ ) at some level l ′ � l − 1 from Ri−1, then it ap-
pears that Ri would not accept (m, σ ) directly from R1, which
contradicts our security properties (recall that all recipients in
the chain are honest, so the message-signature pair does not
change). To simplify the analysis we also introduce a special
rule that the message-signature pair is forwarded together with
the verification levels at which it has been accepted.

The maximal verification level lmax > 0 can be varied and
belongs to the set of basic parameters of the scheme. In the
next section we formulate exact security statements related
to the unforgeability and transferability and also introduce a
necessary relation between N , lmax, and ω. We also note that if
the signer is honest, then the security properties of our scheme
imply that the original message-signature pair (m, Sigm) will
be accepted by any honest recipient at the maximal verifica-
tion level lmax. Of course the situation may change if there is
an intermediary malicious recipient between the honest signer
and the honest recipient.

The lowest value of verification level is 0, and the fact that
a message-signature pair is accepted at zero verification level
by some honest recipient does not guarantee its acceptance by
other honest recipients. In order to solve this issue we intro-
duce a majority vote dispute resolution process, also discussed
later in the text.
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(a) (b)

FIG. 3. Signature verification by (a) internal and (b) external
recipients. Internal recipients first perform tests for each of the
possessed signature key blocks [see Eq. (2)] and then make a final
decision based on all N test results. External recipients send verifi-
cation requests to 2ω + 1 of the internal recipients and then make a
decision based on the majority principle.

2. Block list

The purpose of the block list is termination of communi-
cation between honest nodes and apparently dishonest ones.
It allows preventing exhaustive-search forging attacks and
also helps to derive rigorous security statements about upper
bounds on the probability of forging attacks.

In the preliminary distribution stage each internal (exter-
nal) recipient Pi (E j) initializes an empty set block_listint

i :=
{ } (block_listext

j := { }). These sets are intended to store the
labels of blocked nodes.

Each internal recipient Pi also initializes a set of coun-
ters cnti,i′ := 0, where i′ = 1, 2, . . . , M. These counters are
intended to keep a number of failed verification requests in
the delegated verification from a particular external recipient
Ei′ .

Now we are ready to formalize the verification procedure
for internal and external recipients.

3. Verification by internal recipients

Consider an internal recipient Pi obtaining from some
node R a package (m, σ, lrec), where m ∈ {0, 1}a, σ =
(t1, . . . , tN2k ) ∈ {0, 1}b×N2k , and lrec � 1. To verify the
message-signature pair (m, σ ), the following steps are per-
formed [see also Fig. 3(a)].

Step 0. Internal recipient Pi checks whether the sender
R ∈ block_listint

i . If it is not the case, Pi proceeds with the
verification. Otherwise, the package is ignored.

Step 1. Internal recipient Pi performs N tests corresponding
to each of N possessed blocks of k authentication keys: For
each j ∈ {1, . . . , N} the value

T m
i, j,l =

{
1 if

∑
r∈Rj→i

g( fκr (m), tr ) < slk
0 otherwise

(2)

is computed. Here g(., .) is a comparison function which
returns 1 if its arguments are different and 0 otherwise. The
value sl is defined as

sl =
(

1 − l

lmax

)
s0, s0 ∈ (0, 1 − 21−b), (3)

where s0 is the basic parameter of the scheme which denotes
the tolerable fraction of incorrect tags for a verification of a

subblock corresponding to a particular recipient at the lowest
verification level.

Step 2. Internal recipient Pi obtains a set

� =
{

l ∈ {0, . . . , lmax} :
N∑

j=1

T m
i, j,l > Tl

}
, (4)

where the critical number of tests is given by

Tl = ω + lω. (5)

One can think about � as a set of verification levels at which
the message-signature pair can be accepted. Note that �

can appear to be empty. Then the resulting verification level
is computed as the maximum in � or error value −1 for
empty �:

lver,i(m, σ ) :=
{

max � if |�| > 0
−1 otherwise. (6)

Step 4. If lver,i(m, σ ) � lrec − 1, then we say that the
message-signature pair is accepted by Pi at verification level
lver,i(m, σ ). Otherwise, the message-signature pair is said to
be rejected and the sender R is added by Pi to the block list:
R → block_listint

i . If lver,i(m, σ ) � 1 then Pi is allowed to
forward the message-signature pair to any other internal or
external recipient with a package (m, σ, lver,i(m, σ )).

4. Delegated verification by external nodes

Next we describe verification of a proper package
(m, σ, lrec) by an external recipient Ei. The following steps are
performed [see also Fig. 3(b)].

Step 0. External recipient Ei first checks whether the sender
R ∈ block_listext

i . If it is not the case, Ei proceeds with the
verification. Otherwise, the package is ignored.

Step 1. External recipient Ei chooses a subset 	 ⊂
{1, . . . , N} such that Ei is connected with each Pi′ , i′ ∈ 	, by
a QKD link. If the package, obtained by Ei, comes from some
internal node, that is, R = P j for some j, then 	 has to be of
size |	| = 2ω and has to exclude j. Otherwise, if the package
is obtained from some other external node, 	 has to be of
size |	| = 2ω + 1. Then Ei sends each Pi′ , i′ ∈ 	, a request
to verify the package (m, σ, lrec).

Step 2. Having received the request, Pi′ first checks whether
Ei is in the block list block_listint

i′ . If it is the case, then the re-
quest is ignored. Otherwise, Pi′ runs the verification algorithm
described in steps 1–3 from the preceding subsection, forms
a response respi′ := lver,i′ (m, σ ), and transmits this response
back to Ei. Moreover, if lver,i′ (m, σ ) < lrec − 2, then Pi′ incre-
ments a counter cnti′,i. If the counter cnti′,i reaches the critical
value M + ω, then i′ puts Ei in the block list block_listint

i′
(the idea behind this operation is to prevent exhaustive-search
forgery attacks by using delegated verification requests).

Step 3. External recipient Ei collects all the responses respi′

from Pi′ , i′ ∈ 	. If the original package (m, σ, lrec) has been
received from internal node P j , then j is added to 	 and resp j
is set to lrec. Then for each l ∈ {−1, 0, . . . , lmax} the set

	l (m, σ ) := {i : respi(m, σ ) � l} (7)

is calculated. The result of the verification is obtained as

lext
ver,i(m, σ ) := max{l ′ : |	l ′ (m, σ )| � ω + 1}. (8)
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Step 4. If lext
ver,i(m, σ ) � lrec − 1 then the message-signature

pair (m, σ ) is said to be accepted at verification level
lext
ver,i(m, σ ) by Ei and then Ei is allowed to forward the pair

in the package (m, σ, lext
ver,i (m, σ )) to any other internal or ex-

ternal recipient. Otherwise, the message signature-pair is said
to be rejected and Ei blocks its sender: R → block_listext

i .

F. Transferability at zero verification level

The presented verification routines contain an issue re-
lated to the minimal verification level l = 0. The following
situation is possible: The verification protocol run by inter-
nal recipient Pi with respect to package (m, σ, 1) results in
lver,i(m, σ ) = 0. Then Pi can be sure that m is produced by
P0; however, it is not guaranteed that (m, σ ) will be accepted
by other honest recipients.

In order to cope with this issue we introduce the majority
vote dispute resolution process (or majority vote, for short),
also employed in previous USS scheme designs [29,30]. The
majority vote is an expensive (in terms of communication
costs) routine and is not a necessary part of the USS scheme
workflow. However, its potential possibility is necessary for
providing security of the scheme.

We note that in the previous USS scheme designs [29,30],
an additional −1th verification level is reserved for the pur-
poses of the majority vote process. The security of the process
is justified by establishing protection against nontransferabil-
ity attacks at all verification levels from lmax down to −1.
Though formally all the claimed security statements in [29,30]
are completely correct, there is as issue with the fact that un-
forgeability is provided for verification levels from lmax down
to 0. This fact opens a security loophole related to the possibil-
ity of a malicious recipient to forge a message-signature pair
(m�, σ �) that is acceptable by honest recipients at the −1th
verification level and then initiate the majority vote process.
Then honest recipients will accept (m�, σ �), although m� was
not signed by the legitimate signer. The straightforward solu-
tion to this issue is to extend unforgeability down to l = −1 as
well or to increase lmax and consider the majority vote process
at the zero verification level. We choose the second solution
in our work.

The operation of the majority vote employs an uncondi-
tionally secure broadcast protocol run within the set of internal
recipients. For the description of the broadcast protocol we
refer the reader to the seminal works in [32,33]. Here we only
recall that the broadcast protocol allows a node in the network
to transmit a message to a number of other nodes in such a way
that it is guaranteed that all the honest recipients will obtain
this message and also it is guaranteed that if an honest recip-
ient obtains a message from the broadcast protocol, then that
recipient can be sure that other honest recipients obtained the
same message. As shown in Refs. [32,33], in the presence of
no more than ω dishonest nodes, the protocol requires ω + 1
rounds of communication, at which nodes transmit messages
through unconditionally secure authentication channels be-
tween them. Moreover, the broadcast protocol for N parties
can be realized only if ω < N/3, which is the case in our setup.

1. Majority vote process within the set of internal recipients

Here we describe the majority vote process. It is al-
lowed to be launched by any internal recipient Pi for

a message-signature pair (m, σ ) only in the case of
lver,i(m, σ ) = 0.

Step 1. The initiator of a majority vote process Pi broad-
casts the message-signature pair (m, σ ) to all other internal
recipients.

Step 2. Every internal recipient P j ( j = 1, 2, . . . , N)
broadcasts the result of its verification in the form
vote j (m, σ ) = lver, j (m, σ ).

Step 3. Every node computes the result of the majority vote
protocol in the form

MV(m, σ ) :=
{
� if

∑N
j=1 ṽote j > N/2

� otherwise,
(9)

where

ṽote j :=
{

1 if vote j � 0
0 otherwise, (10)

and it is assumed that the vote of the initiator of the process
votei = 0. We note that, due to the properties of the broadcast
protocol, all the honest internal nodes obtain the same value of
MV(m, σ ). If the process results in MV(m, σ ) = � (�), then
(m, σ ) is said to be accepted (rejected) by the majority vote.

One can also see that if there exists a set 	 ⊂ {1, 2, . . . , N}
such that |	| � ω + 1 and for every i ∈ 	, votei � 2, then all
honest nodes can conclude that the originator of the majority
vote protocol is dishonest (with up to negligible probability
of a fail). This follows from the fact that there is at least one
honest recipient Pi with i ∈ 	, so the originator of the major-
ity vote should accept (m, σ ) at verification level l � 1. So the
rules of the USS operation are supplemented by punishment
for dishonest conduct.

2. Verification of majority vote results by external recipients

Here we describe how an external recipient Ei can obtain
the results of the majority vote performed within the set of
internal recipients with respect to some message-signature
pair (m, σ ).

Step 1. Node Ei chooses a subset 	 ⊂ {1, . . . , N} of size
|	| = 2ω + 1 such that Ei is connected with every node Pi′

with i′ ∈ 	 by a QKD link. Node Ei sends a majority vote
verification request consisting of (m, σ ) to every internal re-
cipient from the set 	.

Step 2. Having received the request, P j makes a response
MV_resp j := MV(m, σ ) if there was a majority vote with
respect to (m, σ ) or MV_resp j := ⊥ otherwise.

Step 3. Node Ei collects all the responses {MV_resp j} j∈	.
Let #[�] and #[�] be the number of occurrences of responses
� and � in {MV_resp j} j∈	, respectively. The result of dele-
gated verification of the majority vote results by the external
node Ei is given by

MVext
i (m, σ ) :=

⎧⎨⎩� if #[�] � ω + 1
� if #[�] � ω + 1
⊥ otherwise.

(11)

If MVext
i (m, σ ) = � (�) then we say that (m, σ ) is said

to be accepted (rejected) by Ei within majority vote result
verification. Here MVext

i (m, σ ) = ⊥ means there was no ma-
jority vote with respect to (m, σ ) in the internal network. The
security properties of the developed scheme ensure that if
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MVext
i (m, σ ) = � for some honest external recipient Ei, then

for every other honest external recipient E j the described ma-
jority vote verification protocol will result in MVext

j (m, σ ) =
�; in addition, for any honest internal recipient it is true that
MV(m, σ ) = �.

We note that an extra rule can be added that some particular
external nodes can insist on running the majority vote with
respect to some message-signature pair. Then after requesting
no more than ω + 1 nodes the majority vote will happen (ω
nodes can be dishonest and deny the start of voting) and each
of the external nodes will be able to receive its result by using
the described protocol.

III. SECURITY ANALYSIS

In this section we introduce security definitions and cor-
responding security statements (all proofs are placed in
Appendix C). Here we also demonstrate how the security
conditions impose dependences between the basic parameters
of the scheme.

A. Signature acceptability

We start with a natural way to demand that all honest
(internal and external) recipients have to accept a message-
signature pair (m, Sigm) generated by the honest signer. The
nontriviality of this condition for the USS scheme comes
from the fact that the verification key of Pi contains authen-
tication keys that come from all other, including possibly
malicious, recipients. These dishonest recipients can try to
foil the verification procedure performed by Pi with respect
to (m, Sigm) by transferring ‘rubbish’ keys at the second step
of the distribution stage [see, e.g., P2 in Fig. 2(b)]. In the
original design of the USS scheme in Ref. [30] an acceptance
of (m, Sigm) by any honest recipient at the zero verification
level is guaranteed. However, the acceptance of a message-
signature pair (m, σ ) exactly at the zero verification level (but
not at higher levels) closes off the possibility of reliable for-
warding of (m, σ ) by Pi to other recipients without appealing
to the majority vote process. The problem here is that Pi is
not able to distinguish between the two following situations.
The first one is where P0 is honest and an acceptance of the
message-signature pair only at the lowest verification level
is due to an attack of the malicious recipient coalition [but
(m, σ ) will in fact be accepted by other honest recipients].
The second situation is where P0 is malicious and tries to
perform a nontransferability attack (to be discussed further).
In our design we use the following definition.

Definition 2 (signature acceptability). We say that the
USS scheme provides a signature acceptability if a message-
signature pair generated by an honest signer is accepted
by any honest internal or external recipient at the maximal
verification level lmax; that is, for any m ∈ {0, 1}a, a verifi-
cation procedure run by an internal (external) recipient Pi

(E j) with respect to the package (m, Sigm, lmax) results in
lver,i(m, Sigm) = lmax [lext

ver, j (m, Sigm) = lmax], assuming that
the sender of this package is not in the block list of Pi (E j).

The signature acceptability property guarantees that ma-
licious recipients are not able to decrease transferability by
cheating during the distribution stage. This condition leads to

the appearance of an upper bound on a number of dishonest
participants ω depending on a maximal verification level lmax.

Theorem 1 (upper bound onω). The USS scheme, described
in the text, provides the signature acceptability if and only if

ω <
N

2 + lmax
. (12)

We design our scheme to possess the signature acceptabil-
ity, so we assume that (12) is fulfilled. We note that from
(12) it follows that ω < N/3, since lmax is a positive integer.
Moreover, to have ω = 1 it necessary to have N � 4.

B. Signature unforgeability

The second security property relates to the assurance that
no one, other than the signer, can generate a valid signature. To
describe this condition we first introduce a formal definition
of a signature forgery.

Definition 3 (signature forgery). Consider a situation where
there is a coalition of dishonest recipients. Let the coalition
possess a valid message-signature pair (m, Sigm). Suppose
that for some message m� �= m the coalition generates a guess
for a corresponding signature σ �. If the pair (m�, σ �) is ac-
cepted by at least one honest internal (external) recipient Pi

(E j) at some verification level l � 0, then we say that a forgery
event happened.

We note that the definition of a forgery introduced here is
an extension of that used in Ref. [30]. In particular, it includes
consideration of the lowest verification level employed in the
majority vote process. The motivation of such an extension
of the forgery definition comes from the security issues de-
scribed in Sec. II F.

The following theorem states that in the considered USS
scheme the probability of forgery drops exponentially with the
value of k.

Theorem 2 (probability of forgery). For the USS scheme
described herein, the upper bounds on a forgery event hold,

Pr[forgery] < J (N, M, ω)2−k(b−1)[1−s0−H2(s0 )/(b−1)] (13)

for s0 < 1
2 and

Pr[forgery] < J (N, M, ω)e−2k(1−s0−21−b)2
(14)

for s0 < 1 − 21−b, where

J (N, M, ω) := N2[ω + M(ω + M )] (15)

and H2(·) is a standard Shannon binary entropy.
We note that although the first bound (13) is tighter, the

second bound (14) appears to be more practical in considera-
tion of both unforgeability and transferability conditions.

C. Message transferability

The third condition relates to the requirement that if an
honest (internal or external) recipient accepts a message-
signature pair at the verification level l � 1, then another
honest recipient will accept the same pair at least at the
(l − 1)th verification level. A crucial difference compared to
the previous condition is that the sender may belong to the
coalition of dishonest participants.
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Definition 4 (nontransferability). Consider a situation
where there is a coalition of dishonest nodes (P0 may or
may not belong to this coalition). Let the coalition output a
message-signature pair (m, σ ). We say that a nontransferabil-
ity event happens if some honest internal or external recipient
accepts (m, σ ) at the verification level l � 1, but other internal
or external recipients do not accept (m, σ ) at any verification
level l ′ � l − 1.

We note that, in contrast to previous USS scheme designs
[29,30], we also include the possibility that the malicious
coalition does not include the signer P0. Such a coalition may
try to corrupt the valid signature Sigm → σ in such a way that
(m, σ ) is accepted by Pi at the verification level l � 1, but is
rejected by P j at the verification level l ′ = l − 1.

The next theorem states that the probability of a nontrans-
ferability event also drops exponentially with the value of k.

Theorem 3 (probability of nontransferability). For the USS
scheme described herein, the upper bound on the probability
of a nontransferability event holds true,

Pr[nontransferability] � 2N2(N − 1)e−k
s2/2, (16)

where 
s = s0/lmax.
Comparing Eqs. (13), (14), and (16), one can see that s0

affects unforgeability and nontransferability bounds in oppo-
site ways: Increasing s0 improves the nontransferability bound
but weakens the unforgeability one. Thus, we arrive at the
necessity of optimizing s0 with respect to the desired security
parameters in practical realizations of the scheme.

D. Nonrepudiation

The next security property we consider is nonrepudiation.
It states that the signer is not able to refuse authorship of
a signed message. One can see that this condition closely
relates to the transferability. In line with the design of the USS
scheme in Ref. [30], we consider the repudiation issue in the
context of the majority vote process.

Definition 5 (repudiation). Suppose that a coalition of dis-
honest nodes (P0 may or may not belong to this coalition)
outputs a message-signature pair (m, σ ). We say that a re-
pudiation event happens if some honest (internal or external)
recipient accepts (m, σ ) at the verification level l � 1, but the
majority vote results in MV(m, σ ) = �.

We state that the probability of a repudiation event can be
upper bounded by the same expression as the nontransferabil-
ity.

Theorem 4 (probability of repudiation). For the USS
scheme, described in the text, the following holds true:

Pr[repudiation] � Pr[nontransferability]. (17)

We conclude this subsection by stating the relation between
the results of the majority vote process performed by internal
recipients and the majority vote result verification by external
recipients.

Theorem 5 (proper operation of the majority vote result ver-
ification). If the majority vote result verification with respect
to the message-signature pair (m, σ ) is run by an external re-
cipient Ei in the absence of a corresponding majority vote run
by internal recipients, then it outputs MVext

m,σ = ⊥. Otherwise,

MVext
i (m, σ ) = MV(m, σ ).

E. Security of block list operation

The final security statement is related to a block list opera-
tion.

Definition 6 (false blocking). We say that a false blocking
event happens if some honest internal or external recipient ap-
pears on a block list of some other honest internal or external
recipient.

It appears that the probability of this undesirable event can
be upper bounded by the probability of forgery and nontrans-
ferability.

Theorem 6 (proper block list operation). For the USS
scheme described herein, the following upper bound on the
probability of a false blocking event holds true:

Pr[false blocking] � Pr[forgery] + Pr[nontransferability].

(18)

Thus, according to Theorems 2 and 3, the probability of
false blocking is upper bounded by a function decreasing
exponentially with k.

IV. PERFORMANCE ANALYSIS

Here we discuss practical aspects of implementing the
considered QKD-based USS scheme. We are particularly in-
terested in the consumption of symmetric keys, generated
within the internal QKD subnetwork and used for providing
OTP encryption at the preliminary distribution stage.

Let us introduce a security parameter εtot that bounds prob-
abilities of successful forgery and nontransferability events as
follows:

Pr[forgery] � εtot

2
,

Pr[nontransferability] � εtot

2
.

(19)

From the practical point of view, it is reasonable to fix the
value of εtot at the level of the QKD security parameter, which
is commonly of the order of 10−9–10−12 [34].

There are two basic types of links within the internal sub-
network: (i) links between the signer and internal recipients
and (ii) links between internal recipients. We denote these
types by sr and rr, respectively. The key consumption for each
type of link in the distribution stage is given by

Lsr = Nky, Lrr = 2k(y + 	log2 Nk
), (20)

where again N is the number of internal recipients, y is the
length of a key defining an element from the employed AS2U
family, and k is the number of single block authentication keys
appearing in decaying exponents of Eqs. (13), (14), and (16).
We also note that y scales logarithmically with the maximal
message length a. The total key consumption for all links in
the internal subnetwork can be calculated as follows:

Ltot = NLsr + N (N − 1)

2
Lrr. (21)

Substituting Eq. (20) into Eq. (21), we see that the total key
consumption generally scales as N2 with the growth of inter-
nal subnetwork size N . The dependence on the size M of the
external subnetwork appears in the upper bound on the forgery
event and is logarithmic.
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The lengths of required symmetric keys, given by Lsr and
Lrr, limit the rate ratemax

USS at which sets of signing and verifi-
cation keys can be generated. This rate can be calculated as

ratemax
USS = min

(
ratemin

sr

Lsr
,

ratemin
rr

Lrr

)
, (22)

where

ratemin
sr := min

i>0
(rate0i ), ratemin

rr := min
i �= j

i, j > 0

(ratei j ), (23)

and ratei j is the secret key generation rate of a QKD link
connecting Pi and P j (recall that P0 is the signer in our
scheme). Assuming that all the nodes are connected with
same QKD devices and a transmittance between the nodes is
determined only by the distance between them, the secret key
generation rates can be approximated as

ratei j = rate(0)η(disti j ) = rate(0)e−γ disti j , (24)

where rate(0) is the secret key generation rate at zero
distance, η(disti j ) = exp(−γ disti j ) is the transmittance
given as a function of the distance disti j between Pi and P j ,
and γ is a loss coefficient (e.g., for a standard optical fiber it
corresponds to a value of 0.2 dB/km). Substituting (24) into
(22) and approximating Lrr as 2ky, we obtain

ratemax
USS ≈ rate(0)

2Nky
min

(
2e−γ distmax

sr , Ne−γ distmax
rr

)
, (25)

where

distmax
sr := max

i>0
(dist0i ), distmax

rr := max
i �= j

i, j > 0

(disti j ). (26)

One can expect from (26) that for large N , the rate of key
generation for the considered USS scheme is limited by the
maximal distance between the signer and recipients distmax

sr .
In order to compute the key consumption, we solve nu-

merically the constraint optimization problem of minimizing
Ltot with respect to the value of k, tag length b, and tolerable
fraction of incorrect tags s0, keeping fulfillment of the inequal-
ities (19) for prefixed values of message length a, security
parameter εtot, number of internal recipients N , number of
internal recipients M, maximal number of dishonest nodes in
the internal subnetwork ω, and maximal verification level lmax.
We perform the optimization as follows. We fix the value of
b and then by using the inequalities (19) and bounds (13),
(14), and (16) obtain appropriate values of k and s0. More
concretely, we find s0 and k such that the bounds on forgery
and nontransferability events are almost the same and the
sum of bounds is approximately εtot, in accordance with (19).
Then we calculate the corresponding key consumption using
Eqs. (20) and (21). The above procedure is repeated for values
of b taken from a given range b (for our purpose we consid-
ered b ∈ {2, 3, . . . , 20}), and the value of b, together with the
corresponding values of k and s0, providing the minimal total
key consumption Ltot is chosen. We provide full details of the
optimization procedure for finding k, s0, and b in Appendix D.

To demonstrate the results, we consider two regimes of
the USS scheme operation that corresponds to extreme cases
of the trade-off between lmax and ω given by Eq. (12). The

FIG. 4. Optimized secret key consumption required for OTP en-
cryption at the preliminary distribution stage as a function of the
number of internal recipients N for different values of lmax and ω

satisfying trade-off (12). The signed message is of length a = 8
Mbits, the security parameter εtot = 10−10, and the number of ex-
ternal recipients M = 5. The results for the fixed (b = 2) and the
optimized (b = bopt) tag length are shown.

first one, which we call the minimal transferability regime, is
characterized by the minimal nontrivial value of lmax = 1 and
the maximal possible value of ω = 	N/3
 − 1. The second
one, which we call the maximal transferability regime, is
characterized by lmax = N − 3 and ω = 1.

First, we present the resulting key consumption as a func-
tion of N for the case of a = 8 Mbits, εtot = 10−10, and M = 5
in Fig. 4. To demonstrate the importance of additional opti-
mization with respect to the authentication tag length b, we
also show key consumption for the minimal tag length b = 2,
considered in the seminal paper in [30].

One can see that the key consumption is strongly af-
fected by the value of lmax, and the maximal transferability
regime appears to be the most costly. The reason for this is
the fact that the value of lmax drastically affects the prefac-
tor of k in the decaying exponent in the nontransferability
bound (16). More precisely, to keep the same upper bound
on Pr[nontransferability] while increasing lmax from lmax = l1
to some lmax = l2, one has to provide an increase of k from
k = k1, which corresponded to lmax = l1, up to

k =
(

l2
l1

)2

k1. (27)

In the maximal transferability regime lmax grows with N ,
which results in a significant increase of Lsr and Lrr due to
the increase of k.

To provide a more detailed picture, we also present the
results of optimization for some particular configurations of
the USS scheme in Table I. We show the results both for the
case full optimization, where k, s0, and b are optimized, and
for the case where k and s0 are optimized with respect to the
fixed value of b = 2. One can see that even in the worst case
considered, the key consumption is of the order of 10 Mbits
per link. Also note that increasing the message length from
8 Mbits to 32 Mbits, as well as increasing the security level
from εtot = 10−10 to εtot = 10−12, and increasing the number
of external recipients from M = 10 to M = 100 has a mild
effect on key consumption. Given the fact that modern QKD
devices demonstrate the capacity of key generation of several
Mbits per second [35], we can conclude that the developed
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TABLE I. Results of the numerical optimization for different configurations of the developed QKD-assisted USS scheme. The results for
the fixed (b = 2) and the optimized (b = bopt ) tag length are shown. Here Lsr and Lrr are lengths of secret key required to be distributed between
the signer and each of the internal recipients and between each pair of recipients, respectively, and sig_len is the resulting signature length.

Input parameters Results of optimization for b = bopt Results of optimization for b = 2

N M ω lmax a εtot k b s0 Lsr Lrr sig_len k s0 Lsr Lrr sig_len

4 0 1 1 8 Mbits 10−10 125 7 0.658 37.6 kbits 21.5 kbits 151 kbits 482 0.334 121 kbits 72.5 kbits 482 kbits
4 10 1 1 8 Mbits 10−10 136 6 0.630 39.3 kbits 22.8 kbits 157 kbits 510 0.325 128 kbits 76.7 kbits 510 kbits
10 10 1 7 8 Mbits 10−10 2947 9 0.996 2.33 Mbits 587 kbits 23.3 Mbits 13517 0.465 8.25 Mbits 2.19 Mbits 82.5 Mbits
10 10 3 1 8 Mbits 10−10 147 6 0.632 106 kbits 25.3 kbits 1062 kbits 549 0.326 343 kbits 85.8 kbits 3.35 Mbits
10 10 2 2 8 Mbits 10−10 403 6 0.766 291 kbits 70.8 kbits 2.84 Mbits 1511 0.395 944 kbits 242 kbits 9.22 Mbits
10 10 2 2 32 Mbits 10−10 403 6 0.766 307 kbits 74.0 kbits 3.00 Mbits 1511 0.395 974 kbits 248 kbits 9.51 Mbits
10 10 2 2 8 Mbits 10−12 475 6 0.758 343 kbits 83.5 kbits 3.35 Mbits 1783 0.391 1.09 Mbits 285 kbits 10.8 Mbits
10 100 2 2 8 Mbits 10−10 414 6 0.756 299.2 kbits 72.8 kbits 2.92 Mbits 1552 0.39 970 kbits 249 kbits 9.47 Mbits

QKD-assisted USS scheme appears to be suitable for signing
one message per about 10 s in moderate QKD networks con-
sisting of about ten nodes.

Finally, we recall that the workflow of the considered
scheme is based on using perfect authenticated channels be-
tween all the parties in the network, and establishing these
channels implies symmetric key consumption as well. Recent
progress in the development of lightweight unconditionally
secure authentication schemes [36] shows that using a key
recycling technique [37] allows decreasing key consumption
to provide an (εQKD + εauth )-secure authentic channel down to

Lauth = �− log2 εauth + 1 (28)

bits per message, where εQKD is the security level of the
employed symmetric key obtained with QKD (see Ref. [36]
for more details). So, even considering εauth several orders
smaller than εtot, we have the key consumption for the single
authenticated channel to be of the order of tens of bits, which
is practically negligible compared to the consumption in the
main USS scheme (e.g., in the case of εauth = 10−14 one has
Lauth = 47 bits).

Note that Lauth (2Lauth) bits of symmetric keys from sr (rr)
links at the distribution stage and then the Lauth key from each
link on the route of a message-signature transfer through the
global network are required. The broadcast channels in the
majority vote process require no more than (ω + 1)Lauth bits
of symmetric keys from rr links, and N broadcast channels
are required in total. Thus, e.g., for N = 10 and εauth = 10−14

the resulting key consumption from a link does not exceed
several kbits, which is much less than the key consumption
for providing OTPs at the preliminary distribution stage. We
note that the additional optimization of the key consumption
via paralleling of broadcast channels is also possible.

V. CONCLUSION AND OUTLOOK

In the present work we have developed a universal hashing-
based QKD-assisted multiparty USS scheme. The scheme
operates in a QKD network consisting of two subnetworks:
a moderately trusted internal one, where the number of ma-
licious nodes is upper bounded by a threshold ω, and an
untrusted external one, where the number of malicious nodes
is unbounded. The signer belongs to the internal subnetwork,
while the generated message-signature pair can be securely

forwarded through the whole network. The absence of a trust
assumption with respect to the external subnetwork is com-
pensated by (i) stronger requirements on the connectivity in
which the nodes in the internal subnetwork have to be con-
nected in an all-to-all fashion, while each external recipient
has to be connected only with 2ω + 1 internal recipients; (ii)
much higher symmetric key consumption from QKD links
within the internal subnetwork; and (iii) the necessity of the
internal recipients’ assistance in the verification process run
by the external recipient. The secret key consumption has
logarithmic growth with a maximal signed message length
that makes the scheme suitable for practical use.

We also have conducted a security analysis of the scheme
and adjusted the workflow of the scheme to prevent the possi-
bility of the adversary (a coalition of adversaries) decreasing
transferability of messages, conducting forgery, and nonrepu-
diation attacks.

We have performed numerical optimization of the de-
veloped scheme parameters to minimize the secret key
consumption. The results of the optimization show that the
key consumption level for networks of about ten nodes is com-
patible with the capabilities of contemporary QKD devices.
We hope that the obtained results will bring us closer to the
deployment of USS schemes in real QKD networks.

As the main shortcoming of the protocol we note the re-
striction on the number of malicious nodes in the internal
subnetwork: In order to tolerate ω malicious nodes in the
case of the minimal transferability level lmax = 1, it is nec-
essary to have N > 3ω nodes in the internal subnetwork. It
is noteworthy that this bound coincides with the one for the
unconditionally secure Byzantine agreement protocol [32,33].
An important open question is whether this bound can be
improved for the type of QKD-assisted USS schemes consid-
ered.

We also note that an interesting direction for further study
is consideration of the developed scheme in the framework
of unconditionally secure distributed ledgers [38,39]. In par-
ticular, the need for the assistance from internal subnetwork
recipients for the verification of message-signature pairs by
external subnetwork recipients resembles the idea of the proof
of an authority consensus mechanism in blockchains. In this
way, the consideration of the QKD-assisted USS scheme for
an unconditionally secure consensus protocol is one of the
potential avenues for future research.
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APPENDIX A: SUMMARY OF MODIFICATIONS

Here we explicitly point out the main modification in the
QKD-assisted USS scheme developed herein compared to the
original scheme described in Ref. [30].

1. Choice of verification levels

In the original approach, the verification level l takes values
from the set {−1, 0, 1, . . . , lmax}. The special −1th verifi-
cation level is used in the majority vote dispute resolution
process only. The provided security analysis implies a secure
transferability from l = 0 to l = −1; however, the unforge-
ability is provided down to the verification level l = 0 only.
As described in the main text, this approach results in the
emergence of the vulnerability of the majority vote process.
The idea is that there is a potential possibility for a malicious
recipient to produce a message-signature pair that is accepted
by honest recipients at the verification level l = −1 and then
initiate a majority vote process with respect to this pair (recall
that unforgeability is provided down to the verification level
l = 0 only). Then this pair will be accepted as valid in the
majority vote process, though the signer may have nothing to
do with it. Therefore, the unforgeability has to be provided for
all verification levels. It can be achieved either by consider-
ing l = −1 in the unforgeability proof (actually, this means
that s0 has to be replaced by s−1 in the expression for the
probability of a forgery) or by incrementing lmax and consid-
ering l ∈ {0, 1, . . . , lmax}. We use the latter approach in our
scheme.

2. Choice of {si}
In the original scheme, the sequence

slmax < slmax+1 < · · · < s0 < s−1 < 1
2 (A1)

is considered, while in our scheme we employ the sequence
given by Eq. (3). Besides the change of the minimal verifica-
tion level, there are two differences between Eqs. (3) and (A1):
(i) In Eq. (3) all si are chosen to be equidistant and (ii) the
upper bound for maximal si is increased from 1

2 to 1 − 21−b.
These two modifications are made for the following reasons.

The upper bound on the probability of the nontransferabil-
ity from l = i to l = i − 1 depends on si − si−1 (the higher
si − si−1 is, the lower the upper bound is), so it is reasonable
to have the same differences 
s = si − si−1 for all possible i,
which is realized in our scheme.

The upper bound on the maximal value of si (s0 in our case)
is increased from 1

2 up to 1 − 21−b in order to increase the
value of 
s and so decrease the bound for a nontransferability
attack. It is achieved due to involving the value of ε of the
employed ε-AS2U (in our case ε = 21−b) in the upper bound
on the probability of a successful forgery attack. In contrast, in

the original scheme, the worst-case scenario with b = 2 was
considered.

3. Choice of Tl

In the original scheme the critical number of tests for
accepting the signature is given by

Tl = N

2
+ (l + 1)(ω − 1), (A2)

while in our scheme we use values of Tl from Eq. (5). There
are three differences between Eqs. (5) and (A2): The factor
(l + 1) is replace by l , N/2 is replaced by ω, and the factor
ω − 1 is replaced by ω. The first modification comes from
the consideration of lmax verification levels in both the secu-
rity proof of nonforgeability and transferability. The second
modification comes from the updated security proof of non-
forgeability. We note that in our scheme ω < N/2, as shown
in Sec. III A, so the updated bound is tighter than the original
one. The third modification comes from the consideration of
nontransferability. In the original work a nontransferability
attack is considered to be performed by a coalition which
includes the signer (that is, there are no more than ω − 1 mali-
cious recipients). In our approach we consider a more general
scenario, where a nontransferability attack is possible even in
the case of the honest signer. For example, the coalition of
malicious recipients may try to corrupt a valid signature Sigm
for a message m in such a way that Pi accepts it at the level l ,
but P j does not accept it at any level l ′ � l − 1. In our design
of the scheme, the upper bound on the probability of this event
drops exponentially with the parameter k.

APPENDIX B: AS2U FAMILY CONSTRUCTION

Here we describe the construction of the AS2U family
employed in our USS scheme. Our construction is based on
results from Ref. [40] and employs a combination of A2U and
AS2U families.

Definition 7 (A2U family). Let A, B, and K be finite sets. A
family of functions F = { fκ : A → B}κ∈K is called ε-almost
2-universal (ε-A2U) if for any distinct m1, m2 ∈ A and κ

picked uniformly at random from K,

Pr[ fκ (m1) = fκ (m1)] � ε. (B1)

An AS2U family can be obtained according to the follow-
ing theorem.

Theorem 7 (composition of AS2U and A2U families [40]).
Let F1 = { f (1)

κ }κ∈K1 be an ε1-A2U family of functions from
A1 to B1 and F2 = { f (2)

κ }κ∈K2 be an ε2-AS2U family of func-
tions from B1 to B2. Then the family

F = {
fκ1κ1

}
κ1∈K1,κ2∈K2

, (B2)

with

fκ1κ1 (·) = f (2)
κ2

(
f (1)
κ1

(·)), (B3)

is (ε1 + ε2)-AS2U.
Next we fix two integers a and b and construct a 2−b+1-

AS2U family from A ⊇ {0, 1}a to B = {0, 1}b. We employ
one more theorem.

Theorem 8 (relation between A2U families and
error-correcting codes [40]). Let F = { fκ}κ∈K with
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K = {1, 2, . . . , K} be a family of functions from a finite set
A to a finite set B. The following statements are equivalent.

(i) F is ε-A2U for some ε > 0.
(ii) The set of words {( f1(m), f2(m), . . . , fK (m))}m∈A

forms a code with minimum distance ε � 1 − d/n.
One can see that an ε-A2U family in some sense is equiv-

alent to an error-correcting code.
Consider the Reed-Solomon (RS) linear error-correcting

code [41]. Let dRC, nRC, and kRC be its minimum distance,
length, and rank, respectively.

Theorem 9 (distance of RS code [41]). For the RS code
dRC = nRC − kRC + 1.

Consider the RS code over GF(2b+s) with nRC =
2b+s and kRC = 1 + 2s. According to Theorem 8, we
can use the RS code to obtain a 2−b-A2U family
with A = GF(2b+s)kRC ∼= {0, 1}(b+s)(2s+1), B = GF(2b+s) ∼=
{0, 1}b+s, and K = GF(2b+s) ∼= {0, 1}b+s, where ∼= denotes
equivalence between two sets. In order to have {0, 1}a ⊆ A
we choose a minimal possible integer s such that a � (b +
s)(2s + 1).

Finally, we introduce the construction of the S2U family.
Theorem 10 (practical construction of the S2U family [40]).

Let π : GF(2n) → GF(2m) be a linear surjection. Then F =
{ fκ1κ2}κ1∈GF(2n ),κ2∈GF(2m ) with fκ1κ2 (x) = π (κ1x) + κ2 is S2U.

Combining the 2−b-A2U family of functions from A to
{0, 1}b+s based on RS codes and the introduced S2U family
of functions from {0, 1}b+s to {0, 1}b, we obtain a 2−b+1-
AS2U family of functions from {0, 1}a ⊆ A to {0, 1}b. The
key length required to specify a function from the resulting
family is equal to (b + s) + (b + s + b) = 3b + 2s.

APPENDIX C: PROOFS OF THE THEOREMS OF SEC. III

1. Proof of Theorem 1

Proof. Let C ⊂ {1, . . . , N} denote a subset of malicious
internal recipient labels (that is, any Pc for c ∈ C is malicious).
Note that by definition of ω, |C| � ω. Consider the verification
process of a message-signature pair (m, Sigm) by an honest
recipient Pi (i /∈ C). According to Eq. (5), the pair is accepted
at verification level lmax if and only if∑

j /∈C
T m

i, j,lmax
+

∑
j∈C

T m
i, j,lmax

> ω + lmaxω. (C1)

Remember that, according to Eq. (3), all terms T m
i, j,lmax

are
computed by counting the number of incorrect tags and com-
paring the result with threshold value slmax k. Each term T m

i, j,lmax

with j /∈ C equals 1, since all corresponding authentication
keys are obtained from the honest signer via other honest
recipients. So ∑

j /∈C
T m

i, j,lmax
= N − ω. (C2)

The value of
∑

j∈C T m
i, j,lmax

is controlled by the malicious
coalition C and belongs to {0, . . . , ω}. This is because each
dishonest recipient can send incorrect (rubbish) keys to Pi

at the distribution stage. Considering
∑

j∈C T m
i, j,lmax

= 0 as the
worst-case scenario, Eq. (C1) transforms into

N − ω > ω + lmaxω, (C3)

which results in Eq. (12).

Any honest external recipient will also accept (m, Sigm)
at the maximal transferability level lmax since there will be at
least ω + 1 honest internal recipients within the subset 	 used
in the delegated verification. �

2. Proof of Theorem 2

Before proceeding to the proof of Theorem 2, we consider
the following lemma.

Lemma 1. Let F = { fκ : A → B}κ∈K be an ε-AS2U fam-
ily. Consider m, m�

1, . . . , m�
n ∈ A and t, t�

1 , . . . , t�
n ∈ B such

that each m�
i �= m and n is some positive integer. Then

Pr[ fκ (m�
n) = t�

n | fκ (m) = t ∧ fκ (m�
1) �= t�

1 ∧ · · · ∧ fκ (m�
n−1)

�= t�
n−1] � (1 − |B|−1)n−1ε � ε (C4)

for κ picked uniformly at random from K.
Proof. First of all, to simplify our consideration we intro-

duce some new denotations. Let �, �i, and �i denote events

fκ (m) = t, fκ (m�
i ) = t�

i , fκ (m�
i ) �= t�

i , (C5)

respectively. We also introduce a joint event

�l ≡ � ∧ �1 ∧ · · · ∧ �l . (C6)

Then the main statement (C4) takes the compact form

Pr[�n|�n−1] � (1 − |B|−1)n−1ε. (C7)

The proof is by induction. For n = 1 Eq. (C4) directly
follows from the definition of the ε-AS2U family.

Next we assume that the main statement is true for n =
j − 1 and prove its validity for n = j. In particular, for the set
{m�

1, . . . , m�
j−2, m�

j} we assume that

Pr[� j |� j−2] � (1 − |B|−1) j−2ε. (C8)

According to the Bayesian rule, we have

Pr[� j |� j−2] = Pr[� j |� j−1] Pr[� j−1]

+ Pr[� j |� j−2 ∧ � j−1] Pr[� j−1]. (C9)

Taking into account the assumption (C8), non-negativity of
the second term on the right-hand side of (C9), and the fact
that Pr[� j−1] = 1 − Pr[� j−1] = 1 − |B|−1 (according to the
definition of the ε-AS2U family), we arrive at

Pr[� j |� j−1] � (1 − |B|−1) j−1ε. (C10)

Thus Lemma 1 is proven. �
The results of Lemma 1 can be interpreted as follows.

Consider an authentication system for messages going from
Alice to Bob and based on employing the ε-AS2U family
F = { fκ}κ∈K. Consider eavesdropper Eve, who has a valid
message-authentication tag pair (m, fκ (m)) but does not know
secret key κ , and trying to forge a message from Alice to Bob.
We assume that Bob stops considering messages with tags
related to the secret key κ , after either obtaining a message
with valid tag or obtaining μ messages with incorrect tags.
In this way, Eve has several attempts to force Bob to accept
forged message-signature pairs. Lemma 1 states that each next
attempt of Eve has the same upper bound on the success prob-
ability (ε), regardless of the history of previous unsuccessful
attempts.

We now proceed with the proof of Theorem 2.
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Proof. First of all, we note that if (m�, σ �) is rejected (at
verification level l � 0) by every honest internal recipient,
then (m�, σ �) is also rejected by any honest external recipient
due to construction of the delegated verification procedure
(recall that the majority of any requested 2ω + 1 internal
recipients are honest).

Let C ⊂ {1, . . . , N} denote a subset of malicious internal
recipient labels (that is, any Pc for c ∈ C is malicious). The
size of the coalition is upper bounded by |C| � ω.

Let the coalition possess a valid message-signature pair
(m, Sigm) generated by the signer. In order to simplify the
attackers’ task as much as possible, consider an attack where
the coalition tries to force an honest recipient Pi (i /∈ C) to ac-
cept a forged pair (m�, σ �) with m� �= m at the lowest possible
verification level l = 0.

The coalition possesses all authentication keys with indices
{Rc→i|c ∈ C}, so they can make T m�

i,c,0 = 1 for every c ∈ C and
m�. Then the acceptance condition, given by Eq. (5), takes the
form ∑

j /∈C
T m�

i, j,0 > 0, (C11)

assuming the worst-case scenario |C| = ω. The obtained in-
equality means that the coalition needs to forge at least one
test corresponding to an honest recipient j /∈ C. Recall that
a test is accepted at verification level l = 0 if the number of
tag mismatches within k verified tags is less than s0k < k [see
Eq. (3)].

Now let us count the number μ of attempts that the coali-
tion can make in order to forge a single test related to an
honest recipient P j . First of all, each internal recipient from
the coalition can try to send the forged pair directly to Pi.
If an attempt fails, then the corresponding node falls into
block_listint

i . The coalition also can use information from the
delegated verification. In the worst-case scenario all M exter-
nal recipients are in the coalition, so an additional M(M + ω)
attempts can be made: Each external recipient E ′

i can make
M + ω trials until falling into block_listint

i due to reaching the
critical value of the counter cnti,i′ . So the resulting number of
trials μ is given by

μ = |C| + M(M + ω) � ω + M(M + ω). (C12)

The success of each attempt is determined by the success
of authentication tag forging. According to Lemma 1, the
success probability for a forgery of each tag in each attempt
can be upper bounded by ε of the employed ε-AS2U family
(which is 21−b in our case) regardless of the history of pre-
vious attempts. Next we use this upper bound and consider
attempt results as independent variables.

Let p0 > 0 be an upper bound on a probability of event
T m�

i, j,0 = 1 for some j /∈ C within a single attempt. Then the
probability of success within μ attempts is upper bounded by

1 − (1 − p0)μ < μp0 (C13)

(this inequality can be verified by considering derivatives with
respect to p0).

The number of honest recipients equals N − |C|, so the
upper bound on the probability of a successful attack against
Pi is given by (N − |C|)μp0. Moreover, there are N − |C|

variants of choosing i, i.e., honest users that can be attacked,
so we obtain the probability bound on the forgery event

Pr[forgery] < (N − |C|)2μp0

< N2[ω + M(M + ω)]p0 = J (N, M, ω)p0,

(C14)

where J (N, M, ω) = N2[ω + M(M + ω)].
In the rest of the proof we derive an upper bound p0 for

probability of T m�

i, j,0 = 1 for fixed i and j. According to the
definition of the ε-AS2U family we have

Pr
[
T m�

i, j,0 = 1
]
�

�ks0∑
v=0

(
k

v

)
(1 − ε)vεk−v, (C15)

with ε = 2−b+1.
Consider the case s0 < 1

2 . We apply the sequence of in-
equalities

(1 − ε)vεk−v = (2b−1 − 1)v

2k(b−1)
<

2v(b−1)

2k(b−1)

� 2−k(b−1)(1−s0 ), (C16)

where we use the fact that v � �ks0. Note that the obtained
result is not independent of v. Then we apply an known upper
bound for a sum of binomial coefficients based on Shannon’s
entropy (see, e.g., [42] for details),

�ks0∑
v=0

(
k

v

)
� 2kH2(s0 ), (C17)

where

H2(ξ ) = −ξ log2 ξ − (1 − ξ ) log2(1 − ξ ) (C18)

is a binary Shannon entropy. Substituting the obtained bounds
(C16) and (C17) into Eq. (C15) and then putting the result into
the forgery probability bound (C14), we obtain the first bound
(13) of Theorem 2.

Next consider the case s0 < 1 − 2−b+1. We can apply the
well-known Hoeffding inequality to obtain

�ks0∑
v=0

(
k

v

)
(1 − ε)vεk−v � e−2k(1−s0−2−b+1 )2

. (C19)

Putting it into Eq. (C15) and then into (C14), we obtain the
second bound (14) of Theorem 2. �

3. Proof of Theorem 3

Proof. One can see that the nontransferability event can
happen only in the situation where the malicious coalition
succeeded in the creation of a message-signature pair (m, σ )
acceptable by some honest internal recipient Pi at verification
level l � 1, but not acceptable by another honest internal
recipient P j at verification level l − 1.

Let C ⊂ {1, . . . , N} denote a subset of malicious internal
recipient labels (i, j /∈ C). The coalition is able to control
values of T m

i,c,l and T m
j,c,l ′ for any c ∈ C, m, and l . So the

best strategy for the coalition to carry out the attack is to
make T m

i,c,l = 1 and T m
j,c,l−1 = 0. Then the success of the attack
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corresponds to fulfillment of the following inequalities:∑
h/∈C

T m
i,h,l + |C| > ω + lω,

∑
h/∈C

T m
j,h,l−1 � ω + (l − 1)ω.

(C20)

Subtracting one from the other, we obtain∑
h/∈C

(
T m

i,h,l − T m
j,h,l−1

)
> ω − |C| � 0. (C21)

Thus, the necessary condition for Eq. (C21) to be true is the
existence of at least one h /∈ C such that

T m
i,h,l = 1 ∧ T m

j,h,l−1 = 0. (C22)

In what follows we find an upper bound on the probability
of this event. Let us introduce the number tag mismatches
on the side of the honest recipient Pĩ within a group of tags
corresponding to some honest recipient Ph with respect to the
message m,

Gm
ĩ,h :=

∑
r∈Rh→ĩ

g( fr (m), tr ), (C23)

where tr comes from the corresponding signature σ . Then the
event (C22) is equivalent to

Gm
i,h < slk ∧ Gm

j,h � sl−1k. (C24)

The probability of this event can be upper bounded as follows:

Pr
[
Gm

i,h < slk ∧ Gm
j,h � sl−1k

]
� min

(
Pr

[
Gm

i,h < slk
]
, Pr

[
Gm

j,h � sl−1k
])

. (C25)

The coalition is able to obtain the whole subset of tag
indices {Rh→h′ |h, h′ /∈ C}; however, the particular subsets
{Rh→i|h /∈ C} and {Rh→ j |h /∈ C} are not known to the coali-
tion. Therefore, if the malicious signer corrupts some number
of tags in the correct signature Sigm of the message m, then
the mean number of incorrect tags within {Rh→ j |h /∈ C} and
{Rh→ j}h/∈C will be the same with respect to the distribution of
introduced corruption. So the expectation values of Gm

i,h and
Gm

j,h are the same. Let us denote it by G.
Then, using the Hoeffding inequality for sampling without

replacement, we obtain the following bounds:

Pr
[
Gm

i,h < slk
]
� Pr

[∣∣Gm
i,h − G

∣∣ � G − slk
]

� 2 exp

(
2(slk − G)2

k

)
, (C26)

Pr
[
Gm

j,h � sl−1k
]
� Pr

[∣∣Gm
j,h − G

∣∣ � sl−1k − G
]

� 2 exp

(
2(sl−1k − G)2

k

)
. (C27)

The equality between the bounds in achieved for G = (sl +
sl−1/2)k, so the minimum of two probabilities in Eq. (C25)
then can be bounded as

min
(

Pr
[
Gm

i,h < slk
]
, Pr

[
Gm

j,h � sl−1k
])

� 2e−k
s2/2,

(C28)

where 
s = (sl − sl−1)/2 = s0/lmax.

Since there are at most N honest recipients, the probability
of Eq. (C22) for at least one h /∈ C is upper bounded by
2Ne−k
s2/2. Finally, the upper bound on the probability of
the nontransferability event is obtained by taking into account
that there are at most N (N − 1) variants of choosing a pair of
honest recipients i and j. �

4. Proof of Theorem 4

Proof. Taking into account that the number of malicious
internal recipients is lower than N/2, the repudiation event
implies a nontransferability event for the transition from l = 1
to l = 0. Thus, the probability of repudiation can be upper
bounded by the probability of nontransferability given by
Eq. (16). �

5. Proof of Theorem 5

Proof. The proof is trivial. Since the majority of 2ω + 1
internal recipients requested by Ei are honest, the outcome of
the majority vote result verification will be equal to ⊥ if there
was no majority vote and MV(m, σ ) otherwise. �

6. Proof of Theorem 6

Proof. To prove the theorem, we first revise situations
where one (either internal or external) recipient R1 puts an-
other (also either internal or external) recipient R2 onto the
block list.

The first option is that a message-signature pair accepted
by R2 at verification level l � 1 is sent to R1, who does
not accept it at verification level l ′ � l − 1. This option is
equivalent to a nontransferability event, and so the probability
of this false blocking is not greater than Pr[nontransferability].

The second option is that R2 = E j is an external recipient
and an internal recipient R1 = Pi puts E j on the block list
due to reaching a critical value of the counter cnti, j = M + ω

during the delegated verification of a message-signature pair
(m, σ ). Let us show that if E j is honest and there are no
nontransferability and forgery events, then this cannot happen.
In the case of no nontransferability and forgery events, each
incrimination of cnti, j is accompanied by adding the sender of
an (m, σ ) pair to E j to block_listext

j . Indeed, if lver,i(m, σ ) <

l − 2, then in the case of no nontransferability or forgery event
lver,i′ (m, σ ) � l − 2 for every honest P j , and the result of
delegated verification lext

ver,i � l − 2, and so the E j have to add

the sender to block_listext
j . The number of malicious senders

cannot exceed M − 1 + ω, since all other external recipients
might be malicious, and the number of malicious nodes in
the internal subnetwork is less than or equal to ω. In the
worst-case scenario, E j will add all the malicious nodes to
block_listext

j and still have remaining an attempt to request Pi

(recall that the critical number for the counter cnti, j is equal
to M + ω). The next sender of a message-signature pair will
be honest, and in the absence of a nontransferability event or
forgery event the counter will not increase.

In this way, the false blocking event cannot happen without
forgery or nontransferability events, and so the bound (18)
holds true. �
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APPENDIX D: OPTIMIZATION OF THE
SCHEME PARAMETERS

Here we describe the optimization procedure for finding
the optimal values of the parameters k, s0, and b, providing
the minimal symmetric key consumption Ltot, given message
length a, security parameter εtot , number of internal and ex-
ternal recipients N and M, respectively, maximal number of
dishonest nodes in the internal subnetwork ω, and maximal
verification level lmax. We first note that the bounds on proba-
bilities of forgery and nottransferability attacks can be written
as

Pr[forgery] < α1e−β1(s0,b)k ≡ B1(k, s0, b),

Pr[nontransferability] � α2e−β2(s0 )k ≡ B2(k, s0),
(D1)

where, according to (13), (14), and (16),

α1 = N2[ω + M(ω + M )],

α2 = 2N2(N − 1),

β1(s0, b) =
{

max (β ′
1(s0, b), β ′′

1 (s0, b)), s0 < 1
2

β ′′
1 (s0, b), s0 < 1 − 21−b,

β ′
1(s0, b) = (b − 1)

(
1 − s0 − H2(s0)

b − 1

)
,

β ′′
1 (s0, b) = 2(1 − s0 − 21−b)2,

β2(s0) = s2
0/2l2

max. (D2)

Recall that both bounds decrease with k, while increasing
s0 affects the bounds in opposite ways. At the same time,
the total key consumption Ltot increases with k. To find the
optimal solution, we consider the approximate identities

B1(k, s0, b) ≈ B2(k, s0) ≈ εtot

2
(D3)

that correspond to the (approximate) identity relations of
bounds and saturating the tolerable security level. These

FIG. 5. Total symmetric key consumption Ltot as a function of
the tag length b for two different sets of values of a, M, N , lmax, ω,
and εtot . The values of k and s0 are obtained from Eqs. (D4) and (D5),
respectively.

identities provide the expression for k as a function of s0,

k =
⌈

ln α2 − ln(εtot/2)

β2(s0)

⌉
, (D4)

and the equation for s0 and b,

[β2(s0) − β1(s0, b)]

⌈
ln α2 − ln(εtot/2)

β2(s0)

⌉
= ln

α2

α1
. (D5)

In order to obtain the solution, we iterate over the values of
b, solve numerically Eq. (D5) to find s0, then substitute it in
(D4) to find k, and obtain the corresponding key consumption
Ltot from Eqs. (20) and (21). Typical behavior of Ltot as a
function of b is shown in Fig. 5. One can see that there is a
clear minimum, which is usually around the value b = 6. We
use this value of b and corresponding values of k and s0 as
the result of the parameter optimization routine. We also note
that from Fig. 5 it can be seen that the consideration of the
minimal possible tag length b = 2 provides quite nonoptimal
results.
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