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Tuning and amplifying the interactions in superconducting quantum circuits with subradiant qubits
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We propose a tunable coupler consisting of N fixed-frequency qubits, which can tune and even amplify
the effective interaction between two superconducting quantum circuits. The tuning range of the interaction
is proportional to N , with a minimum value of zero and a maximum that can exceed the physical coupling
rates between the coupler and the circuits. The effective coupling rate is determined by the collective magnetic
quantum number of the qubit ensemble, which takes only discrete values and is free from collective decay and
decoherence. Using single-photon π -pulses, the coupling rate can be switched between arbitrary choices of the
initial and final values within the dynamic range in a single step without going through intermediate values. A
cascade of the couplers for amplifying small interactions or weak signals is also discussed. These results should
not only stimulate interest in exploring the collective effects in quantum information processing, but also enable
development of applications in tuning and amplifying the interactions in a general cavity-QED system.
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I. INTRODUCTION

Tuning the coupling rate between two fixed-frequency
superconducting quantum circuits, instead of tuning the char-
acteristic frequency of each individual part, has attracted
increasing interest in recent years as a promising way for scal-
able quantum computing [1–9]. The conventional method to
realize such a tunable coupler is to place a Josephson junction,
or SQUID, as a mediating element between the two circuits.
From a circuit point of view, the junction can be regarded
as a tunable positive inductance, which, together with other
circuit elements such as capacitors or mutual inductors, can
be used to form a tunable coupler [10–14]. Alternatively, one
may also consider the junction as an off-resonant qubit which
mediates the exchange of virtual photons between the two cir-
cuits [15–22]. A tunable coupling rate is achieved by adjusting
the frequency detuning between the coupler qubit and the
coupled circuits, while maintaining the former unexcited. This
single-junction coupler has attracted great success in recent
experiments. However, the dynamic range of the effective
coupling rate is limited to the second order of the physical
dispersive coupling rate. Moreover, the coupler can be very
sensitive to experimental imperfections, including both sys-
tematic and stochastic errors in certain parameter regimes,
because of the nonlinearity of the Josephson inductance.

Here we propose to use different steady states of one or
several Josephson junctions to tune the coupling rate between
two superconducting quantum circuits. The coupler is mod-
eled by an ensemble of N homogeneous fixed-frequency and
off-resonant qubits, also known as the Dicke model [23], and
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is thus called the D-coupler. Instead of tuning the frequencies
of the coupler qubits, a tunable interaction is achieved by
preparing the qubits in different quantum states, correspond-
ing to different collective angular and magnetic quantum
numbers [16,18,24]. The dynamic range is proportional to the
number of coupler qubits, where the maximum coupling rate
may even exceed the individual coupling rates in the system
for large N . On the other hand, the name, D-coupler, may
also be interpreted as “decay- and decoherence-free” if we
prepare the qubits in subradiant states [23]. It can also be
understood as a digital coupler if we further restrict the subra-
diant states to be pairwise. In this case, the effective coupling
rate takes only discrete values that are proportional to the
total excitation number of the qubit ensemble [24]. Control
of the coupling rate, between arbitrary initial and final choices
within the dynamic range, can be realized in a single step with
single-photon π -pulses [25]. In the meanwhile, the coupling
rate needs not to go through any intermediate values during
the tuning process. These properties make the D-coupler an
ideal device in superconducting quantum circuits, despite the
potential technical difficulty in sample design and fabrication,
and should motivate more applications of the collective effects
in quantum information processing [26–37].

II. THE DICKE COUPLER

We consider a system where the interaction between two
circuits, X1 and X2, is mediated by an ensemble of N qubits,
Qc. The system Hamiltonian may be written as (h̄ = 1) [38]

H =
2∑

m=1

N∑
n=1

ωmx†
mxm + ωn

2
σ z

n + gm,n(x†
m + xm)σ x

n

+
∑
(n,n′ )

gn,n′ (σ+
n σ−

n′ + σ−
n σ+

n′ ). (1)

2469-9926/2022/105(1)/012405(11) 012405-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1870-5327
https://orcid.org/0000-0002-7277-9856
https://orcid.org/0000-0002-5886-6742
https://orcid.org/0000-0003-4524-7552
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.012405&domain=pdf&date_stamp=2022-01-03
https://doi.org/10.1103/PhysRevA.105.012405


QI-MING CHEN et al. PHYSICAL REVIEW A 105, 012405 (2022)

FIG. 1. (a–c) Schematic of the D-coupler (green) between two resonators, R1 and R2, one resonator and one qubit, R1 and Q2, as well
as two qubits, Q1 and Q2, which are colored in red and blue, respectively. The coupler is labeled as Qc, which is an ensemble of N qubits.
The effective coupling rate between the two circuits is determined by the collective magnetic quantum number, m, of Qc. (d) A change of
the magnetic quantum number, m → m′, can be realized in a single step by applying (m′ − m) single photons to (m′ − m) Wilkinson power
dividers, each of which couples to two qubits in the ensemble with a π phase difference. We note that the qubit number in the ensemble, N ,
is assumed to be even, while an odd N leads to a finite minimum coupling rate corresponding to the magnetic quantum numbers ±1/2. (e) A
cascade of D layers of D-couplers (green) to mediate the interaction between two qubits colored in red and blue.

Here ωm, xm, and x†
m are the resonant frequency, raising,

and lowering operators of circuit Xm. Furthermore, ωn and
σα

n with α = x, y, z are the characteristic frequency and the
standard Pauli operators of the nth coupler qubit, gα,β is
the physical coupling rate between the two parts α and β,
and (n, n′) takes all possible pairs in the ensemble. De-
pending on the commutation and anticommutation relations
between xm and x†

m, the above model can be used to de-
scribe a resonator-resonator (R-R) coupler (x1 ≡ r1, x2 ≡ r2),
a resonator-qubit (R-Q) coupler (x1 ≡ r1, x2 ≡ σ−

2 ), or a
qubit-qubit (Q-Q) coupler (x1 ≡ σ−

1 , x2 ≡ σ−
2 ), as schemat-

ically shown in Figs. 1(a)–1(c).
Assuming that the coupler qubits are largely detuned from

the two circuits to be coupled, i.e., gm,n � �m,n, �m,n where
�m,n = ωm − ωn and �m,n = ωm + ωn, a dispersive approx-
imation (DA) may be applied to Eq. (1) that diagonalizes
the coupler degree of freedom to the second order of gm,n.
For simplicity and in the same spirit of the Dicke [23] or
Tavis-Cummings model [39,40], we further assume the qubits
to be homogeneous and use the collective angular momen-
tum operators, Jα = ∑N

n=1 σα
n with α = x, y, z, to describe the

whole ensemble [41]. Then the effective Hamiltonian can be
written in a more compact form (see Appendix A for detailed
derivation):

H̃ =
2∑

m=1

ωmx†
mxm + 1

2

[
ωc + χ−

m

(
xm + x†

m

)2
]
Jz

−
2∑

m=1

g1g2

2

(
1

�m
− 1

�m

)
Jz

(
x†

1 + x1
)(

x†
2 + x2

)

+ gc

2
(J+J− + J−J+) + χ+

m

2
�xm, x†

m�(Jx )2
, (2)

where χ±
m = −g2

m(1/�m ± 1/�m), gm ≡ gm,n, gc ≡ gn,n′ , and
�A, B� = AB − BA is the commutation operator. One can ver-
ify that the angular quantum number, j, which is determined
by j( j + 1) = 〈J2〉, is a conserved quantity. However, the
magnetic quantum number, m, which is an eigenvalue of Jz/2,
may not be a good quantum number because of the counter-
rotating term (Jx )2. To be able to apply a rotating wave
approximation (RWA), we further assume χ+

m � ωc. Then Jz

commutes with the Hamiltonian and can be replaced by its
average during the time evolution if the system is initially
prepared at its eigenstates. This results in an effective coupling

rate between X1 and X2,

geff = −
2∑

m=1

g1g2

2

(
1

�m
− 1

�m

)
〈Jz〉. (3)

The above result indicates that an arbitrary coupling rate,
which corresponds to −N � 〈Jz〉 � N , can be achieved by
preparing the qubits in different collective states | j, m〉 with
j = 0, . . . , N/2, m = − j, . . . , j. One may also prepare the
coupler in an arbitrary superposition or mixture of the eigen-
states | j, m〉, which results in a quantum effective coupling
strength between the two circuits and may lead to novel appli-
cations. However, we restrict the coupler to be eigenstates in
the rest of this paper. For a sufficiently large N , it is possible
to achieve an effective coupling rate exceeding the physical
rates between the coupler and either of the circuits, gα,β ,
while maintaining the requirements of DA and RWA. These
properties show that a qubit ensemble described by the Dicke
model can be used as a tunable coupler between two circuits
and has a broad dynamic range proportional to the size of the
ensemble.

We note that the frequencies of the two circuits being cou-
pled are not necessarily the same, and the above discussions
apply to a general system which can be described by the
Dicke model. One may consider using the D-coupler as a
transducer which converts a microwave photon to an optical
photon and vice versa [15]. Here the qubit ensemble may be
made of a thin layer of spin-1/2 materials, for example, a
huge and homogeneous array of NV centers, at an interme-
diate frequency between microwave and optical frequencies.
At the optimal condition

ω1 − ω2

N
= g2

2

(
1

�2
− 1

�2

)
− g2

1

(
1

�1
− 1

�1

)
, (4)

where the two physically off-resonant modes are effec-
tively on resonance such that a single photon can be
perfectly transferred between them for a time duration of t =
(π + 2kπ )/[g1g2(1/�1 − 1/�1 + 1/�2 − 1/�2)N] for k =
0, 1, . . . . This result may indicate a strong coupling rate be-
tween the microwave and optical modes for large N and,
correspondingly, a high conversion efficiency ideally ap-
proaching unity.

For a qualitative estimation, we choose the frequency
of the microwave and optical modes to be 2.744 GHz
and 194.3 THz, respectively [42]. The coupler frequency is
2.87 GHz for an ensemble of NV centers, with a coupling
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FIG. 2. The optimal number of qubits, Nopt, for microwave-
optical photon conversion (left) and the absolute effective coupling
rate, |geff |, between the microwave and optical modes (right). Here
the coupler frequency, ωc, is swept from the microwave to optical
frequency. The dashed line indicates the frequency splitting between
the spin-±1 and the spin-0 states of an NV center in the electron
ground state.

strength of 1 kHz between the coupler and either of the two
modes. We estimate that the optimal condition leads to an
effective coupling rate at the scale of 1014 Hz, which is in
the deep strong coupling regime (Fig. 2 right). However, one
should also note that the required number of homogeneous
colored centers is approximately 2.4 × 1016, which makes the
optimal condition an extreme challenge to reach in real exper-
iments (Fig. 2 left). In this regard, a practical implementation
of the transducer requires a compromise between the effective
coupling rate and the optimal condition. Alternatively, one
may consider using two harmonic oscillators to form an ef-
fective spin-N/2 coupler, which is equivalent to an ensemble
of N spin-1/2 qubits [43,44]. In either of the two cases, the
collective effect of the Dicke model plays an important role in
amplifying the weak interaction between the two off-resonant
modes. A more detailed discussion of such a transducer relies
on the specific parameters of the system and the compromises
one may take, and is thus beyond the major interest of this
study.

III. THE DECAY- AND DECOHERENCE-FREE COUPLER

The D-coupler is free from collective decay and decoher-
ence if one restricts the collective states to a subspace spanned
by subradiant states [23]. By definition, a subradiant state is
an eigenstate of the collective angular momentum, Jz/2, with
eigenvalue m = − j. In this regard, it is also an eigenstate of
the collective lowering operator, J−, with eigenvalue zero.
In an open environment, the dynamics of the system may
be described by the master equation with the Born-Markov
approximation [45]

ρ̇ = −i�H, ρ� + γ

2
D[J−]ρ + γφ

2
D[Jz]ρ, (5)

where γ and γφ are the energy relaxation and dephasing
rates of the qubit ensemble, respectively, and D[Jα]ρ =
2Jαρ(Jα )† − (Jα )†Jαρ − ρ(Jα )†Jα is the Lindblad superop-
erator. One can verify that the subradiant states are also

eigenstates of the Lindblad superoperator with eigenvalue
zero. Thus, an arbitrary superposition of the subradiant states
remains invariant during the dynamics of the open system with
regard to collective decay and decoherence. Correspondingly,
the effective coupling rate, which now takes only zero or
negative eigenvalues of 〈Jz〉, is potentially stable in an open
environment.

IV. THE DIGITAL COUPLER

Tuning of the coupling rate can be made ultrafast if we
further restrict the subradiant states of the coupler to be pair-
wise, where each adjacent qubit pair (2n, 2n + 1) takes only
ground or singlet states, denoted as |g〉 = |02n02n+1〉 and |s〉 =
(|12n02n+1〉 − |02n12n+1〉)

√
2, respectively [25]. However, the

dynamic range of the effective coupling strength is not af-
fected because of the degeneracy of the subradiant states. This
restriction also relaxes the original assumption of a collective
decay and decoherence for all the coupler qubits into that for
each qubit pair (2n, 2n + 1) [24]. The coupling rate is con-
trolled digitally by counting the total number of excitations
in the qubit ensemble. Different from our earlier proposal
for controlling the R-R coupling rate [24], we describe an
alternative method that applies to a general system and results
into an even faster switch of geff with beam splitters and
single-photon sources [25].

As schematically shown in Fig. 1(d), the control protocol
may consist of a Wilkinson power divider, which is modeled
as a beam splitter routing an incident single microwave photon
to two different paths simultaneously but with a π -phase dif-
ference [46–49]. At the end of each path, we couple one qubit
to it and describe the photon-qubit interaction by a Jaynes-
Cummings model [50]. Assuming that the two addressed
qubits are initially in the ground state, |g〉, the single-photon
drive increases the magnetic quantum number, m, by one and
results in a singlet state |s〉 [25]. Alternatively, if the qubits
are initially in the singlet state, they will end up in the ground
state with m → (m − 1) [25]. For an ensemble of N/2 qubit
pairs, one can apply N/2 single-photon π -pulses to them in
parallel, and switch the coupling from an arbitrary initial to
the final value in a single step. Interestingly, the coupling rate
need not to go through any intermediate values during the
tuning process if the skew among different beam splitters is
negligibly small.

V. CASCADE OF D-COUPLERS

The D-coupler may also be cascaded in a chain with several
layers of qubit ensembles, as schematically shown in Fig. 1(e).
To simplify our discussion, we consider a system with
D layers of N homogeneous qubits, where every two adjacent
layers are coupled by an XY-type interaction:

H =
2∑

m=1

ωmx†
mxm +

D∑
d=1

ωc

2
Jz

d

+ g1
(
x†

1 + x1
)
Jx

1 + g2
(
x†

2 + x2
)
Jx

D

+
D−1∑
d=1

gc
(
J+

d J−
d+1 + J−

d J+
d+1

)
. (6)
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FIG. 3. (a–d) When operating a 80-qubit coupler with different magnetic quantum numbers, m, the two qubits under coupled exchange
photons with different Rabi frequency. The interaction can be turned off when m = 0, while the maximum coupling rate, ±4.27 MHz, is
achieved when m = ±40. (e–g) Keeping the parameters unchanged while increasing the number of coupler qubits from 160 to 320, the
effective coupling rate increases linearly from −8.53 MHz through −12.80 MHz to −17.07 MHz. In the last case, |geff | is 1.7 times larger
than the physical coupling rate between a single qubit and the coupler. (h) Dynamics of the system with a cascade of two couplers, where each
layer contains 240 homogeneous qubits. In all panels, the red and blue curves correspond to the population of the two qubits under coupled,
and green curves the magnetic quantum number of the qubit ensemble deviating from m. They are the simulation result with the original
Hamiltonians, Eqs. (1) and (6), while the dashed curves correspond to the predictions of the effective Hamiltonians.

We focus on the case where all the qubits are initially prepared
in the ground state, corresponding to the maximum effective
coupling rate between X1 and X2. For large N , the collective
qubits may be approximately described by a giant quantum
oscillator with J+

d ≈ √
Na†

d , J−
d ≈ √

Nad , and Jz
d = 2a†

d ad −
N [51–55].

Similar to the definition of magnons in a XY spin chain
[56–59], we diagonalize the coupler part of the Hamiltonian
by introducing a collective operator

a±
k =

√
2

D + 1

D∑
d=1

sin

(
dkπ

D + 1

)
a±

d , for k = 1, . . . , D. (7)

We are interested in the parameter regime where
all the “magnons” are largely off-resonant to the
two circuits, i.e., gm,k � �m,k, �m,k where gm,k =√

Ngm sin[mkπ/(D + 1)]
√

2/(D + 1) is the coupling
rate between Xm and the magnon-like mode, ak , at
frequency ωk = ωc + 2gcN cos[kπ/(D + 1)]. Then we
apply a dispersive approximation (DA) to transform
the component-coupler interactions into an effective
interaction between X1 and X2. The effective Hamiltonian
is too complicated to display here (see Appendix B for
detail), while the effective coupling rate is similar to the
single-layer case:

geff = Ng1g2

D + 1

2∑
m=1

D∑
k=1

sin

(
mkπ

D + 1

)(
1

�m,k
− 1

�m,k

)
. (8)

Surprisingly, geff is almost independent of the number of
layers, D. For a relatively small qubit number, N , in each layer,
i.e., Ngc � �m,k, �m,k , the value of geff scales quadratically
with N . With the increase of N , the exponent of the power
law increases monotonically until DA breaks down. In this
case, one may enlarge the detuning frequency and add more
layers and qubits at the same time to achieve a balance be-
tween the amplification rate and the validity of the effective
model. However, we should note that an Ising-type interaction
between two adjacent layers causes a correction in Eq. (8),
as revealed in Appendix B, which may lead to a larger geff

in certain parameter regimes. Besides, a varying-frequency
design of the coupler qubits among different layers may also
lead to a different expression of geff .

VI. SIMULATION RESULTS

For illustration, we simulate the dynamics of a system
which consists of two qubits and a D-coupler with 80 qubits,
as shown in Figs. 3(a)–3(d). The two qubits are resonant
at 1 GHz and largely detuned from the coupler qubits that
are fixed at 4 GHz. The physical coupling rate, gm, is set
as +10 MHz, which fulfills the requirements of both DA
and RWA. The possibly small qubit crosstalk inside the cou-
pler is neglected for simplicity. From Fig. 3(a) to Fig. 3(d),
we control the effective coupling rate, from −4.27 MHz to
+4.27 MHz, by engineering the qubit ensemble in different
collective states. The coupling is completely turned off in
Fig. 3(c), when the magnetic quantum number is zero. It
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also changes the sign comparing Figs. 3(a) and 3(d), which
corresponds to the different signs of the magnetic quantum
numbers.

Next, we keep all the coupler qubits in the ground state
and increase the qubit number to 160, 240, and 320, as
shown in Figs. 3(e)–3(g). Correspondingly, the effective cou-
pling rate increases linearly from −8.53 through −12.80 to
−17.07 MHz. Here the maximum value of geff is 1.7 times
larger than the physical coupling rate, gm, while the effective
Hamiltonian, Eq. (2), still faithfully describes the dynamics
of the system. This observation clearly demonstrates that an
amplification of the interactions can be achieved in supercon-
ducting quantum circuits, which has not yet been reported
in the literature. However, one may also note a small and
periodic excitation of the coupler for increasingly large N ,
which is mainly caused by the finite ratio of gm/�m that
limits the accuracy of the DA. These ripples can be effectively
suppressed by increasing the detuning frequency and the qubit
number by the same scaling factor, while keeping the effective
coupling rate unchanged.

In Fig. 3(h) we simulate the system dynamics with a two-
layer coupler, where each layer contains 240 collective qubits.
The coupling rate between two adjacent layers, gc, is assumed
to be +10 MHz, while the other parameters are set identical
to Figs. 3(a)–3(g). Regardless of the noticeable ripples in the
excitation numbers, we obtain an effective coupling rate of
around +20.77 MHz, which is much larger than that for the
single-layer case shown in Fig. 3(f). The sign of the coupling
rate is also different from Fig. 3(f). However, considering the
total number of 480 qubits in the two-layer coupler, adding
more layers may not amplify the interactions as efficiently
as increasing the number of qubits in a single layer, which is
estimated to be −25.60 MHz for the same number of qubits.
Moreover, the amplification rate may even decrease when
adding an addition layer in certain scenarios. For example, we
obtain an effective coupling rate of +5.12 MHz for two layers
of 160 qubits, while it is −8.53 MHz for a single layer of
160 qubits, as shown in Fig. 3(e).

Finally, we numerically study how the effective qubit-qubit
interaction may be influenced by introducing a small inho-
mogeneity among the coupler qubits, as shown in Fig. 4.
Although the natural qubits, for example, spins, are intrin-
sically homogeneous, it is a technical challenge to fabricate
an ensemble of superconducting qubits with identical prop-
erties. This task is even more difficult if the qubits are
assumed to be fixed frequency, where a fine tuning of the
qubit frequencies is not allowed after fabrication. Here we
randomly sample each individual single-qubit parameter, ωn

and gm,n in Eq. (1), within a range spanned by up to ±1.5%
of their design values. With the increase of qubit inho-
mogeneity, the transition curve deviates increasingly from
the exact result. This deviation depends also on the mag-
netic quantum number, m, of the coupler qubits. However,
the effective interaction remains approximately in the same
form of Eq. (3) despite a small shift of the Rabi frequency.
This observation demonstrates the robustness of the proposed
D-coupler, while the effective coupling rate, geff , must be
calibrated in experiments in the presence of a small qubit
inhomogeneity.

Q2

Q1

Qc

0.15%

1%

1.5%

Q2

Q1

Qc

Q2

Q1

Qc

FIG. 4. The photon number transition between two qubits, which
is mediated by a 10-qubit coupler. From top to the bottom, we perturb
the parameters of each single coupler qubit, ωn and gm,n, by ±0.15%,
±1%, and ±1.5% of their ideal values, which follows a uniform
distribution in the given range. The other simulation parameters are
set identical to that in Fig. 3. In all the panels, the red and blue
curves correspond to the population of the two effectively coupled
qubits, which are initially prepared in the excited and ground states,
respectively. The green curves correspond to the magnetic quantum
number of the qubit ensemble deviating from m = −5, where the
coupler qubits are initially in the ground state. The dashed curves
correspond to the ideal Rabi oscillation. The simulation is repeated
for 50 times, and the inset shows the results in a smaller range.

VII. CONCLUSIONS AND OUTLOOK

We have proposed a so-called D-coupler based on the
Dicke model, and showed that it can be used to tune and am-
plify the effective interactions between two general circuits.
The effective coupling rate is controlled by the collective
magnetic quantum number of the qubit ensemble, and it is
free from collective decay and decoherence when the qubits
are prepared in the subradiant states. The tuning procedure,
from any initial to final values, is achieved in a single step by
applying single-photon π -pulses, without going through any
intermediate values. The dynamic range scales linearly with
the number of qubits, where the maximum can be made larger
than the physical coupling rates between the coupler and the
circuits.

We have also discussed a multilayer design of the
D-coupler. The circuit configuration is reminiscent to a travel-
ing wave parametric amplifier (TWPA), which may be seen
as a series configuration of the coupler qubits. In this per-
spective, amplification from the input to output fields may
happen in the presence of a parametric driving field, when
the effective coupling rate between the end qubits exceeds a
threshold relating to their external decay rates [60]. However,
our result indicates that a parallel configuration of the cou-
pler qubits may be an alternative and more efficient way to
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achieve quantum limited amplification at the same number of
junctions.

Despite the collective properties, one major difference be-
tween the D-coupler and most of the existing proposals is
that the effective coupling rate is controlled by the quantum
state of the coupler but not the detuning frequency. Hence,
the coupler can be made of only one or two fixed-frequency
qubits, which significantly simplifies the sample fabrication
and, most importantly, leads to a flux-free design of supercon-
ducting quantum circuits where the qubit properties can be
optimized with regard to only one noise source, i.e., the charge
noise. One may also consider engineering the coupler state in
the steady states of a driven-dissipative setup, which relaxes
the assumption of a collective reservoir and may result into a
more robust implementation. An experimental realization of

our protocol could offer significant advantages in designing
superconducting quantum circuits for quantum information
processing.
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APPENDIX A: EFFECTIVE HAMILTONIAN WITH ONE LAYER

We consider a system, H = H0 + V , where two general circuit components are coupled via a qubit ensemble

H0 =
2∑

m=1

ωmx†
mxm +

N∑
n=1

ωn

2
σ z

n +
∑
{n,n′}

gn,n′ (σ+
n σ−

n′ + σ−
n σ+

n′ ), (A1)

V =
2∑

m=1

N∑
n=1

gm,n(x†
mσ−

n + xmσ+
n )︸ ︷︷ ︸

V1

+ gm,n(x†
mσ+

n + xmσ−
n )︸ ︷︷ ︸

V2

. (A2)

Here ωm, xm, and x†
m are the resonant frequency, raising, and lowering operators, respectively, of the mth system component

Xm. Furthermore, ωn and σα
n with α = x, y, z are the characteristic frequency and standard Pauli operators of the nth qubit

in the ensemble with a total qubit number of N , gα,β is the coupling rate between the two components α and β, and {n, n′}
takes all possible pairs in the ensemble. To transform the component-coupler interaction into an effective component-component
interaction to the second order of gα,β , we apply the following unitary transformation to the original Hamiltonian [64]:

U = exp

[ X1︷ ︸︸ ︷
2∑

m=1

N∑
n=1

− gm,n

�m,n
(x†

mσ−
n − xmσ+

n ) +

X2︷ ︸︸ ︷
2∑

m=1

N∑
n=1

− gm,n

�m,n
(x†

mσ+
n − xmσ−

n )

]
. (A3)

On the one hand, we have �H0, X1 + X2� = −V . The transformation can be simplified as U †HU = H0 + (1/2)�V, X1 + X2� to
the second-order accuracy of gm,n/�m,n and gm,n/�m,n. On the other hand, we have

�V1, X1� = − gm,n

�m,n

{
gm′,nσ

z
n (x†

1x2 + x†
1x2) + gm,n

(
σ z

n {xm, x†
m} + �xm, x†

m�
) + gm,n′�xm, x†

m�(σ+
n σ−

n′ + σ−
n σ+

n′ )
}
, (A4)

�V1, X2� = gm,n

�m,n

{
gm′,nσ

z
n (x†

1x†
2 + x1x2) + gm,nσ

z
n

(
x†2

m + x2
m

) − gm,n′�xm, x†
m�(σ+

n σ+
n′ + σ−

n σ−
n′ )

}
, (A5)

�V2, X1� = − gm,n

�m,n

{
gm′,nσ

z
n (x†

1x†
2 + x1x2) + gm,nσ

z
n

(
x†2

m + x2
m

) + gm,n′�xm, x†
m�(σ+

n σ+
n′ + σ−

n σ−
n′ )

}
, (A6)

�V2, X2� = gm,n

�m,n

{
gm′,nσ

z
n (x†

1x2 + x†
1x2) + gm,n

(
σ z

n {xm, x†
m} − �xm, x†

m�
) − gm,n′�xm, x†

m�(σ+
n σ−

n′ + σ−
n σ+

n′ )
}
. (A7)

Here we have omitted the summation symbols over m and n for simplicity of notation; m′ and n′ indicate all the different numbers
from m and n. In total, we obtain the effective Hamiltonian

H̃ = ωmx†
mxm + ωn

2
σ z

n + gn,n′

2
σ x

n σ x
n′ + gm,ngm′,n

2

(
1

�m,n
− 1

�m,n

)
σ z

n (r†
1 + r1)(r†

2 + r2)

+ g2
m,n

2

(
1

�m,n
− 1

�m,n

)
σ z

n (x1 + x†
1 )2 − g2

m,n

2

(
1

�m,n
+ 1

�m,n

)
�xm, x†

m�(σ−
n + σ+

n )2

− gm,ngm,n′

2

(
1

�m,n
+ 1

�m,n

)
�xm, x†

m�σ x
n σ x

n′ . (A8)
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For the cases with two resonators, one resonator and one qubit, and two qubits, respectively, we have the following effective
Hamiltonians:

H̃R-R =
2∑

m=1

N∑
n=1

[
ωm + g2

m,n

(
1

�m,n
− 1

�m,n

)
σ z

n

]
r†

mrm + g1,ng2,n

2

(
1

�m,n
− 1

�m,n

)
σ z

n

(
r†

1 + r1
)(

r†
2 + r2

)

+ 1

2

[
ωn + g2

m,n

(
1

�m,n
− 1

�m,n

)(
r†

mr†
m + rmrm + 1

)]
σ z

n

+
N∑

n=1

∑
n′ 
=n

1

2

[
gn,n′ − gm,ngm,n′

(
1

�m,n
+ 1

�m,n

)]
σ x

n σ x
n′ , (A9)

H̃R-Q =
2∑

m=1

N∑
n=1

[
ω1 + g2

1,n

(
1

�1,n
− 1

�1,n

)
σ z

n

]
r†

1r1 +
[
ω2 + g2

2,n

(
1

�2,n
+ 1

�2,n

)]
σ z

2

2

+ g1,ng2,n

2

(
1

�m,n
− 1

�m,n

)
σ z

n

(
r†

1 + r1
)
σ x

2

+ 1

2

[
ωn + g2

1,n

(
1

�1,n
− 1

�1,n

)(
r†

1r†
1 + r1r1 + 1

) + g2
2,n

(
1

�2,n
− 1

�2,n

)]
σ z

n

+
N∑

n=1

∑
n′ 
=n

1

2

[
gn,n′ − g1,ng1,n′

(
1

�1,n
+ 1

�1,n

)
+ g2,ng2,n′

(
1

�2,n
+ 1

�2,n

)
σ z

2

]
σ x

n σ x
n′ , (A10)

H̃Q-Q =
2∑

m=1

N∑
n=1

[
ωm + g2

m,n

(
1

�m,n
+ 1

�m,n

)]
σ z

m

2
+ g1,ng2,n

2

(
1

�m,n
− 1

�m,n

)
σ z

nσ x
1 σ x

2

+ 1

2

[
ωn + g2

m,n

(
1

�m,n
− 1

�m,n

)]
σ z

n +
N∑

n=1

∑
n′ 
=n

1

2

[
gn,n′ + gm,ngm,n′

(
1

�m,n
+ 1

�m,n

)
σ z

m

]
σ x

n σ x
n′ . (A11)

If we further assume the homogeneity among the coupler qubits, we use the collective angular momentum operators to describe
the whole qubit ensemble and arrive at a more compact form of the effective Hamiltonian. They are

H̃R-R =
2∑

m=1

[
ωm + g2

m

(
1

�m
− 1

�m

)
Jz

]
r†

mrm + g1g2

2

(
1

�m
− 1

�m

)
Jz

(
r†

1 + r1
)(

r†
2 + r2

)

+ 1

2

[
ωc + g2

m

(
1

�m
− 1

�m

)(
r†

mr†
m + rmrm + 1

)]
Jz + 1

2

[
gc − g2

m

(
1

�m
+ 1

�m

)]
(Jx )2

, (A12)

H̃R-Q =
2∑

m=1

[
ω1 + g2

1

(
1

�1
− 1

�1

)
Jz

]
r†

1r1 +
[
ω2 + g2

2

(
1

�2
+ 1

�2

)
(Jx )2

]
σ z

2

2
+ g1g2

2

(
1

�m
− 1

�m

)
Jz

(
r†

1 + r1
)
σ x

2

+ 1

2

[
ωc + g2

1

(
1

�1
− 1

�1

)(
r†

1r†
1 + r1r1 + 1

) + g2
2

(
1

�2
− 1

�2

)]
Jz

+ 1

2

[
gc − g2

1

(
1

�1
+ 1

�1

)]
(Jx )2

, (A13)

H̃Q-Q =
2∑

m=1

[
ωm + g2

m

(
1

�m
+ 1

�m

)
(Jx )2

]
σ z

m

2
+ g1g2

2

(
1

�m
− 1

�m

)
Jzσ x

1 σ x
2

+ 1

2

[
ωc + g2

m

(
1

�m
− 1

�m

)]
Jz + 1

2
gc(Jx )2

. (A14)

APPENDIX B: EFFECTIVE HAMILTONIAN WITH MULTIPLE LAYERS

We consider a system with D layers of N homogeneous qubits, where any two adjacent layers are coupled by an XY-type
interaction

H =
2∑

m=1

ωmx†
mxm +

D∑
d=1

ωc

2
Jz

d +
D−1∑
d=1

gc(J+
d J−

d+1 + J−
d J+

d+1) + g1(x†
1 + x1)Jx

1 + g2(x†
2 + x2)Jx

d . (B1)
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By assuming that 〈Jz
d〉 ≈ −N/2, we introduce the following replacement of variables for large N [51–55]:

J+
d ≈

√
Na†

d , J−
d ≈

√
Nad , Jz

d = 2a†
d ad − N. (B2)

This gives

H =
2∑

m=1

ωmx†
mxm +

√
Ng1(x†

1 + x1)(a†
1 + a1) +

√
Ng2(x†

2 + x2)(a†
d + ad )

+
D∑

d=1

ωca†
d ad +

D−1∑
d=1

Ngc
(
a†

d ad+1 + ad a†
d+1

)
. (B3)

We note that the last term should be written as
∑D−1

d=1 Ngc(a†
d + ad )(a†

d+1 + ad+1) for an Ising-type interaction, described by
gcJx

d Jx
d+1, between two adjacent layers.

Similar to the definition of magnons in a XY-type spin chain [56–59], we define

a±
k =

√
2

D + 1

D∑
d=1

sin

(
skπ

D + 1

)
a±

d . (B4)

The Hamiltonian can be written as

H0 =
2∑

m=1

ωmx†
mxm +

D∑
k=1

(ωc + 2gk )a†
kak, (B5)

V =
2∑

m=1

N∑
k=1

gm,k
(
x†

mak + xma†
k

)︸ ︷︷ ︸
V1

+ gm,k
(
x†

ma†
k + xmak

)︸ ︷︷ ︸
V2

, (B6)

where gk = Ngc cos[kπ/(D + 1)], gm,k = √
Ngm sin[mkπ/(D + 1)]

√
2/(D + 1). For an Ising-type interaction, one may add∑D

k=1 gk (a†2
k + a2

k ) in H0.
To derive the effective Hamiltonian, we apply the following unitary transformation:

U = exp

[ X1︷ ︸︸ ︷
2∑

m=1

D∑
k=1

λ−
m,k (x†

mak − xma†
k ) +

X2︷ ︸︸ ︷
2∑

m=1

D∑
k=1

λ+
m,k (x†

ma†
k − xmak )

]
. (B7)

We obtain

�H0, X1 + X2� = λ−
m,k (�m,n − 2gk )(x+

m ak + x−
m a†

k ) + λ+
m,k (�m,n + 2gk )(x+

m a†
k + x−

m ak ), (B8)

�H0, X1 + X2� = [λ−
m,k�m,n + 2(λ+

m,k − λ−
m,k )gk](x+

m ak + x−
m a†

k ) + [λ+
m,k�m,n + 2(λ+

m,k − λ−
m,k )gk](x+

m a†
k + x−

m ak ), (B9)

for the XY- and Ising-type interactions, respectively. The rest of the commutators are

�V1, X1� = − λ−
m,k

{
gm′,k (x†

1x2 + x1x†
2 ) + gm,k{xm, x†

m} − (gm,k{a†
k, ak} + gm,k′ {a†

kak′ + aka†
k′ })�xm, x†

m�
}
, (B10)

�V1, X2� = λ+
m,k

{
gm′,k (x1x2 + x†

1x†
2 ) + gm,k

{
x2

m + x†2
m

} + (
gm,k

{
a+2

k + a−2
k

} + gm,k′ {a†
kak′ + aka†

k′ }
)
�xm, x†

m�
}
, (B11)

�V2, X1� = − λ−
m,k

{
gm′,k (x1x2 + x†

1x†
2 ) + gm,k

{
x2

m + x†2
m

} − (
gm,k

{
a+2

k + a−2
k

} + gm,k′ {a†
kak′ + aka†

k′ }
)
�xm, x†

m�
}
, (B12)

�V2, X2� = λ+
m,k{gm′,k (x†

1x2 + x1x†
2 ) + gm,k{xm, x†

m} + (gm,k{a†
k, ak} + gm,k′ {a†

kak′ + aka†
k′ })�xm, x†

m�}. (B13)

As before, we have omitted the summation symbol in the above formulas for simplicity of notation. The component-coupler
interaction can be eliminated to the second-order accuracy if

λ−
m,k = − gm,n

(�m,n − 2gk )
, λ+

m,k = − gm,n

(�m,n + 2gk )
(B14)

or

λ−
m,k�m,n + 2(λ+

m,k − λ−
m,k )gk = −gm,n, λ+

m,k�m,n + 2(λ+
m,k − λ−

m,k )gk = −gm,n, (B15)
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which gives the following effective Hamiltonian:

H̃ = ωmx†
mxm + (ωc + 2gk )a†

kak + gk
(
a†2

k + a2
k

)
+ 1

2
(λ+

m,k − λ−
m,k )gm′,k (x1 + x†

1 )(x2 + x†
2 ) + 1

2
(λ+

m,k − λ−
m,k )gm,k (xm + x†

m)2

+ 1

2
(λ+

m,k + λ−
m,k )gm,k (ak + a†

k )2�xm, x†
m� + 1

2
(λ+

m,k + λ−
m,k )gm,k′ (a†

k + ak )(a†
k′ + ak′ )�xm, x†

m�. (B16)

Here the underlined term exists only for an Ising-type interaction.
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