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Multipartite nonlocality in one-dimensional quantum chains: A transfer-matrix theory
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We propose a transfer-matrix theory to reveal the hidden structure in the multipartite nonlocality operators
in one-dimensional (1D) quantum chains. The theory offers a unified description for the scaling behaviors of
multipartite quantum nonlocality in general 1D quantum lattices. Furthermore, in order to figure out the hierarchy
of multipartite nonlocality for infinite-size chains, powerful transfer-matrix-based algorithms are proposed. In
quantum critical regions, the algorithms converge much faster than the traditional approach.
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I. INTRODUCTION

For years entanglement entropy has been widely investi-
gated in various low-dimensional quantum lattices [1]. The
obtained knowledge in turn promotes the improvements of
numerical simulation algorithms for these models [2]. It
needs mention that entanglement entropy characterizes bi-
partite quantum entanglement. For typical quantum lattices
which consist of many qubits, however, bipartite settings
could not reveal all the features of entanglement in the
models. Recently, quantum correlations with multipartite set-
tings have attracted much attention, and the field is still in
development [3–11].

A feasible approach to characterize multipartite quantum
correlations is to use Bell-type inequalities [12–17]. For in-
stance, Collins et al. show how to detect genuine n-partite
correlations with Bell-type inequalities [12]. Several years
later, the theory was generalized to a full family of multipar-
tite correlations by Bancal et al. [15]. Moreover, nonlocality
in systems with arbitrary dimensions [13,16] and networks
[18,19] have also been discussed in several pioneering papers.

Multipartite correlations detected by Bell-type inequalities
are called multipartite nonlocality. In the field of condensed
matter physics, multipartite nonlocality has been used to
characterize the ground states of various low-dimensional
quantum lattices, including one-dimensional (1D) XY chains
[20], transverse-field Ising chains [21,22], XXZ chains
[23,24], ferromagnetic chains [25], two-leg spin ladders [26],
two-dimensional (2D) transverse-field Ising lattices [27],
Lipkin-Meshkov-Glick models [28], and many others [29].
It is found that multipartite nonlocality provides a valuable
perspective for us to understand quantum phase transitions
(QPTs) and critical phenomena [30] in these models.

In quantum lattice theory, scaling analysis is an impor-
tant topic. It is found that multipartite nonlocality presents
rich scaling behaviors in 1D quantum lattices. For instance,
(i) in some parameter regions of the XY chains [20], the
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nonlocality measure Sn vanishes in the large-n limit; (ii) in
some other situations, such as the ferromagnetic states [20,26]
and the antiferromagnetic states [24], Sn turns out to be an
n-independent nonzero constant, i.e., Sn ∼ const; (iii) never-
theless, in most situations (such as the critical transverse-field
Ising chains [20,22,31], XXZ chains [24,31], and the two-
leg spin ladders [26]), Sn scales as log2 Sn ∼ Kn + b, with
K and b two fitting parameters. It is expected that an in-depth
analysis about the origin of these scaling behaviors would
greatly deepen our understanding of multipartite nonlocality
in quantum chains. However, because of the complexity in the
definition of multipartite nonlocality, as far as we know, the
issue has not been discussed.

In this paper, a transfer-matrix theory will be proposed,
which reveals the hidden translation invariance in the opti-
mal nonlocality operators in 1D quantum chains. We will
show that the scaling of Sn is just determined by the largest-
magnitude eigenvalue λmax of the transfer matrix in the model,
i.e., Sn ∼ |λmax|n. It is quite clear that the above-mentioned
three scaling behaviors correspond to situations with |λmax| <

1, |λmax| = 1, and |λmax| > 1, respectively. Some further ap-
plications of the theory to improve numerical algorithms will
also be discussed.

II. BASIC CONCEPTS

Hierarchy of multipartite correlations and grouping num-
bers. A key feature of multipartite correlations is that they
can present various hierarchies (see Fig. 1). We consider
a model consisting of six parties, i.e., a1, a2, a3, a4, a5,
and a6. One can always divide these parties into (at most)
g groups such that only parties in the same group can share
communications with each other. Then the grouping number
g offers us an intuitive approach to characterize the hierarchy
of multipartite correlations. In an extreme situation, every
party cannot share any communication with other parties.
Then we may label the model as {a1, a2, a3, a4, a5, a6} with
a grouping number g = 6 [Fig. 1(a)]. Suppose only parties a1

and a2 are allowed to share some communications with each
other. Then the model can be labeled as {a1a2, a3, a4, a5, a6}
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FIG. 1. Various patterns of multipartite quantum correlations in
n-qubit quantum systems with n = 6. Qubits are denoted by black
dots, and only qubits in the same shadow can share quantum corre-
lations with each other. The leftmost one describes product states
and the rightmost one describes genuine multipartite correlations.
From left to right, the hierarchy of multipartite correlations increases
gradually. The hierarchy can be captured by the nonlocality measure
Sn (for finite-size systems) and the central parameter K (for infinite-
size systems).

with a grouping number g = 5 [Fig. 1(b)]. It is clear that
models such as {a1, a2a3, a4, a5, a6} and {a1a3, a2, a4, a5, a6}
also have a grouping number g = 5. Similarly, models
such as {a1a2, a3a4, a5, a6} and {a1a2a3, a4, a5, a6} have a
grouping number g = 4 [Fig. 1(c)]; {a1a2, a3a4, a5a6} and
{a1a2a3, a4a5, a6} have a grouping number g = 3 [Fig. 1(d)];
{a1a2a3a4, a5a6} and {a1a2a3, a4a5a6} have a grouping num-
ber g = 2 [Fig. 1(e)]; and {a1a2a3a4a5a6} have a grouping
number g = 1 [Fig. 1(f)].

It is quite clear that a smaller (larger) value of g indicates
a higher (lower) hierarchy of multipartite correlations. For
instance, g = n denotes product states and g = 1 denotes the
highest hierarchy of multipartite correlations (i.e., genuine
n-partite correlations).

Bell-type inequality and multipartite nonlocality. For a
quantum many-body state, the grouping number g can be
analyzed numerically. First, one may design some subtle ex-
pression S (an instance of S will be introduced in the next
section). Then one needs to figure out the maximal value
Sg0 = maxS by considering all the models with a fixed
grouping number g0. Then for any model with a grouping
number g0, the following Bell-type inequality should hold,
i.e., S � Sg0 . For a concerned quantum state, one evaluates
this inequality. If the inequality is violated, it becomes unam-
biguous that the multipartite correlations in the state cannot
be reproduced by any g-grouping model. Thereby, one can
conclude that the grouping number of the state should be
(at most) g0 − 1. In the literature, multipartite correlations
observed by the violation of Bell-type inequalities are usually
called multipartite nonlocality.

Mermin-Klyshko-Bell inequalities. A widely used expres-
sion for S is proposed by Mermin and Klyshko [32–34]. First,
we introduce the n-qubit nonlocality operator M̂n. On each
qubit i, one should define two local observables as m̂i = ai · σ

and m̂′
i = a′

i · σ, where ai and a′
i are unit vectors and σ are

the Pauli matrices. Then the n-qubit nonlocality operator is
defined recursively as

M̂n(a) = 1

2
M̂n−1 ⊗ (m̂n + m̂′

n)

+ 1

2
M̂ ′

n−1 ⊗ (m̂n − m̂′
n), (1)

where M̂ ′
n−1 is obtained by exchanging all the ai and a′

i in
M̂n−1, and a = {a1, a′

1, . . . , an, a′
n} is a set of 2n unit vectors.

In Eq. (1), a specific ordering (n, n − 1, n − 2, . . . , 1) of the
qubits has been used. Some discussions about other orderings
can be found in the Appendix of this paper.

M̂n is a member of the full-correlation nonlocality opera-
tors [34]. Compared with other nonlocality operators, a key
advantage of M̂n is that [15] it provides explicit upper bounds
for various hierarchies of multipartite correlations (Fig. 1).

For any n-qubit quantum state whose correlations can be
reproduced by g0-grouping models, it has been proved that the
following Mermin-Klyshko-Bell inequality should hold [15]:

Sn =
{

maxa〈M̂n(a)〉 � 2
n−g0

2 forn − g0 is even
maxa〈Ŝn(a)〉 � 2

n−g0
2 forn − g0 is odd,

(2)

where the maximization is used to remove any dependence
upon local measures, 〈·〉 denotes standard expectation value,
and Ŝn = 1√

2
(M̂n + M̂ ′

n). If the inequality is violated, one can
conclude that the multipartite correlations in the state cannot
be reproduced by any g-grouping model. In other words, the
grouping number of the state should be (at most) g0 − 1.

The index g0 with g0 = 2, 3, . . . , n labels a complete set
of Bell-type inequalities. The highest-rank one is Sn � 2

n−2
2

with g0 = 2. If this Bell inequality is violated, the correla-
tions in the state cannot be reproduced by any 2-grouping
model. Thereby, the grouping number should be g = 1, i.e.,
genuine multipartite nonlocality [Fig. 1(f)]. The lowest-rank
one is Sn � 2

n−n
2 = 1 with g0 = n. If it is violated, one con-

cludes that the grouping number is (at most) n − 1 [Fig. 1(b)].
Thereby, a larger (smaller) Sn would indicate a higher (lower)
hierarchy of multipartite nonlocality in the concerned n-qubit
system.

As a highly nontrivial problem, the n-qubit numerical op-
timization with respect to a in Eq. (2) has been solved in
Ref. [31]. It needs mention that the numerical optimal solu-
tions, denoted as

a∗ = {a∗
1, a′∗

1 , . . . , a∗
n, a′∗

n }, (3)

usually seem to be random numbers. Nevertheless, as we will
show, tensor networks can clarify the origin of this random-
ness, and provide clues for us to understand the structure and
the behavior of the optimal nonlocality operators. Moreover,
in quantum lattices, one may be just interested in a qualitative
description of multipartite correlations. Thereby, we ignore
the parity in Eq. (2) and just consider M̂n(a).

III. TRANSFER-MATRIX THEORY OF MULTIPARTITE
NONLOCALITY

Tensor network for 〈M̂n(a)〉. The basis of our theory is the
tensor network form of 〈M̂n(a)〉 = 〈ψ |M̂n|ψ〉. First, it is well
known that the ground states |ψ〉 of 1D quantum chains can be
described by matrix product states (MPSs) [2]. For instance,
an infinite-size MPS consisting of one-qubit unit cells can be
expressed as

|ψ〉 =
∑

···s−1s0s1···
tr(· · · As−1 As0 As1 · · · )| · · · s−1s0s1 · · · 〉, (4)
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FIG. 2. (a) Tensor network for calculating n-qubit nonlocality
measure maxa〈M̂n(a)〉 in an infinite-size chain. As are translation-
invariant tensors for the matrix product state |ψ〉, with l and r the
environment tensors of the concerned subchain. Tensors oi together
form a tensor network for the nonlocality operator M̂n. (b) By tensor
contractions on each qubit, 〈M̂n〉 is further rephrased into a tensor
train, i.e., 〈M̂n〉 = 〈T1|T2 · · · Tn−1|Tn〉. (c) To explain the general scal-
ing of the nonlocality measure in 1D quantum chains, we propose a
transfer matrix theory. That is, except for the boundary regions with
depth �B, by proper similarity transformations the optimal tensors
Ti can be transformed into translation-invariant tensors, denoted by
a transfer matrix T . �B controls the accuracy of the transfer matrix
theory, and when �B → n

2 , (c) fully reproduces (b).

where si = 0, 1 denote the local degree of freedom of the ith
qubit, and A denotes a translation-invariant third-order tensor
whose entry is Asi;xixi+1 [see Fig. 2(a)]. Alternatively, one may
treat Asi as D × D matrices, with D the bond dimension of the
MPS. When D is large enough, MPSs are able to describe the
ground states of general 1D quantum chains faithfully.

In a quite recent paper [35], the n-qubit nonlocality opera-
tor M̂n(a) is also rephrased into a matrix product operator as
M̂n(a) = 〈o1|o2 · · · on−1|on〉, with

〈o1| = (m̂1, m̂′
1), |on〉 =

(
1
2 (m̂n + m̂′

n)
1
2 (m̂n − m̂′

n)

)
(5)

and

oi =
(

1
2 (m̂i + m̂′

i )
1
2 (m̂′

i − m̂i )
1
2 (m̂i − m̂′

i )
1
2 (m̂i + m̂′

i )

)
for1 < i < n. (6)

The tensor network for 〈o1|o2 · · · on−1|on〉 can be found
in Fig. 2(a). 〈o1| is a third-order tensor whose entry can be
expressed as (o1)s1s′

1;y2 . Similarly, |on〉 is also a third-order
tensor whose entry is (on)sns′

n;yn . Moreover, for 1 < i < n, oi is
a fourth-order tensor whose entry is (oi )sis′

i;yiyi+1 . Alternatively,
one can treat (o1)s1s′

1
and (on)sns′

n
as vectors, and (oi )sis′

i
as

2 × 2 matrices when 1 < i < n.
We are ready to deal with the expression 〈M̂n(a)〉 =

〈ψ |M̂n|ψ〉, which is defined on a continuous n-qubit sub-
chain in the middle of an infinite-size MPS. It is not difficult
to check that the left and right environment blocks of the
subchain contain the products of many translation-invariant

matrices E , i.e., limL→∞ EL, with E given by [2]

E =
∑

si

Asi ⊗ A∗
si
. (7)

It is well known that limL→∞ EL can be presented by the left
and right eigenvectors � and r of the matrix E , corresponding
to the largest eigenvalue.

Finally, combined with the expressions of |ψ〉 and M̂n(a)
and the simplified environment blocks, the average value
〈M̂n(a)〉 can be rephrased into a standard three-layer tensor
network in Fig. 2(a).

To further simplify this tensor network, on each qubit
i in the concerned subchain, we carry out local tensor
contractions. First, for 1 < i < n, we would define a local
tensor Ti as

Ti(ai, a′
i ) =

∑
sis′

i

Asi ⊗ (oi )sis′
i
⊗ A∗

s′
i
. (8)

Second, for the leftmost qubit, we take into account its left
environment block �. Thereby a local tensor 〈T1| should be
defined as

T1(a1, a′
1) =

∑
s1s′

1

�As1 ⊗ (o1)s1s′
1
⊗ A∗

s′
1
. (9)

Similarly, for the rightmost qubit, a local tensor |Tn〉 should be
defined as

Tn(an, a′
n) =

∑
sns′

n

Asn ⊗ (on)sns′
n
⊗ A∗

s′
n
r. (10)

Finally, with these local tensors Ti, the three-layer tensor
network of 〈M̂n(a)〉 in Fig. 2(a) is simplified into Fig. 2(b),
i.e.,1

〈M̂n(a)〉 = 〈T1|T2T3 · · · Tn−2Tn−1|Tn〉. (11)

It is straightforward that the nonlocality measure Sn [Eq. (2)]
becomes

Sn = max
a

〈M̂n(a)〉 = max
a

〈T1|T2T3 · · · Tn−2Tn−1|Tn〉. (12)

Origin of randomness in the optimal solutions. In Eq. (12),
it is quite clear that if some identity SS−1 is inserted into any
two adjacent tensors Ti and Ti+1, the average value does not
change. Consider two vector sets a and b, where the corre-
sponding local tensors Ti(ai, a′

i ) and Ti(bi, b′
i ) are not equal to

each other. It is possible that by some similarity transforma-
tions they can be transformed into each other. Consequently,
it may turn out that 〈M̂n(a)〉 = 〈M̂n(b)〉 even if a �= b. Two
subsequent results are as follows. First, Eq. (12) has many op-
timal solutions a∗ which are equivalent to each other. Second,
numerical optimization algorithms would converge randomly
into one of these equivalent solutions, and thus the output
solution a∗ would seem to be rather random. Consequently,
it is difficult to disclose any hidden feature of the opti-
mal nonlocality operator M̂n(a∗) by analyzing the numerical
solution a∗.

1In Eqs. (8)–(10), the entries of these tensors are (Ti )xiyix′
i ;xi+1yi+1x′

i+1
,

(T1)1;x2y2x′
2
, and (Tn)xnynx′

n ;1, respectively. Thus, it is convenient to treat
Ti as matrices, T1 as a bra vector, and Tn as a ket vector.
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Transfer matrix theory. We call the tensors Ti = Ti(a∗
i , a′∗

i )
the optimal tensors. Our theory is that, by proper similarity
transformations, the optimal tensors in the middle part of
the tensor chain can be transformed into translation-invariant
tensors, i.e.,

Ti = T, (13)

with T the transfer matrix. Suppose the depth of the boundary
regions is �B, and then the nonlocality measure permitted by
the transfer-matrix theory is expressed as

S (�B )
n = max

a
〈T1|T2 · · · T�B T n−2�B Tn−�B+1 · · · Tn−1|Tn〉, (14)

where a is a set of 2(2�B + 1) (rather than 2n) unit
vectors. Please see Fig. 2(c). �B controls the accuracy of
the transfer-matrix theory. For instance, when �B → n

2 , the
translation-invariant regions vanish, thus S (�B )

n should fully
reproduce Eq. (12). Nevertheless, as we will show by several
models, even when �B is quite small (i.e., �B � n), S (�B )

n can
reproduce Eq. (12).

IV. NUMERICAL RESULTS AND APPLICATIONS

Model 1: J1-J2-α model. As the first example, we will
consider a bond-alternating spin- 1

2 Heisenberg chain with
next-nearest-neighbor interactions [36,37],

Ĥ = J1

∑
odd i

Si · Si+1 + J2

∑
even i

Si · Si+1 + α
∑

i

Si · Si+2.

(15)
J1 and J2 denote bond-alternating couplings, and α denotes
next-nearest-neighbor coupling.

In the parameter space −2α + J2−J1
2 = −1 [38], it is well

known that the ground state |ψ〉 is a singlet-product state,
which can be described by an infinite-size MPS consisting
of two-qubit unit cells, i.e., A0 = (0,−1), A1 = (1, 0), B0 =
(
√

2
0 ), and B1 = ( 0√

2). We have optimized Eq. (12) numerically

and find that Sn = √
2, i.e., an n-independent constant. This

result can be perfectly reproduced by optimizing Eq. (14).
In fact, even just with �B = 1, the optimal solution gives
T1 = (

√
2, 0), Tn = (1

0), and Ti = (1 0
0 1) for 1 < i < n. Thus

Eq. (12) is reproduced by the transfer-matrix theory with
�B = 1.

Model 2: Transverse-field Ising model. We consider the 1D
transverse-field Ising chain described by

Ĥ = −
∑

i

σ̂ i
z σ̂

i+1
z − h

∑
i

σ̂ i
x, (16)

where σ̂ i
x,z are Pauli matrices on qubit i, and h denotes the

strength of the magnetic field along the x direction. h = 1
is a quantum critical point. We have used an infinite time-
evolving block decimation algorithm [39,40] (with D � 8)
and the Matrix-Product Toolkit [41] (with D � 10) to express
the ground states of the chains into MPSs [31].

We find the transfer-matrix theory in Eq. (14) with �B = 1
cannot fully reproduce the best results of Eq. (12) anymore.
Thereby, we carry out the optimizations of Eq. (14) with �B in-
creasing step by step, and the results (with n = 40) are shown
in Fig. 3. As �B increases, log2 S (�B )

n converges rather fast.

0 5 10 15 20
2

4

6

8

10

FIG. 3. Logarithm nonlocality measure from the transfer-matrix
theory as a function of the boundary depth �B. The transverse-field
Ising model is used as an example, with h the strength of the magnetic
field. The bond dimension of the MPS is D = 8. The length of the
subchain is n = 40. As �B increases, log2 S (�B )

n converges rather fast.
It indicates that the transfer-matrix theory in Fig. 2(c) with quite
small �B is sufficient to reproduce the best results of Fig. 2(b).

For instance, for h = 1.4, we find log2 S (�B )
n = 2.5761 when

�B = 6. On the other hand, Eq. (12) gives log2 Sn = 2.5762.
Thereby, the results of Sn in the transverse-field Ising model
are also reproduced by the transfer matrix theory S (�B )

n with
�B � n.

Scaling and its origin. The scaling behaviors of Sn can be
explained uniformly by the transfer-matrix theory. We denote
the eigenvalues of the transfer matrix T as λi. Then according
to Eq. (14), it is easy to prove that only λmax—the eigenvalue
with the largest magnitude—would play a role in the large-n
limit, i.e.,

S (�B )
n

n→∞−→ |λmax|n−2�B p, (17)

with p an n-independent quantity. | · | denotes the absolute
value when λi are real and denotes the complex modulus when
λi are complex.

If |λmax| < 1, S (�B )
n would vanish in the large-n limit.

If |λmax| = 1 (such as in the J1-J2-α model, where the
transfer matrix is just the identity matrix), S (�B )

n would
be an n-independent constant. If |λmax| > 1, however,
we have

log2 S (�B )
n = n log2 |λmax| + log2

p

|λmax|2�B
, (18)

where

K := log2 |λmax| (19)

is just the central parameter in the scaling formula.
The theory can be generalized to quantum systems with

large unit cells. For instance, for ground states which consist
of two-qubit unit cells, we use two qubits to define the transfer
matrix, i.e., T = TiTi+1, and then K should be given by

K = log2 |λmax| 1
2 . (20)

Finally, the scaling behaviors observed in various 1D quantum
lattices in previous papers are explained uniformly by the
transfer-matrix theory.
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0
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FIG. 4. Central parameter K = limn→∞ Kn of the transverse-
field Ising model. The bond dimension of the MPS is D = 8. Circles
denote the results from the transfer-matrix theory combined with
an n-qubit optimization algorithm. Dots denote the results from a
traditional approach [31] for a comparison purpose. At the critical
point h = 1.0, the transfer-matrix approach converges much faster
than the traditional approach.

The origin of the scaling behaviors of Sn is quite clear.
For 1D quantum chains which are translation invariant,
the optimal nonlocality operators also present some hid-
den translation invariance, captured by the transfer-matrix
theory.

Application: Fast-convergence algorithms for calculating
K. For finite-size lattices Sn is a meaningful measure of mul-
tipartite correlations. For infinite-size lattices with n → ∞,
however, log2 Sn ∼ Kn + b diverges in most situations. Then,
the central parameter K provides us a valuable tool to charac-
terize multipartite correlations in infinite-size systems. K has a
clear physical meaning. According to Eq. (2), it is not difficult
to find that K � 1

2 , and K → 1
2 indicates high hierarchy of

multipartite nonlocality. On the other hand, for the lowest hi-
erarchy of multipartite nonlocality, we have K → 0. Thereby,
K can characterize the hierarchy of multipartite nonlocality in
infinite-size systems.

In a traditional approach to calculate K, one calculates the
derivative Kn = ∂ log2 Sn

∂n of the log2 Sn ∼ n curve and takes the
large-n limit, i.e., K = limn→∞ Kn [31]. A drawback of this
approach is that Kn converges slowly in the critical regions
(see the solid dots in Fig. 4).

According to the transfer-matrix theory, the central param-
eter K is determined just by the largest-magnitude eigenvalue
of the transfer matrix. Therefore, for an n-qubit lattice, sup-
pose we have already figured out an optimal solution a∗.
Then we can move on to construct the transfer matrix by
the tensors in the middle of the chain, i.e., T = Tn

2
Tn

2 +1.
Then the finite-size parameter Kn would be given by Kn =
log2 |λmax| 1

2 . We will increase n until some convergence is
obtained. The advantage of this approach is that the contri-
butions of other eigenvalues |λi| < |λmax|, which play no role
in the large-n limit [see Eq. (17)], are eliminated from the
beginning.

Our numerical results for the transverse-field Ising model
are illustrated in Fig. 4. In the noncritical regions (i.e., h =
1.2 and h = 1.4), the traditional approach (dots) and the
transfer-matrix approach (circles) converge fast to an equal
value; thus the validity of the transfer-matrix approach is

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

FIG. 5. D dependence of the central parameter K in the
transverse-field Ising model. For D = 8, the results are from the con-
verged results in Fig. 4. For D � 10, the ground states are calculated
using the Matrix-Product Toolkit [41] and K is calculated with the
second transfer-matrix algorithm.

confirmed. For the critical field h = 1.0, however, the tradi-
tional approach converges rather slowly (i.e., K24 = 0.3035 <

K40 = 0.3203), while the transfer-matrix approach converges
quite fast (i.e., K24 = K40 = 0.3281). Thereby, this transfer-
matrix approach greatly improves the speed of convergence
of K in the quantum critical regions. This algorithm will be
called our first algorithm, in which the transfer-matrix the-
ory is combined with an n-qubit optimization algorithm for
calculating Sn.

Here we recommend a second algorithm to directly calcu-
late K that is even more strategic and efficient. For brevity, we
consider a single-site transfer matrix T as

T (a, a′) =
∑
ss′

As ⊗ [o(a, a′)]ss′ ⊗ A∗
s′ . (21)

Our goal is to optimize the largest-magnitude eigenvalue
|λmax| of this transfer matrix with respect to the unit
vectors {a, a′}. When this optimization is finished, the central
parameter K is simply given by Eq. (19). We have used this
algorithm to recalculate the transverse-field Ising model. For
h =1, 1.2, and 1.4, the central parameter K turns out to be
0.3281, 0.1610, and 0.0697, respectively. As a comparison,
we mention that values of K40 in Fig. 4 are 0.3281, 0.1610,
and 0.06955, respectively. Thereby the validity of this second
algorithm is confirmed.

This powerful algorithm deserves some further comments.
First of all, compared with the first algorithm, the n-qubit
optimization of the measure Sn is completely avoided, and
thus the code becomes much more simple. Second, since it di-
rectly calculates K, there is no n-related convergence problem
that appears in the first algorithm (see Fig. 4). Third, in this
algorithm, the most time-consuming step is to figure out the
eigenvalue of the 2D2 × 2D2 transfer matrix T for hundreds
of rounds. When D is not too large (which is just the situation
in the Ising model), we find the computational efficiency is
significantly better than in the first algorithm. Thereby, we are
able to analyze the D dependence of K (see Fig. 5). When
D is very large, however, the diagonalization of the matrix T
would become computationally intensive.
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V. SUMMARY AND SOME PERSPECTIVES

In this paper, we have proposed a transfer-matrix theory
to reveal the hidden translation invariance in the opti-
mal nonlocality operators in 1D quantum lattices, and
verified the theory numerically by considering several typ-
ical quantum models. The theory discloses that the scal-
ing of the nonlocality measure Sn is determined by the
largest-magnitude eigenvalue λmax of the transfer matrix,
i.e., Sn ∼ |λmax|n, and thus offers a unified explanation
for previously observed scaling behaviors in various 1D
quantum lattices. Another result of this paper is that the central
parameter K, which characterizes multipartite nonlocality for
1D infinite-size quantum chains, is determined by the op-
timal transfer matrix as K = log2 |λmax|. Thereby, powerful
transfer-matrix-based algorithms are proposed to calculate K.
We have shown unambiguously that in quantum critical re-
gions, the transfer-matrix algorithms present a much faster
convergence speed than the traditional approach.

Mere ground states have been considered in this paper. At
finite temperatures, the thermal states of 1D quantum lattices
can also be expressed by translation-invariant tensor networks
[42]. Thereby, we believe the transfer-matrix theory can also
be applied to finite temperatures and will be investigated in
our future work. Moreover, the theory offers a clue to design
feasible Bell-type experiments in solid materials.
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APPENDIX: ORDERINGS OF THE QUBITS

In the construction of the nonlocality operator M̂n in
Eq. (1), the specific ordering (n, n − 1, n − 2, . . . , 1) of the
qubits has been used. One may ask what will happen if we
use other orderings to construct M̂n. Consider the expression

Sn = max
a

tr[ρ̂nM̂n(a)]. (A1)

When some other ordering is used, one keeps ρ̂n unchanged
and transforms M̂n into ˆ̃Mn = P̂M̂nP̂−1, where P̂ is the per-
muting operator associated with the concerned new ordering.
Or alternatively, one may keep M̂n unchanged and transform
the origin state ρ̂n into P̂ρ̂nP̂−1. We use the latter approach.
So, the question becomes, for arbitrary permuting operator P̂,
are Sn(ρ̂n) and Sn(P̂ρ̂nP̂−1) equal to each other? If the answer
is yes, then the orderings of the qubits can be ignored in our
study. If the answer is no, then some multipartite nonlocal
correlations may be missed when other orderings are not
considered.

First, let us investigate the simplest situation, i.e., two-
qubit states. There are only two orderings, i.e., (2,1) and
(1,2), where the corresponding states will be marked as ρ̂(2,1)

and ρ̂(1,2), respectively. Our conclusion is that S2(ρ̂(2,1)) =

S2(ρ̂(1,2)). According to Horodecki et al.’s work, an analytical
expression for S2 exists for general two-qubit states [43]. For
ρ̂(2,1), a 3 × 3 matrix 	 is defined as

	i j = tr(ρ̂(2,1)σ̂i ⊗ σ̂ j ) (A2)

with i, j = {x, y, z}. Then Horodecki et al. have proved that
S2(ρ̂(2,1)) = √

λ1 + λ2, with λ1 and λ2 the two largest eigen-
values for the symmetric matrix 	T 	. Here the superscript T
represents the transpose of the matrix.

For ρ̂(1,2) = P̂ρ̂(2,1)P̂−1, the elements of the 3 × 3 matrix
become

	̃i j = tr(P̂ρ̂(2,1)P̂
−1σ̂i ⊗ σ̂ j ) = tr(ρ̂(2,1)σ̂ j ⊗ σ̂i ) = 	 ji. (A3)

Then we have S2(ρ̂(1,2)) =
√

λ̃1 + λ̃2 with λ̃1 and λ̃2 the two
largest eigenvalues of 	̃T 	̃. In Eq. (A3), it is clear that 	̃ =
	T . Thus, 	̃T 	̃ and 	T 	 would have the same eigenvalues.
Therefore, for arbitrary two-qubit state we always have

S2(ρ̂(2,1)) = S2(ρ̂(1,2)). (A4)

For n > 2, no analytical expression for Sn exists. Thereby,
we have to consider all the possible orderings numerically.

For n = 3, one can see that there are a total of six orderings,
i.e., (3,2,1), (3,1,2), (2,3,1), (2,1,3), (1,3,2), and (1,2,3). We
have considered the ground state of the three-qubit transverse-
field Ising model in Eq. (16) with h = 1. We have figured out
all six permuted density matrices ρ̂(3,2,1), ρ̂(3,1,2), ρ̂(2,3,1), and
so on. For each of these six density matrices, we have carried
out the numerical optimization maxa tr(ρ̂M̂n) independently,
and they all lead to the same result, i.e.,

S3(ρ̂(3,2,1)) = S3(ρ̂(3,1,2)) = S3(ρ̂(2,3,1)) = · · · = 1.2471.

(A5)

As a second example, we have initialized a random three-
qubit quantum state. Again, the nonlocality measures for the
permuted density matrices are equal to each other, i.e.,

S3(ρ̂(3,2,1)) = S3(ρ̂(3,1,2)) = S3(ρ̂(2,3,1)) = · · · . (A6)

For n = 4, there are a total of 24 orderings, i.e., (4,3,2,1),
(4,3,1,2), (4,2,3,1), (4,2,1,3), and so on. We have considered
the ground state of the four-qubit transverse-field Ising model
with h = 1, and have figured out all 24 permuted density
matrices. It turns out that they all lead to the same result, i.e.,

S4(ρ̂(4,3,2,1)) = S4(ρ̂(4,3,1,2)) = S4(ρ̂(4,2,3,1)) = · · · = 1.4328.

(A7)

We have also initialized a random four-qubit quantum
state, and figured out all 24 permuted density matrices. Again,
all these density matrices lead to the same value of S4, i.e.,

S4(ρ̂(4,3,2,1)) = S4(ρ̂(4,3,1,2)) = S4(ρ̂(4,2,3,1)) = · · · . (A8)

We mention that in the random quantum states, symmetries
(such as the translation invariance and the permutation invari-
ance) are not present.

Our analytical result for general two-qubit states and nu-
merical results for three-qubit and four-qubit states suggest
that the permutation operators do not change the value of
the nonlocality measure Sn. [For a fixed a, the permuta-
tion operator P̂ changes the value of tr[ρ̂nM̂n(a)] if the state
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does not have a permutation invariance. Nevertheless, our
results show that P̂ does not change the optimization result
maxa tr[ρ̂nM̂n(a)], in other words, the nonlocality measure
Sn.] Thereby, when using the Mermin-Klyshko-Bell inequal-

ities to analyze multipartite nonlocality in general n-qubit
states, we believe the orderings of the qubits do not play an
important role. It may be interesting to find a rigorous proof
in our future work.
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