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Nonlinear atomic force microscopy: Squeezing and skewness of micromechanical oscillators
interacting with a surface
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We propose a two-frequency driving scheme in dynamic atomic force microscopy that maximizes the
interaction time between tip and sample. Using a stochastic description of the cantilever dynamics, we predict
large classical squeezing and a small amount of skewness of the tip’s phase-space probability distribution. Strong
position squeezing will require close contact between tip and surface, while momentum squeezing would also be
possible in the van der Waals region of the tip-surface force. Employing a generalized Caldeira-Leggett model,
we predict that surface-dependent dissipative forces may be the dominant source of quantum effects and propose
a procedure to isolate quantum effects from thermal fluctuations.
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I. INTRODUCTION

Surfaces and interfaces, i.e., the outermost layer of atoms
of a material, define how it interacts with its surroundings
[1]. It is therefore critically important to study the physical
and chemical properties of surfaces. For more than three
decades, atomic force microscopy (AFM) [2,3] has been
an indispensable tool to explore the topography of surfaces
and their electrical, magnetic, and elastic properties [4]. It
has been applied to study a plethora of phenomena at the
nanoscale, including the measurement of forces acting on
individual molecules [5], the study of biological samples [6],
and nanoparticles [7].

Conventional AFM consists of a cantilever with a
nanometer-sized tip that interacts with the sample while being
dragged over its surface (contact mode [2]). The properties of
the sample, and in particular the force between tip and sample,
are measured by monitoring the motion of the cantilever. In
order to minimize the damage to the sample, the cantilever can
be made to rapidly tap over the sample surface while scanning.
The distance to the surface is manipulated by applying an
oscillating, single-frequency piezoelectric force. This mode
is known as dynamic AFM [8]. Our paper focuses on inter-
modulation AFM [9–11], where the cantilever is driven by a
two-frequency force. Multifrequency AFM can increase the
rate of data acquisition and enables us to monitor Fourier com-
ponents of the tip’s motion [12]. It can provide angstrom-scale
resolution [13] and has been used to investigate the properties
of magnetic surface forces [14] and dissipative forces [15,16].

Here, we describe the motion of the tip in dynamic AFM
as a statistical system to accomplish several goals. First, a
statistical description enables us to describe the dynamics of
position and momentum variances, as well as that of higher-
order correlations. Observing their dynamics could be used
to study aspects of the tip-surface interaction that could not

be measured by monitoring the tip’s mean position alone.
Measuring variance dynamics could become a new technique
that increases the number of existing AFM imaging modes
[12]. We focus on classical squeezing of thermal fluctuations,
which could also be used to enhance the resolution of AFM.
Squeezing in AFM has been studied before within a quantum-
mechanical model by Passian and Siopsis [17,18]. Squeezing
of thermal noise in a microcantilever with a parametric ampli-
fier has been measured by Rugar and Grütter [19].

The generation of squeezing in AFM can be compared to
classical nonlinear optics, where a coupling between differ-
ent harmonics may trigger phase squeezing through the Kerr
effect [20].

Squeezing of position and momentum variances only
occurs under specific circumstances. Our second goal is there-
fore to provide a driving scheme that generates squeezing in
dynamic AFM. We propose a scheme which maximizes the
time the tip spends close to the sample in dynamic AFM. Such
a scheme could also be useful to increase the signal in other
AFM experiments.

Our third goal is to provide a statistical model that can
clearly distinguish genuine quantum effects from classical
dynamics. This is a nontrivial task because of the dissipa-
tive nature of the tip-surface interaction, which necessitates
a description of the tip as an open quantum system [21]. In
order to accomplish this, we have generalized the Caldeira-
Leggett model [22] to a position-dependent dissipative force.
A surprising result of this theory is that such a position-
dependent dissipative force may be the dominant source of
quantum effects in AFM. These findings may be relevant for
other systems as well since there is a growing interest in
quantum effects with micromechanical resonators [23–25] or
even larger objects [26,27].

Our simulations indicate that under normal operations
quantum effects in AFM are small compared to thermal
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fluctuations. Our fourth goal is therefore to provide a method
to separate quantum fluctuations from thermal noise. Noise
cancellation methods have been successfully used in many
areas in physics, including spin echoes [28], Doppler-free
spectroscopy [29], force insensitivity in atomic [30,31] and
molecular interferometry [32], and correlation measurements
in AFM [33]. Generally, the development of further noise can-
cellation methods in AFM may lead to a significant increase
in its sensitivity.

The paper is organized as follows. In Sec. II, we present the
driving scheme to maximize the interaction time. Sections III
and IV are devoted to the description of the cantilever as a
statistical system. In Sec. V, we discuss our predictions for
the generation of squeezing and skewness. We expound on the
physics behind squeezing generation in AFM and the influ-
ence of quantum fluctuations in Sec. VI, which also contains a
proposal for the elimination of thermal noise. This is followed
by a conclusion in Sec. VII. Several appendices contain the
details of our theoretical derivations.

II. DRIVING SCHEME TO MAXIMIZE SURFACE
INTERACTION

Cantilever and tip in AFM form a complex mechanical
system that may include bending motion and torsion [18],
but a simple harmonic oscillator model often suffices and
will be used here. The tip is described in phase space as a
point particle with position x(t ) and momentum p(t ) and its
dynamics is governed by Newton’s second law:

ṗ = −kx − γQ p + Fdr(t ) + FSF + Fdis. (1)

Here, x denotes the position of the tip above the sample
surface. The tip is in the engaged position with the sample
for x ≈ −h. Position x = 0 corresponds to the equilibrium
position of the free tip, and k denotes the spring constant of
the cantilever. Rate γQ describes internal mechanical losses
of the cantilever. Fdr(t ) denotes a driving force that puts the
cantilever in motion. The tip-surface interaction is decom-
posed into a conservative part FSF and a dissipative part Fdis.
The dissipative part arises from the deformation of the sample
surface due to the interaction with the tip. It can be modeled in
different ways, for instance through Kelvin-Voigt viscoelastic
dissipation [34], a hysteretic force [35,36], a convolution in-
tegral [37], or a retarded response to the sample [38]. In this
paper, we follow Ref. [39] and model the dissipate surface
force by a position-dependent drag force, Fdis = −γ (x)p. In
dynamic AFM, the driving force typically takes the form
of a homogeneous force with one or two frequency compo-
nents. Here, we consider two angular frequency components
ω1 and ω2:

Fdr(t ) = F1 sin(ω1t + φ1) + F2 sin(ω2t + φ2), (2)

with φ1 and φ2 controlling the relative phase of the force com-
ponents. In absence of the sample, this model corresponds
to an elementary driven damped harmonic oscillator. After
a transient period, the oscillator will settle to a steady-state
motion of the form

x0(t ) = F1

Mω1
Im

(
eiω1t+iφ1

Z (ω1)

)
+ F2

Mω2
Im

(
eiω2t+iφ2

Z (ω2)

)
, (3)

FIG. 1. Proposed driving scheme. For a periodic motion, the tip
would remain close to the sample (red rectangle near x = −h) if the
motion would take the form of a square wave (orange dotted curve).
In single-frequency AFM (gray, dashed), the tip spends little time
near the sample, but the suggested two-frequency driving scheme
(blue, solid) approximates a square wave.

where

Z (ω) = ω2
0 − ω2

ω
+ iγQ (4)

is the mechanical impedance of the cantilever. M denotes the
reduced mass of cantilever and tip, and ω0 = 2π f0 = √

k/M
denotes the resonance angular frequency.

The principle of the proposed driving scheme is explained
in Fig. 1. In dynamic AFM, the driving force induces a peri-
odic motion of the cantilever. If the force could be arbitrarily
strong, the interaction time with the surface would be max-
imized for a square wave motion, where the tip spends half
the time period close to the surface during each cycle. In a
two-frequency driving scheme, one can maximize the time the
tip spends near the surface if the two frequency components
of the motion correspond to the first two Fourier coefficients
of a square wave. Equation (3) implies that this can be
achieved if we pick the driving frequencies as ω2 = 3ω1, and
the force amplitudes so that they produce the Fourier coef-
ficients, F1

Mω1
Imeiφ1 Z−1(ω1) = 4

π
h and F2

Mω2
Imeiφ2 Z−1(ω2) =

− 4
3π

h. For the choice ω1 = ω0, Z (ω0) is imaginary and
Z (3ω0) is a negative real number for γQ � ω0. The phases
then can be chosen as φ1 = 0 and φ2 = π

2 .
The two-frequency driving scheme proposed above could

be extended to generate higher-order Fourier components of
a square wave. This would require a multifrequency driving
force with components that oscillate at an integer multiple
of the lowest force frequency. Such a scheme would provide
a more precise control about the location of the tip when
it is close to the surface: in the scheme of Fig. 1, there
would be more oscillations with smaller amplitude around
the lowest location of the tip. However, such a higher-order
scheme would require control about the relative phases of all
frequency components. We will see below that, even in the
context of two frequencies, the optimal choice of phases is
affected by the tip-surface interaction. We therefore anticipate
that implementing higher-order schemes will require further
analysis.
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In many intermodulation AFM experiments, the two driv-
ing frequencies are only separated by a few hundred Hz [39].
This has the advantage that one can probe the Fourier trans-
form of the cantilever motion at multiples of the frequency
difference, i.e., at high resolution in frequency space. How-
ever, to generate strong coupling between different probability
moments (see Sec. III), the larger frequency should be a har-
monic of the lower frequency.

III. DYNAMICAL EQUATIONS FOR PROBABILITY
MOMENTS

A real tip is not a point particle, and its motion is generally
subject to thermal or quantum fluctuations, which require a
probabilistic description. The position of the tip is then re-
placed by the mean position x̄(t ) = 〈x〉. Here, angle brackets
denote averaging with respect to a probability distribution,
which can be of classical or quantum nature. Variances are
described through mean values of quadratic expressions, such
as �x2 = 〈(x − x̄)2〉. More generally, one can characterize a
probability distribution through its moments [40]:

�n,m = 1
2 〈(x − x̄)n(p − p̄)m + (p − p̄)m(x − x̄)n〉. (5)

In a classical description, the ordering of position and mo-
mentum terms is irrelevant, but we keep a symmetric ordering
so that our formalism can be used for a quantum de-
scription as well. Second-order moments describe position
variance �x2 = �2,0, momentum variance �p2 = �0,2, and
cross-correlation �1,1. Higher-order moments describe a non-
Gaussian structure of the distribution. For instance, �3,0

describes the skewness in position, which is a measure for
how much the maximum of the distribution differs from mean
value x̄ (see Sec. IV).

The driving scheme introduced above has the potential to
induce a large amount of squeezing and a small amount of
skewness in the probability distribution. Squeezing refers to
the reduction of the variance of one observable, say �x, at the
expense of increasing the variance of its conjugate variable
�p. It is most often considered in the quantum descrip-
tion of light, and it is sometimes assumed that the coupling
of stretching �p while squeezing �x is a consequence of
Heisenberg’s uncertainty principle. However, squeezing also
occurs in classical probability distributions, where the cou-
pling of stretching and squeezing is a consequence of the
conservation of phase-space volume for conservative forces
because of Liouville’s theorem [41].

For a point particle, the dynamical equations take the
form ṗ = F (x), but for an object that is described through
a probability distribution we have ˙̄p = 〈F (x)〉 �= F (x̄). This
implies that the dynamics of mean position and momentum
is generally coupled to higher-order moments. For instance,
F (x) = cx3 would couple mean momentum p̄ to skewness
�3,0.

For a force that is not given by a power law, the dynam-
ical equation ˙̄p = 〈F (x)〉, and the equivalent equations for
all moments, will not generate a closed set of equations for
mean values, variances, and skewness (see Appendices A
and B). To overcome this problem, we make a localization
approximation: we assume that the probability distribution of
the oscillator is so narrow that the force varies little over the

width of the distribution. In this case, the mean force can be
expanded as a Taylor series around the mean position:

〈F (x)〉 ≈
nmax∑
n=1

F (n)(x̄)

n!
〈(x − x̄)n〉 =

nmax∑
n=1

F (n)(x̄)

n!
�n,0. (6)

We have used the localization approximation to derive a
coupled set of equations for mean position x̄ and momentum
p̄, as well as all moments �n,m up to third order, (n, m) ∈
{(2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}. The result
is rather lengthy and given by Eqs. (B26)–(B34). As an ex-
ample, the dynamical equation for mean momentum takes the
form

˙̄p = F − (γQ + γ ) p̄ + �2,0

2
(F ′′ − p̄γ ′′) − γ ′�1,1

+ 1

6
�3,0(F (3) − p̄γ (3) ) − 1

2
γ ′′�2,1. (7)

In this expression, functions F and γ depend on the mean po-
sition, e.g., F = F (x̄). We have derived these equations from
a classical stochastic theory (Fokker-Planck equation, see Ap-
pendix A) and from a Lindblad-type master equation for open
quantum systems (Appendix B). The results differ by genuine
quantum terms, which are proportional to h̄2 in Eqs. (B26)–
(B34). In addition, there is a technical difference between
both derivations that only concerns the position-dependent
dissipative surface force. This difference is discussed in
Appendix B.

IV. TIP FLUCTUATIONS: SQUEEZING AND SKEWNESS

Suppose we know the moments �n,m, either by measuring
it or by solving the dynamical equations. Can we find the
probability distribution that describes the stochastic state of
the oscillator? The answer is yes, and follows from the re-
construction theorem in quantum physics [42], for instance.
In Appendix C, we derive an approximate expression for a
classical phase-space probability distribution ρ(r) in terms of
moments, where bold symbols r = (x, p) denote phase-space
vectors. A multivariate skew-normal probability distribution
ρ(r) can be expressed as the product of a Gaussian distribution
ρ0(r) and a second function � [43]:

ρ(r) = ρ0(r)�(r), (8)

ρ0(r) = 1

2π |C| 1
2

e− 1
2 (r−r̄)T ·C−1·(r−r̄), (9)

C =
(

�2,0 �1,1

�1,1 �0,2

)
. (10)

The eigenvalues of correlation matrix C are denoted by σ 2
1 and

σ 2
2 , where σ1 corresponds to the larger and σ2 to the smaller

phase-space variance. If the eigenvectors of C are aligned with
position and momentum, position squeezing corresponds to
�x = σ2 and �p = σ1 > σ2 [55]. The Gaussian factor ρ0(r)
would then have an ellipsoid form that is stretched along the
p axis and squeezed along the x axis. In general, however,
squeezing can occur along any direction in phase space.

If only information about second-order moments is avail-
able, the Gaussian part is all that can be known about ρ.
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Knowledge about third-order moments enables us to find the
following expansion of �(r) around the mean position r̄ =
(x̄, p̄):

�(r) = 1 + S · R + 1

6

∑
i, j,k

μi jkRiR jRk + O(R4), (11)

Si = −1

2

∑
j,k

μi jk (C−1) jk, (12)

R = C−1 · (r − r̄), (13)

where μ111 = �30, μ222 = �03, and μ112 = μ121 = μ211 =
�21, as well as μ221 = μ212 = μ122 = �12. Vector S corre-
sponds to the shift of the maximum of ρ relative to the mean
position r̄, as long as |S| is much smaller than the variances of
ρ. The third-order term (the triple sum) generates a roughly
triangular distortion of the Gaussian profile.

In the following, we will solve the dynamical equations of
motion and use the reconstructed classical probability distri-
bution to visualize the effect of the surface force on variances.

V. RESULTS

To analyze the evolution of the probability distribution
ρ(r), we have solved the dynamical equations (B26)–(B34)
in two different ways. A numerical solution was found using
the software package MATHEMATICA, with details given in
Appendix D. In addition, we evaluated the effect of the sur-
face forces using first-order perturbation theory, with details
provided in Appendix E.

The results of both methods indicate that a classical de-
scription is perfectly adequate for typical AFM oscillators. In
the discussion below, we will describe under which circum-
stances quantum effects may become relevant, and how one
can isolate surface-induced quantum effects from classical
surface-induced effects. Furthermore, both methods predict
that the evolution of mean position and momentum is only
very weakly affected by the coupling to probability moments.
For this reason, we will concentrate on discussing squeezing
and skewness.

In our numerical simulations, we have considered a can-
tilever with a resonance frequency of 300 kHz, and a quality
factor of Q = 400, and studied the time evolution for up to 200
cycles. This is a typical duration for many AFM experiments,
and it is sufficiently long to induce strong squeezing. We have
considered several different cases, including single-frequency
on- and off-resonant driving, as well as two-frequency driving
with different sets of frequencies ωi and phase factors φi in
driving force (2). Figures 2 and 3 show the reconstructed
probability distribution at the time when the tip is close to the
sample during cycle 102 and 198, respectively [56]. For this
specific case, we have used ω1 = ω0, ω2 = 3ω0, as well as
F1 = 1.21 nN and F2 = 950 nN. The second force component
needs to be much stronger to compensate for the fact that it
drives the cantilever off-resonantly. The phases of the force
were chosen as φ1 = π rad and φ2 = 2.67 rad. This choice of
phases is rather different from the phases presented at the end
of Sec. II for reasons we will discuss below.

We have chosen to display the reconstructed probability
distribution after 102 cycles, because at this time triangular

FIG. 2. Contour plot of the reconstructed classical probability
distribution after 102 cycles. A contour labeled with n corresponds
to a reduction of the probability density by an amount e−n compared
to the maximum value.

distortions of the Gaussian distribution, i.e., the triple sum in
Eq. (11), are strongest. Since these distortions grow with the
third power of the distance vector Ri from the mean position
of the tip, their effect is more pronounced far away from the
center of the distribution. However, even on the outermost
contour in Fig. 2, the deviation from a Gaussian shape only
amounts to about 2% and is barely visible. Shift vector S of
Eq. (12), which quantifies skewness, is negligibly small at this
time, about 0.01 pm.

After 198 cycles, strong squeezing can be observed [see
Fig. 3(a)]. For our choice of parameters, we observe almost
a pure position squeezing (i.e, the ellipse is almost vertical).
Skewness has grown by a factor of 10 to about 0.15 pm.
However, like triangular distortions, the effect is too small to
be visible in our plots. The amount of squeezing is quanti-
fied through the ratio R of the large and small diameter of
the probability distribution. The squeezing parameter is then
defined as r = 1

2 lnR. We find a maximum value of r = 1.01
in the presence of a dissipative surface force [Fig. 3(a)] and
r = 1.24 in absence of a dissipative surface force [Fig. 3(c)].
By comparison, Passian and Siopsis [18] predict a smaller
squeezing parameter of 0.23. The difference is explained by
the fact that Ref. [18] considers the attractive van der Waals
regime of the surface force. In this regime, our simulations for
a weakly driven tip that is never in contact with the sample
surface predict a similar amount of squeezing. In their ex-
periment with a parametric microamplifier [19], Rugar and
Grütter reported squeezing of thermal noise by 4.9 dB. By
comparison, the squeezing parameter of r = 1.24 that we
obtained in our simulation corresponds to a noise reduction
of 8.8 dB. Preliminary data on squeezing in dynamic AFM
have been reported by Ahlin [44] through observation of
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FIG. 3. (a) Contour plot of the reconstructed classical probability
distribution after 198 cycles, for φ1 = π rad and φ2 = 2.67 rad.
(b) The same for φ1 = 0 rad and φ2 = π

2 . (c) The same as panel
(a) but with strongly reduced dissipative surface force.

noise spectra. Figure 5.5 of Ref. [44] suggests an amount of
squeezing of about 7 dB, which is similar to the results of our
simulations.

FIG. 4. Evolution of the tip’s mean position over several periods
T = 1/ f0 for a driving force with phase factors φ1 = π rad and φ2 =
2.67 rad.

In our simulations, the amount of squeezing critically de-
pends on the choice of phase factors for the driving force.
For instance, Fig. 3(b) shows the same situation, but with
phase factors chosen as described in Sec. II, which leads to
a squeezing of r = 0.43. The reason for the strong reduction
in squeezing is that the surface force has a strong influence
on the double-peak structure in Fig. 1, which is key to in-
creasing the tip-surface interaction time. In the presence of the
surface, the double peak tends to become asymmetric, so that
the tip is not in close contact with the surface for a longer time
anymore (see Fig. 4). The reason for this strong influence is
that the relative sign of the two Fourier components of the
approximate square wave in Fig. 1 matters a lot for its overall
shape. In the figure, the two Fourier components have opposite
signs and thus cancel each other out close to the central peak.
However, if they have the same sign, they add up to a more
pronounced single peak.

In Fig. 4, one can see that the double-peak structure varies
over time. The reason is that the frequencies of the two fre-
quency eigenmodes are affected by the surface force [45].
The double peak therefore varies between an approximate
square wave and a single peak. By adjusting the phase factors
of the two driving force components, one can mitigate this
effect to some extent and thus optimize squeezing. Another
possibility would be to adjust the driving frequencies slightly,
to compensate for the temporal variation of the double peak.

Finally, we have studied the effect of the dissipative surface
force on squeezing by comparing the result of our full simu-
lation Fig. 3(a) to a simulation in which the dissipate surface
force is reduced by a factor of 10−3. The result is shown in
Fig. 3(c) and indicates that Fdis both suppresses squeezing
and has a strong influence on the axis of the ellipse. We
generally found that, without Fdis, one almost always obtains
momentum squeezing rather than position squeezing when the
tip is close to the sample.

VI. DISCUSSION

Our results show several general trends, which are dis-
cussed in this section.

The role of the dissipative surface force is twofold: it
reduces the amount of squeezing, and it rotates the squeezing
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FIG. 5. Conservative surface force FSF as a function of cantilever
position x. The solid curve shows the modified Derjaguin-Muller-
Toropov model (D2) used in this paper. The dashed curve displays
the original DMT model (D1).

axis so that one can have (mostly) position squeezing instead
of momentum squeezing. Since the fluctuation-dissipation
theorem [46,47] predicts an increase of fluctuations if a dis-
sipative force acts on a system, it is natural that squeezing is
reduced; reducing variances simply becomes more difficult.
In our dynamical equations, fluctuations are described by
terms proportional to pth in Eq. (B30). A dissipative force can
change the orientation of the squeezing axis through its mo-
mentum dependence, which enables it to counteract features
of the conservative surface force that will be discussed in the
next paragraph.

The conservative surface force alone tends to create mo-
mentum squeezing. We conjecture that the reason for this is
that, for most of the time during one oscillation cycle, the tip
is moving in the long-range van der Waals tail of the surface
force. As can be seen in Fig. 5, this tail has negative curvature,
i.e., the force would pull particles that are closer to the sample
stronger towards the surface than particles that are further
away. Consequently, a phase-space probability distribution
would then tend to be stretched along the spatial axis. Since
FSF is a conservative force, Liouville’s theorem then implies
squeezing in momentum direction.

Conversely, a conservative force with positive curvature
would tend to squeeze the spatial direction of a probability
distribution and stretch it in the momentum direction. For the
Derjaguin-Muller-Toropov (DMT) force shown in Fig. 5, this
is the case when the tip is in close contact with the surface
(x < −10 nm). Furthermore, our numerical results suggest
that this may also be the most effective way to achieve large
squeezing. The reason is that the coupling between �1,1 and
�0,2 [the first term on the right-hand side of Eq. (B30)], which
is responsible for the generation of squeezing, is proportional
to the gradient of the force. The gradient of the surface force
is much larger in the contact region than in the van der
Waals region, so that a larger amount of squeezing can be
achieved. We emphasize, however, that this result does not
support the idea that strong squeezing is simply a consequence
of pressing the tip against a surface, which would produce
position squeezing. This intuitive picture does not explain the
orientation of the squeezing axis, which is sensitive to the
entire dynamics during a cycle, as shown in Fig. 6. Position
squeezing is the result of an interplay between a conservative
and a nonconservative force, such as Fdis. The details of such

FIG. 6. Time evolution of the reconstructed probability distri-
bution during the full 198th cycle. Each ellipse corresponds to the
probability distribution at one particular time during the cycle, and
is centered around the mean position of the tip at that time. The size
of the ellipse corresponds to the mean variances of the distribution
in phase space. For instance, the innermost ellipse in Fig. 3(a) corre-
sponds to the leftmost ellipse in this figure. For better visibility, the
size of each ellipse has been increased by a factor of 5.

an interplay are involved due to the overall dynamics of the
tip during a cycle. For a two-frequency driving force, the tip’s
mean position follows a noncircular path. In addition, the axes
of the ellipse oscillate at twice the resonance frequency. The
latter effect is known from optical squeezing and follows from
our perturbative treatment in Appendix E.

Quantum effects are generally negligible in our numerical
simulations. To understand how they could be increased, we
used first-order perturbation theory to study the influence
of a dissipative surface force Fdis of form (B12). We con-
centrate on the dissipative part because it generates terms
proportional to h̄2 in the dynamical equations for variances
�2,0,�1,1, and �0,2, whereas the conservative surface force
only introduces quantum terms for third-order moments. The
first-order correction to the position variance is given by

�
(1)
20 = γ0

∫ t

0
dt ′e−γQ (t−t ′ )e− h

xγ
[1+cos(ω0t ′+φ1 )]

×
[

(L4 − 16�x4
th)

8ω0x2
γ

− γQ

ω0

L4

8�x2
th

sin [2ω0(t − t ′)]

−
[
L4
(
�x2

th + x2
γ

)− 16�x6
th

]
8�x2

thx2
γ

cos [2ω0(t − t ′)]

]
.

(14)

This result applies to the case of a single-frequency driving
force [F2 = 0 in Eq. (2)]. In this case, the unperturbed mean
position (3) varies like x0(t ) = h cos(ω0t + φ1).
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In Eq. (14), all quantum terms are proportional to L4. Com-
pared to terms that are proportional to thermal fluctuations
�x4

th, quantum terms are suppressed by a factor L4/�x4
th =

(h̄ω0/(kBT ))2. For current AFM designs and at room tem-
perature, this is only about 10−15, but for a tenfold increased
resonance frequency and cooled to liquid helium temperatures
this ratio could be increased to 10−8.

To separate quantum fluctuations from thermal noise in
AFM, we propose to adjust the phase of the driving force in
the following way. We start with the observation that, if a term
proportional to L4 appears together with �x4

th in one algebraic
expression, it is not possible to separate these two terms. This
applies to the first and third term inside the square brackets in
Eq. (14). Hence, the only quantum term that can potentially
be separated is the term proportional to sin[2ω0(t − t ′)].

To isolate this term, we first note that the first term in square
brackets is constant, while the other two terms are oscillating
at frequency 2ω0. Hence, the first term can be eliminated
through spectral analysis.

To eliminate the second classical term, which is propor-
tional to cos[2ω0(t − t ′)], we note that the exponential factor
in Eq. (14) suppresses the integrand unless the tip is close to
the sample, i.e., when cos(ω0t ′ + φ1) ≈ −1, or ω0t ′ + φ1 ≈
π (2n + 1), with n ∈ Z. This is a direct consequence of Fdis

decreasing exponentially with the distance from the surface.
Let us now for simplicity assume that we observe the signal

periodically at times t that are multiples of the AFM period,
ω0t = 2πm with m ∈ Z. We then have cos[2ω0(t − t ′)] =
cos(2ω0t ′) or, when the tip is close to the surface, cos[2ω0(t −
t ′)] ≈ cos[2π (2n + 1) − 2φ1] = cos(2φ1). Hence, if we set
φ1 = π

4 + n′ π
2 , with n′ ∈ Z, we ensure that cos[2ω0(t −

t ′)] ≈ 0 when the tip is close to the surface. As a consequence,
the thermal noise contribution will be strongly suppressed.

The above argument is supported by a numerical evaluation
of the cosine integral as a function of φ for parameter settings
Q = 400, h = 6.7xγ , and t = 400π/ω0. We found that the
integral then varies like cos(2φ1) and indeed vanishes for
specific choices of the driving force’s phase. If the signal is
monitored with period 1/ f0 at other times t , the phase φ1 of
the driving force can be adjusted so that the thermal signal is
suppressed as well.

VII. CONCLUSION

We have proposed a driving scheme to increase the in-
teraction time between tip and sample in intermodulation
AFM. The tip is described as a stochastic system that can
exhibit fluctuations. We derived a set of coupled dynam-
ical equations for probability moments, which have some
similarity to the Bogoliubov-Born-Green-Kirkwood-Yvon hi-
erarchy in statistical mechanics [48]. The solution to these
equations enables us to reconstruct the tip’s phase-space prob-
ability distribution.

We use the driving scheme to investigate the generation of
squeezing in the classical phase space of the tip. We predict
that strong position squeezing is possible if the tip is in close
contact with the surface, and if the phases of the two frequency
components in intermodulation AFM are chosen appropri-
ately. In the weakly interacting van der Waals regime of the
tip-surface interaction, momentum squeezing is predominant.

The dissipative part of the surface force has a strong influence
on amount and orientation of phase-space squeezing.

To distinguish between classical and quantum effects, we
derived the dynamical equations using both a classical Fokker-
Planck equation and a quantum master equation. We found
that AFM is generally well described by a classical model.
Quantum effects tend to be much smaller than thermally in-
duced fluctuations, but it is possible to separate both effects
by adjusting the phase of the driving force in dynamic AFM.

A particularly interesting result is that dissipative surface
forces can introduce quantum dynamics already at the level of
variances, whereas quantum effects induced by a conservative
force are tied to third-order (or higher) probability moments.
The derivation of our dynamical equations in Appendix B
indicates that the reason is a particular feature of the dissipa-
tive force. In the model we studied, it is a position-dependent
drag force that depends on two noncommuting observables:
position and momentum.

We conjecture that similar effects would also occur with
other models for dissipative surface forces. For instance, in the
hysteretic Johnson-Kendall-Roberts model [35], the surface
force changes depending on whether the tip moves towards or
away from the sample; i.e., it depends on position and on the
sign of the tip’s momentum. In a retarded model [38], the dis-
sipative surface force when the tip is at position x(t ) depends
on an earlier position x(t − tr ), where tr is the retardation time
of the force. In the Heisenberg picture, x(t ) and x(t − tr ) are
generally noncommuting.

By probing the probability distribution of the tip, one can
examine different Fourier components of the surface force,
study its fluctuations, and enhance specific effects, similar to
methods used in nonlinear optics. Future work may address
the question of whether our driving scheme may also be help-
ful to measure magnetic surface forces, or if the separation
scheme for quantum effects could be useful to isolate specific
classical effects as well.
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APPENDIX A: CLASSICAL DERIVATION OF DYNAMICAL
EQUATIONS BASED ON THE FOKKER-PLANCK

EQUATION

For a position-independent drag force −γQ p, the Fokker-
Planck equation [49,50] for a classical phase-space probabil-
ity distribution f (x, p, t ) can be written as

∂t f = − p

M
∂x f − ∂p{[F (x, t ) − γQ p] f } + g

2
∂2

p f , (A1)

with g = 2MγQkBT . The mean value of a classical observable
A(x, p, t ), where we admit an explicit time dependence, is
given by

〈A〉 =
∫

dx d p f (x, p, t ) A(x, p, t ). (A2)
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As above, we use the notation x̄(t ) := 〈x〉 and p̄(t ) := 〈p〉.
The time derivative of a mean value can be expressed as

d

dt
〈A〉 = 〈∂t A〉 + 1

M
〈p∂xA〉 + 〈(F − γQ p)∂pA〉

+ MγQkBT
〈
∂2

pA
〉
. (A3)

To add a position-dependent drag force −γ (x)p, we start
with the Langevin equation for such a force:

ẋ = p

M
, (A4)

ṗ = −γ (x)p + ζ , (A5)

where ζ is a noise force. We assume δ-correlated noise,
for which 〈ζ (t )〉 = 0 and 〈ζ (t )ζ (t ′)〉 = g(t )δ(t − t ′). The un-
known function g(t ) can be found using the solution for the
momentum:

p(t ) = p(0)e−̄(t ) +
∫ t

0
dt ′ e−̄(t )+̄(t ′ )ζ (t ′), (A6)

̄(t ) =
∫ t

0
dt ′ γ (x(t ′)). (A7)

The mean kinetic energy of the particle is given by E =
〈p2〉/(2M ). For large times, for which e−̄(t ) ≈ 0, the particle
should reach its equilibrium energy E = 1

2 kBT . Hence,

MkBT =
∫ t

0
dt ′
∫ t

0
dt ′′ e−2̄(t )+̄(t ′ )+̄(t ′′ )〈ζ (t ′)ζ (t ′′)〉 (A8)

=
∫ t

0
dt ′ e−2̄(t )+2̄(t ′ )g(t ′) (A9)

=
∫ t

0
dτ e−2̄(t )+2̄(t−τ )g(t − τ ). (A10)

If the particle does not move too far during the relaxation
process, we can use the approximation g(t − τ ) ≈ g(t ) and
̄(t − τ ) ≈ ̄(t ) − τγ (x(t )). We can also extend the integra-

tion interval to infinity. We then obtain

MkBT ≈ g(t )

2γ (x(t ))
. (A11)

This implies that the factor g takes the same form as for
the constant drag force, with γQ replaced by γ (x(t )). This is
the approximation we will use below, but we emphasize that
this is model dependent. For instance, if we use instead the
approximation g(t − τ ) ≈ g(t ) − τ ġ(t ), we instead obtain the
equation

MkBT ≈ g(t )

2γ (x(t ))
− ġ(t )

4γ 2(x(t ))
, (A12)

which has the solution

g(t ) ≈ p2
th

2
e2
∫ t

0 γ (x(t ′ ))dt ′
{
γ (0) − 2

∫ t

0
dt ′′ γ 2(x(t ′′))

× e−2
∫ t ′′

0 γ (x(t ′ ))dt ′
}
. (A13)

Obviously, the precise form of g(t ) is difficult to find in a
classical model. However, with the simple approximation,
we obtain a reasonable agreement with the quantum model.
Putting everything together, we obtain the Fokker-Planck
equation

d

dt
〈A〉 = 〈∂t A〉 + 1

M
〈p∂xA〉 + 〈{F − [γQ + γ (x)]p} ∂pA〉

+ MkBT 〈[γQ + γ (x)]∂2
pA〉. (A14)

To derive the classical equations of motion for the cor-
relation functions (5), we consider observables of the form
A = (x − x̄)n(p − p̄)m, so that

〈∂t A〉 = −n ˙̄x�n−1,m − m ˙̄p�n,m−1 (A15)

= −n
p̄

M
�n−1,m − m〈F − [γQ + γ (x)]p〉�n,m−1,

(A16)

〈p∂xA〉 = n( p̄�n−1,m + �n−1,m+1), (A17)〈
∂2

pA
〉 = m(m − 1)�n,m−2. (A18)

We then obtain

�̇n,m = n

M
�n−1,m+1 − mγQ�n,m + m

{〈F − γ (x)p(x − x̄)n(p − p̄)m−1〉 − 〈F − γ (x)p〉�n,m−1
}

+ MkBT m(m − 1)
{
γQ�n,m−2 + 〈γ (x)(x − x̄)n(p − p̄)m−2〉}. (A19)

To obtain a closed set of coupled dynamical equations, we assume that uncertainties in position and momentum in the tip
motion will remain small, and the tip remains localized. If the forces acting on the system vary little across the extension of the
probability distribution, we can expand F (x) and γ (x) in a Taylor series around mean position and momentum:

F (x) ≈
nmax∑
n=1

F (n)(x̄)

n!
(x − x̄)n, (A20)

γ (x) ≈
nmax∑
n=1

γ (n)(x̄)

n!
(x − x̄)n. (A21)
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Applying this approximation to Eq. (A19) leads to

�̇n,m ≈ n

M
�n−1,m+1 − mγQ�n,m + MkBT m(m − 1)

{
γQ�n,m−2 +

lmax∑
l=0

γ (l )(x̄)

l!
�n+l,m−2

}

+ m
lmax∑
l=0

1

l!

{[
F (l )(x̄) − γ (l )(x̄) p̄

]
(�n+l,m−1 − �l,0�n,m−1) − γ (l )(x̄)(�n+l,m − �l,1�n,m−1)

}
, (A22)

which corresponds to the classical part (h̄ → 0) of the set of
dynamical equations (B26)–(B34).

APPENDIX B: DERIVATION OF DYNAMICAL EQUATIONS
FROM A QUANTUM LINDBLAD MASTER EQUATION

To describe the cantilever as a quantum system, we model
it as a one-dimensional quantum harmonic oscillator of mass
M that moves in a potential V (x̂) and is subject to noise. The
density matrix ρ obeys the master equation in Lindblad form
[51]:

ρ̇ = − i

h̄
[Ĥ , ρ] −

∑
k

(Ĵ†
k Ĵkρ + ρĴ†

k Ĵk − 2ĴkρĴ†
k ), (B1)

Ĥ = p̂2

2M
+ V (x̂), (B2)

where Ĵk are jump operators. Force

F (x̂) = −∇V = −kx̂ + Fdr(t ) + FSF(x̂) (B3)

contains all conservative forces that act on the cantilever. This
includes the elastic force −kx of the cantilever itself, the
homogeneous two-frequency driving force Fdr(t ), and the con-
servative part FSF of the force exerted by the sample surface.
The time evolution of the expectation value of an operator
Â(t ), for which we admit an explicit time dependence, is given
by

d

dt
〈A〉 = 〈∂t Â〉 − i

h̄
〈[Â, Ĥ ]〉 −

∑
k

〈
[Â, Ĵ†

k ]Ĵk + Ĵ†
k [Ĵk, Â]

〉
.

(B4)

Our goal is to derive the equations of motion for mean
position x̄(t ) = 〈x̂〉, mean momentum p̄(t ) = 〈p̂〉, as well as
their variances �x and �p. We define a family of symmetric
correlation functions �n,m = 〈�̂n,m〉, with

�̂n,m = 1
2 (δx̂nδ p̂m + δ p̂mδx̂n), (B5)

δx̂ = x̂ − x̄, (B6)

δ p̂ = p̂ − p̄. (B7)

There are two prominent noise sources: (i) the damping force
due to the finite quality factor Q of the cantilever and (ii)
the dissipative force associated with the surface interaction.
Damping of the cantilever can be modeled by adding a
force FQ = −γQ p with damping constant γQ = ω0

Q [39]. In
open quantum systems, such a friction force is described
through a Caldeira-Leggett model [22] in Lindblad form [see
Eq. (5.117) of Ref. [52], for instance]. In this model, the jump

operator takes the form

ĴQ =
√

γQ

2

(
pth

h̄
x̂ + i

pth
p̂

)
, (B8)

and the Hamiltonian is modified by adding a term

ĤQ = γQ

4
(x̂ p̂ + p̂x̂). (B9)

Here, pth = 2
√

MkBT corresponds to the momentum uncer-
tainty in thermal equilibrium. Putting this together, the full
action of the Caldeira-Leggett model can be written in the
form of a superoperator:

LQÂ = − i

h̄
[Â, ĤQ] − [Â, Ĵ†

Q]ĴQ − Ĵ†
Q[ĴQ, Â] (B10)

= − γQ

4p2
th

[ p̂, [ p̂, Â]] − γQ p2
th

4h̄2 [x̂, [x̂, Â]]

− iγQ

2h̄

(
[Â, x̂] p̂ + p̂[Â, x̂]

)
. (B11)

To describe the dissipative part of the surface-tip interac-
tion, we adopt the model of Ref. [39], where the dissipative
part takes the form of a drag force that depends on the dis-
tance from the sample, Fdis = −pγ (x). For most analytical
calculations, we will keep the position-dependent dissipation
rate γ (x) general. However, for numerical evaluations, we will
follow Ref. [39] and use an exponential-decay model:

γ (x) = γ0 exp

(
−x + h

xγ

)
, (B12)

where γ0 is the dissipation rate at the sample surface and xγ is
the length scale on which the dissipative force drops off. In a
quantum treatment, ẋ has to be replaced by p̂/m. One also has
to write the operator product in a symmetric way to ensure that
the force operator is Hermitian. We therefore seek to generate
a dissipative force operator of the form

F̂dis = − 1
2 [ p̂γ (x̂) + γ (x̂) p̂]. (B13)

We remark that this reduces to the previous case for γ (x) =
γQ. We found that it is possible to describe this process
through a Lindblad master equation with

Ĵdis = pth
√

τ0

4h̄
(x̂) + i

pth
√

τ0
p̂, (B14)

Ĥdis = 1
4 [p̂(x̂) + (x̂) p̂], (B15)

where (x) is the antiderivative of γ (x) and τ0 is a time scale
that will be discussed below. Note that τ0 may be a function
of time. We can then again describe the full action of the
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dissipative force in terms of a superoperator:

LdisÂ = − i

h̄
[Â, Ĥdis] − [Â, Ĵ†

dis]Ĵdis − Ĵ†
dis[Ĵdis, Â] (B16)

= − 1

τ0 p2
th

[ p̂, [ p̂, Â]] − τ0 p2
th

16h̄2 [̂, [̂, Â]]

− i

2h̄

(
[Â, ̂] p̂ + p̂[Â, ̂]

)
. (B17)

We now have to evaluate the equations of motion,

d

dt
〈A〉 = 〈∂t Â〉 − i

h̄
〈[Â, Ĥ ]〉 + 〈LQÂ + LdisÂ〉, (B18)

for the correlation functions (B5), which include an ex-
plicit time dependence in their definition through x̄(t ) and
p̄(t ). We start with mean position and momentum, which
obey

˙̄x = p̄

M
, (B19)

˙̄p = 〈F̂tot〉 − γQ p̄, (B20)

where a dot denotes the time derivative d/dt , and F̂tot =
F (x̂) + F̂dis. For the correlation functions, we find

�̇n,m = n

M
�n−1,m+1 − ih̄

4M
n(n − 1)

〈
[δx̂n−2, δ p̂m]

〉+ i

2h̄

〈
δx̂n[V, δ p̂m] + [V, δ p̂m]δx̂n

〉− m〈F̂tot〉�n,m−1

− mγQ�n,m + γQ p2
th

4
m(m − 1)�n,m−2 + h̄2

4p2
th

(
γQ + 4

τ0

)
n(n − 1)�n−2,m

+ ih̄γQ

4
nm〈[δx̂n−1, δ p̂m−1]〉 − τ0 p2

th

16h̄2 〈[̂, [̂, �̂n,m]
]〉 + i

2h̄
〈[̂, �̂n,m] p̂ + p̂[̂, �̂n,m]〉. (B21)

This result is exact, but its usefulness hinges on our ability
to evaluate commutators of powers of p̂ and functions of x̂.
This is accomplished in Appendix F. Result (F16) states that a
commutator of the form [V (x̂), p̂n] can be written in terms of
Euler polynomials with an argument that contains p̂ and the
derivative operator ∂/∂ x̂, which acts on V (x̂). In particular,
if the function V (x̂) is a polynomial, the commutator corre-
sponds to

〈[δx̂m, δ p̂n]〉 = i
min(m,n)∑

l=1

Cn,m,l h̄
l�m−l,n−l , (B22)

where coefficients Cn,m,l are defined through Eq. (F17).
Hence, it can be expressed in terms of correlation functions
(B5). However, potential V (x̂) and factor (x̂) will generally
not be of a polynomial form, so that the equations of motion
will not form a closed set of equations. It is therefore neces-
sary to make approximations.

With localization approximation (A20), the expectation
value of all quantities appearing in the equations of motion

can be expressed in terms of correlation functions (B5). For
instance,

〈F (x̂)〉 =
nmax∑
n=1

F (n)(x̄)

n!
�n,0, (B23)

〈Fdis(x̂)〉 = −1

2

nmax∑
n=1

γ (n)(x̄)

n!
〈p̂(x̂ − x̄)n + (x̂ − x̄)n p̂〉 (B24)

= −
nmax∑
n=1

γ (n)(x̄)

n!
(�n,1 + p̄�n,0). (B25)

We note that elastic force −kx, cantilever damping γQ, and
homogeneous driving force Fdr(t ) are taken into account ex-
actly. This is because their Taylor series terminate after the
first term, so that the above approximation leaves these forces
unaffected.

Using similar expansions up to third order (nmax = 3) for
all terms in the equation of motions, and treating terms �n,m

as of order εn+m in the deviations from mean values, we arrive
at the following equations:

dx̄

dt
= p̄

M
, (B26)

d p̄

dt
: see Eq. (7), (B27)

d�2,0

dt
= 2

M
�1,1 + h̄2

2p2
th

(
γQ + 4

τ0

)
, (B28)

d�1,1

dt
= 1

M
�0,2 − (γQ + γ (x̄))�1,1 + �2,0[F ′(x̄) − p̄γ ′(x̄)] − γ ′(x̄)�2,1 + 1

2
�3,0[F ′′(x̄) − p̄γ ′′(x̄)], (B29)

d�0,2

dt
= 2[F ′(x̄) − p̄γ ′(x̄)]�1,1 − 2γQ

(
�0,2 − p2

th

4

)
− 2γ (x̄)�0,2 − h̄2

2
γ ′′(x̄) + [F ′′(x̄) − p̄γ ′′(x̄)]�2,1 − 2γ ′(x̄)�1,2

+ p2
thτ0

8

[
γ 2(x̄) + �2,0[γ ′(x̄)2 + γ (x̄)γ ′′(x̄)] +

(
γ ′(x̄)γ ′′(x̄) + 1

3
γ (x̄)γ ′′′(x̄)

)
�3,0

]
, (B30)
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d�3,0

dt
= 3

M
�2,1, (B31)

d�2,1

dt
= 2�1,2

M
− [γQ + γ (x̄)]�2,1 + �3,0[F ′(x̄) − p̄γ ′(x̄)], (B32)

d�1,2

dt
= �0,3

M
− 2[γQ + γ (x̄)]�1,2 + 2�2,1[F ′(x̄) − p̄γ ′(x̄)]

+ �2,0

(
p2

thτ0

4
γ ′(x̄)γ (x̄) − h̄2γ ′′′(x̄)

)
− h̄2γ ′(x̄) + �3,0

p2
thτ0

8

[
γ (x̄)γ ′′(x̄) + γ ′2(x̄)

]
, (B33)

d�0,3

dt
= −3�0,3[γQ + γ (x̄)] + 3�1,2[F ′(x̄) − p̄γ ′(x̄)] + 1

2
h̄2[F ′′(x̄) − p̄γ ′′(x̄)] − 2h̄2�1,1γ

′′′(x̄)

+ 3

8
τ0 p2

th{2�1,1γ (x̄)γ ′(x̄) + �2,1[γ ′(x̄)2 + γ (x̄)γ ′′(x̄)]}. (B34)

These equations represent the main theoretical result of this
paper. We have verified that, except for two types of terms,
they agree with the corresponding equations for a classical
model based on the Fokker-Planck equation, which is derived
in Appendix A. The two types of terms in which the two
models differ are (i) terms that depend on h̄ and (ii) terms
that depend on derivatives of γ (x). We will now discuss these
differences.

Terms involving h̄ correspond to genuine quantum dy-
namics. The first occurrence in Eq. (B28) corresponds to the
position uncertainty relation �x ∼ h̄/�p if the momentum
uncertainty is equal to the thermal momentum pth. The only
other occurrence in the equations for the second-order vari-
ances depends on the curvature γ ′′(x̄) of the dissipative part
of the surface force. It is interesting to observe that applying a
position-dependent dissipative force may be an effective way
to observe differences between classical and quantum dynam-
ics of a localized system. By comparison, quantum dynamics
induced by the conservative part of the force only appear in
the dynamical equation for the momentum skewness �0,3.

We now turn to terms of type (ii) and the role of time
scale τ0. We start by considering the stationary solution for
the case that F = 0 = γQ. The equations of motion then have
a quasistationary solution of the form p̄ = 0, x̄ constant, as
well as

�p = pth

4

√
τ0γ (x̄), (B35)

�1,1 = p2
thτ0

16m
, (B36)

�x =
√

t

(
p2

thτ0

8M2
+ 2h̄2

p2
thτ0

)
, (B37)

and �n,m = 0 for the third-order correlation functions. If we
want to ensure that the momentum uncertainty �p is equal to
pth/2 in this case, we have to set τ0 = 4/γ (x̄).

A second reason why τ0 should be equal to 4/γ (x̄) is the
comparison with the classical Fokker-Planck equation (A22).

In the classical limit (h̄ = 0) and for constant x̄, the two sets
of equations only agree if τ0 is chosen in this way.

However, even for τ0 = 4/γ (x̄) and in the classical limit,
the Fokker-Planck equation differs from the results above
if γ (x̄(t )) varies with x̄(t ), and these are the terms of type
(ii). In the quantum derivation, these terms are a direct
consequence of model (B14) for inhomogeneous quantum
dissipative forces. This model appears to be the only one
where the jump operator Ĵdis is linear in the momentum op-
erator. Hence, as long as the dissipative force is created by
systems that are Markovian (this is the underlying assumption
of the Lindblad form), the derivative terms are needed for
consistency. Furthermore, as discussed in Appendix A, the ab-
sence of derivatives of γ (x) in the classical equations (A22) is
merely a consequence of an approximation. A refined Fokker-
Planck model would likely generate similar terms, so that we
believe that the presence of type (ii) terms is physically well
justified.

APPENDIX C: RECONSTRUCTING A CLASSICAL
PROBABILITY DISTRIBUTION FROM

CORRELATION FUNCTIONS

We consider an N-dimensional phase space RN with r
denoting an element of this space. In our case, r = (x, p) is
the two-dimensional phase space of a particle with one degree
of freedom. A probability distribution ρ(r) is a real positive
function that is normalized to unity:

1 =
∫

dN r ρ(r). (C1)

The nth moment around a point r̄ ∈ RN is defined as

μn =
∫

dN r (r − r̄)nρ(r). (C2)

Here and in the following, we will employ a multi-index
notation: for a tuple n = (n1, · · · , nN ) of k integer numbers,
we set

|n| = n1 + n2 + · · · + nN , (C3)

n! = n1! n2! · · · nN !, (C4)
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r n = rn1
1 rn2

2 · · · rnk
N , (C5)

Dn f (r) = ∂ |n| f

∂
n1
1 · · · ∂nN

N

. (C6)

In this Appendix, we answer the following question: Given
the moments μn of a probability distribution ρ(r), can we
reconstruct ρ?

To describe asymmetric probability distributions, Azzalini
and Valle [43] introduced a multivariable extension of the
skew-normal distribution of the form

ρ(r) = ρ0(r)�(r), (C7)

where ρ0 corresponds to a Gaussian distribution (9), with C a
positive symmetric N × N matrix.

In Ref. [43], � is a specific function, but we consider � as
an unknown function that needs to be reconstructed using the
moments. We denote the moments of the Gaussian probability
distribution by μ(0)

n and assume that � possesses a Taylor
expansion around r̄, which in multi-index notation takes the
form

�(r) =
∑

k

1

k!
Dk�(r̄) (r − r̄) k . (C8)

We then can express the moments around point r̄ as

μn =
∫

dN r (r − r̄) n ρ0(r)
∑

k

1

k!
Dk�(r̄) (r − r̄) k (C9)

=
∑

k

1

k!
Dk�(r̄)μ(0)

n+k . (C10)

This corresponds to a set of linear equations that enable us to
express, up to a given order, Dk�(r̄) in terms of μn. Of par-
ticular interest is the case when r̄ corresponds to the measured
mean value. In this situation, moments μk directly correspond
to the correlation function �n,m that we study in the main text.

For a Gaussian distribution, all odd moments vanish,
μ

(0)
2n+1 = 0. The even moments are given by

μ
(0)
i1,i2,··· ,i2n

=
∫

dN r ρ0(r)(r − r̄)i1 · · · (r − r̄)i2n (C11)

= 1

(2π )N/2|C| 1
2

∫
dN x xi1 · · · xi2n e− 1

2 xT ·C−1·x

(C12)

= 1

2nn!

∑
p

Cip(1 )ip(2) · · ·Cip(2n−1)ip(2n), (C13)

where the sum runs over all permutations p of the indices
i1, · · · i2n. Explicitly, moments 2, 4, and 6 are given by

μ
(0)
i1,i2

= Ci1,i2 , (C14)

μ
(0)
i1,i2,i3,i4

= Ci1,i4Ci2,i3 + Ci1,i3Ci2,i4 + Ci1,i2Ci3,i4 , (C15)

μ
(0)
i1,i2,i3,i4,i5,i6

= Ci1,i6Ci2,i5Ci3,i4 + Ci1,i5Ci2,i6Ci3,i4 + Ci1,i2Ci5,i6Ci3,i4 + Ci1,i6Ci2,i4Ci3,i5 + Ci1,i4Ci2,i6Ci3,i5

+ Ci1,i5Ci2,i4Ci3,i6 + Ci1,i4Ci2,i5Ci3,i6 + Ci1,i6Ci2,i3Ci4,i5 + Ci1,i3Ci2,i6Ci4,i5 + Ci1,i2Ci3,i6Ci4,i5

+ Ci1,i5Ci2,i3Ci4,i6 + Ci1,i3Ci2,i5Ci4,i6 + Ci1,i2Ci3,i5Ci4,i6 + Ci1,i4Ci2,i3Ci5,i6 + Ci1,i3Ci2,i4Ci5,i6 . (C16)

We now use these results and Eq. (C10) to find the Taylor
coefficients Dk�(r̄) up to order k = 3. We start by writing
down explicitly the first four moments. μ0 = 1 expresses nor-
malization of probability:

1 = μ0 (C17)

= �(r̄)μ(0)
0 + 1

(2)!
D2�(r̄)μ(0)

2 (C18)

= �(r̄) +
∑
i1,i2

1

(i1i2)!
[∂i1∂i2�(r̄)]Ci1i2 . (C19)

Here, notation (i1i2)! is a multi-index notation that is equal to
2! if both indices are equal, and 1 otherwise. Below, we will
also use (i1i2i3)! equal to 3! for all three indices equal, 2! if
only two are equal, and 1 otherwise.

Since r̄ is equal to the mean position, μ1 = 0 by definition.
Hence, the second equation becomes

0 = D1�μ
(0)
2 + 1

(3)!
D3�μ

(0)
4 , (C20)

or with explicit indices,

0 =
∑

i2

(∂i2�) μ
(0)
i1i2

+
∑

i2,i3,i4

1

(i2i3i4)!
(∂i2∂i3∂i4�) μ

(0)
i1i2i3i4

(C21)

=
∑

i2

(∂i2�)Ci1i2 +
∑

i2,i3,i4

1

(i2i3i4)!
(∂i2∂i3∂i4�) (Ci1i4Ci2i3

+Ci1i3Ci2i4 + Ci1i2Ci3i4 ). (C22)

Since the multifactorial and the derivatives of � are totally
symmetric under exchange of indices i2, i3, and i4, we can
reduce the second factor to a sum over a single term:

0 =
∑

i2

(∂i2�)Ci1i2 + 3
∑

i2,i3,i4

1

(i2i3i4)!
(∂i2∂i3∂i4�)Ci1i4Ci2i3 .

(C23)

Multiplying this with (C−1)ii1 and summing over i1 yields

∂i�(r̄) = −3
∑
i2,i3

1

(i i2i3)!
(∂i∂i2∂i3�)Ci2i3 . (C24)
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The second-order moment equals the correlation matrix,
μi1i2 = 〈(r − r̄)i1 (r − r̄)i2〉. The equation for this moment
reads

μ2 = �(r̄)μ(0)
2 + 1

(2)!
D2�(r̄)μ(0)

4 . (C25)

Together with Eq. (C18), this provides us with a linear set of
equations for the N2 + 1 coefficients �(r̄) and D2�(r̄). This is
easy to solve if we pick matrix C in the Gaussian distribution
(9) such that μ

(0)
2 = μ2. This is accomplished for the choice

Ci1i2 = μi1i2 . Equations (C18) and (C25) are then easily solved
by �(r̄) = 1 and D2�(r̄) = 0.

The equation for the third-order moment is given by

μ3 = D1�μ
(0)
4 + 1

(3)!
D3�μ

(0)
6 , (C26)

or with explicit indices,

μi1i2i3 =
∑

i4

(∂i4�)μ(0)
i1i2i3i4

+
∑

i4,i5,i6

1

(i4i5i6)!
(∂i4∂i5∂i6�)μ(0)

i1i2i3i4i5i6
. (C27)

We can exploit Eq. (C24) to turn this equation into one
that only contains the third-order derivatives (∂i4∂i5∂i6�). The
triple sum contains factors like Eq. (C16), which are very
lengthy. However, the high degree of symmetry of all factors
involved enables us to reduce it to

μi1i2i3 = 6
∑

i4,i5,i6

1

(i4i5i6)!
(∂i4∂i5∂i6�)Ci1i4Ci2i5Ci3i6 . (C28)

This equation is easily solved and lets us determine all Taylor
coefficients up to order 3:

∂i∂ j∂k�(r̄) = (i j k)!

6

∑
i1,i2,i3

μi1i2i3 (C−1)i i1 (C−1) j i2 (C−1)k i3 ,

(C29)

∂i�(r̄) = −1

2

∑
i1,i2,i3

μi1i2i3 (C−1)i i1 (C−1)i2 i3 . (C30)

The full expression for �(r) is then given by Eq. (11).
Turning to the two-dimensional case that is the subject of

this paper, we use correlation matrix (10), with

C−1 = σ−2
1 σ−2

2

(
�02 −�11

−�11 �20

)
. (C31)

Matrix C has eigenvectors and eigenvalues

e1 = 1√
2W (W − �02 + �20)

(
�20 − �02 + W

2�11

)
,

C · e1 = σ 2
1 e1 = 1

2
(�20 + �02 + W )e1, (C32)

e2 = 1√
2W (W + �02 − �20)

(
�20 − �02 − W

2�11

)
,

C · e2 = σ 2
2 e2 = 1

2
(�20 + �02 − W )e2, (C33)

W =
√

4�2
11 + (�20 − �02)2. (C34)

Here, σ1 and σ2 are the variances along the directions of the
eigenvectors of C. The third-order moment has components
μ111 = �30, μ222 = �03, and μ112 = μ121 = μ211 = �21, as
well as μ221 = μ212 = μ122 = �12. Introducing tensor com-
ponents

T (1)
1 = �30 + �12, (C35)

T (1)
2 = �03 + �21, (C36)

T (3)
1 = 1

3�30 − �12, (C37)

T (3)
2 = − 1

3�03 + �21, (C38)

we can express function � as

�(r) = 1 + S · R + |R|2
8

T (1) · R

+ 1

8
T (3)

1

(
R3

1 − 3R1R2
2

)+ 1

8
T (3)

2

(
3R2R2

1 − R3
2

)
.

(C39)

In polar coordinates, R1 = R cos φ and R2 = R sin φ, tensors
T (1) and T (3) describe terms that vary like cos φ and sin φ,
or cos 3φ and sin 3φ, respectively. Hence, T (1) describes the
direction in which the extended tail of ρ points, while T (3)

describes deformations of a triangular shape.

APPENDIX D: NUMERICAL SIMULATIONS

To solve the dynamical equations (B26)–(B34) numeri-
cally, we consider a cantilever with a resonance frequency
f0 = ω0/(2π ) = 300 kHz, a spring constant of Mω2

0 = 40.0
N/m, and a quality factor of Q = 400. The cantilever starts
from its equilibrium position and from thermal equilibrium at
room temperature (300 K).

To model the surface force, we follow Platz et al. [39] and
assume an exponentially decreasing dissipative force Fdis =
−γ (x)p, with γ (x) given by Eq. (B12), with xγ = 1.5 nm
and 2πγ0/ω0 ≈ 0.065. For the conservative surface force, we
employ a modification of the van der Waals–DMT model. In
its original form, the DMT force is given by

FDMT(x) =
{ − HR

6(a0+x+h)2 x > −h

−HR
6a2

0
+ 4

3 E∗√R(−h − x)
3
2 x < −h

, (D1)

where H = 3.28 × 10−17 kg m2 s−2 is the Hamaker con-
stant, which is a measure for the van der Waals interaction
energy between tip and surface. R = 10 nm denotes the
tip radius, and a0 = 2.7 nm represents the intermolecu-
lar distance. E∗ = 1.5 GPa is the effective stiffness of
the tip-sample system. The piecewise definition of this
force makes it unsuitable for our purposes, since deriva-
tives of Eq. (D1) are not well defined at x = −h. We
therefore employ a modified model, which is continuously
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differentiable:

FSF(x) = −1.15HR

12

[
1 + tanh

(
x+h
L f

)]
L2

f + (a0 + x + h)2
+ 1

2

[
1 − tanh

(
x + h

L f

)](
− 1.15HR

6(L2
f + a2

0)
+ 4

3
E∗√R[L2

f + (h + x)2]
3
4

)
. (D2)

Here, L f = a0/4 controls the smoothness of the transition
between van der Waals and surface regions. A plot of model
force (D2) and the original DMT model (D1) is shown in
Fig. 5.

We have performed a series of numerical simulations of the
full dynamical equations (B26)–(B34) with the parameters for
the surface-tip interaction as given above. In all simulations,
we have considered several special cases.

(1) Full equations: The full set of equations (B26)–(B34)
is simulated.

(2) Variance limit: Only second-order correlation functions
�20,�11, and �02 are taken into account; third-order vari-
ances (�n,m with n + m = 3) are set to zero.

(3) Point-particle limit: All correlation functions �nm are
assumed to vanish.

(4) Reduced dissipative force: To study the influence of the
dissipative force, we have run the simulations in a situation
where the dissipative surface force is reduced by a factor of
10−3.

(5) No quantum terms: All quantum terms [terms involving
h̄ in Eqs. (B26)–(B34)] are set to zero.

In addition, we have performed numerical simulations that
include fourth-order correlation functions (�n,m with n +
m = 4) to verify that these terms can be ignored. These results
were affirmative and are not presented in this paper. Since
the general validity of our method hinges on the validity of
localization approximation (6), the conditions for its validity
need to be checked. One way is to increase the order of ap-
proximations, and the fact that fourth-order calculations yield
the same results as third-order calculations indicates that the
conditions are met. Another way to check the validity is to
estimate the error in the force. For a third-order calculation,
this error can be estimated as δF (x) = 1

4! F
(4)(x)�x4, where

�x is the spatial width of the probability distribution. Even in
the most extreme situation [the strongly momentum-squeezed
cloud of Fig. 3(c) in the absence of a dissipative force], this
error never exceeds 0.01 nN. In the presence of a dissipative
surface force [Fig. 3(a)], the error does not exceed 10−4 nN.

In agreement with first-order perturbation theory (see Ap-
pendix E), we found two general results in our simulations.

(i) If one is only interested in studying mean position and
momentum of the cantilever, the point-particle limit is appro-
priate. Variances only have a small effect on their dynamics.

(ii) For standard AFM parameters, quantum terms can
safely be neglected. Since thermal variances are generally
several orders of magnitude larger than quantum uncertainties,
our results do not support claims in the literature that AFM is
quantum limited [53].

The simulation supports the findings that we found in per-
turbation theory: significant squeezing is only generated when
the tip is in contact with the sample.

APPENDIX E: PERTURBATION THEORY OF THE
DRIVEN CANTILEVER

If the tip-surface interaction is sufficiently small, the sur-
face forces can be treated as a perturbation. To derive a
solution of Eqs. (B26)–(B34) to first order in perturbation
theory, we assume that the unperturbed system is initially
thermalized, i.e., mean position and momentum follow a sta-
tionary trajectory, and the variances correspond to a thermal
equilibrium. The full unperturbed solution for driving force
(2) is then given by the unperturbed mean position x0(t ) of
Eq. (3), unperturbed mean momentum p0(t ) = Mẋ0, as well
as

�x2
th := �

(no srfc.)
20 = kBT

Mω2
0

[
1 +

(
1 + 1

Q2

)(
h̄ω0

4kBT

)2]
,

(E1)

�
(no srfc.)
02 = MkBT

[
1 +

(
h̄ω0

4kBT

)2]
, (E2)

and �n,m = 0 otherwise. For a typical cantilever, the ratio of
ground-state energy h̄ω0 and thermal energy kBT is on the
order of 10−8. Here and in the following, we will therefore
neglect terms of order h̄2 and only keep lowest-order quantum
contributions. We will also neglect terms of order Q−1 since
the quality factor is typically on the order of 102. With this
approximation, we find the usual result for the thermal uncer-
tainty of a classical oscillator, �xth =

√
kBT/Mω2

0 .
To include the effect of surface forces, we consider the

following dimensionless nine-component vector of first-order
corrections:

�V =
(

�
(1)
20

L2
,
�

(1)
11

h̄
,
�

(1)
02 L2

h̄2 ,
�

(1)
30

L3
,
�

(1)
21

Lh̄
,
�

(1)
12 L

h̄2 ,
�

(1)
03 L3

h̄3 ,
x(1)

L
,

p(1)L

h̄

)
, (E3)

where a superscript (1) indicates a first-order perturbation term and L = √
h̄/(Mω0) is the ground-state width. The perturbative

dynamical equations for this vector can be written as

∂t �V = M · �V + �J, (E4)
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with matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2ω0 0 0 0 0 0 0 0
−ω0 −γQ ω0 0 0 0 0 0 0

0 −2ω0 −2γQ 0 0 0 0 0 0
0 0 0 0 3ω0 0 0 0 0
0 0 0 −ω0 −γQ 2ω0 0 0 0
0 0 0 0 −2ω0 −2γQ ω0 0 0
0 0 0 0 0 −3ω0 −3γQ 0 0
0 0 0 0 0 0 0 0 ω0

0 0 0 0 0 0 0 −ω0 −γQ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E5)

and inhomogeneity components J4 = J5 = J8 = 0, and

J1 = − h̄γ (x̄)

8Mω0�x2
th

, (E6)

J2 = −�x2
th[F ′

SF(x0) − p0γ
′(x0)]

h̄
− h̄[F ′

SF(x0) − p0γ
′(x0) + MγQγ (x0)]

16M2ω2
0�x2

th

, (E7)

J3 = −2Mω0�x4
th[γ ′(x0)2 + γ (x0)γ ′′(x0)]

h̄γ (x0)

+ h̄{γQ[F ′
SF(x0) − p0γ

′(x0)] + Mω2
0γ (x0)}

8M2ω3
0�x2

th

− h̄[γ ′(x0)2 − 3γ (x0)γ ′′(x0)]

8Mω0γ (x0)
, (E8)

J6 = −4�x4
thγ

′(x0)

L3
+ L�x2

thγ
(3)(x0) + 3

4
Lγ ′(x0), (E9)

J7 = 3LγQγ ′(x0)

4ω0
− L[F ′′

SF(x0) − p0γ
′′(x0)]

2Mω0
, (E10)

J9 = −L

h̄

{
FSF(x0) − p0γ (x0) + �x2

th[F ′′
SF(x0) − p0γ

′′(x0)]
}
. (E11)

It is worthwhile to note that matrix M is block diagonal and only couples correlation functions �nm of the same order n + m.
Hence, squeezing and other modifications of correlation functions must be generated through the inhomogeneity �J (t ).

The solution of Eq. (E4) for �V (0) = 0 is given by

�V (t ) =
∫ t

0
dt ′ eM(t−t ′ ) · �J (t ′). (E12)

This is best evaluated by using the eigenvalues of M. This matrix is not Hermitian, but it is not singular. We can therefore express
any vector in the form

�J (t ′) =
9∑

α=1

�eα J̃α (t ′), (E13)

where �eα are the eigenvectors of M. Specifically, the relationship between the original components Ji and the expansion
coefficients J̃α is given by

J̃1 = J9(2ω0 − iγQ)

2
√

2ω0

− iJ8√
2

(E14)

= − L√
2h̄

(
1 − i

γQ

2ω0

){
FSF(x0) − p0γ (x0) + �x2

th[F ′′
SF(x0) − p0γ

′′(x0)]
}
, (E15)

J̃3 = J2γQ√
2ω0

+ J1√
2

+ J3√
2

(E16)

= −
√

2Mω0�x4
th[γ ′(x0)2 + γ (x0)γ ′′(x0)]

h̄γ (x0)
−

γQ

(
�x2

th − L4

16�x2
th

)
[F ′

SF(x0) − p0γ
′(x0)]

√
2h̄ω0

− h̄[γ ′(x0)2 − 3γ (x0)γ ′(x0)]

8
√

2Mω0γ (x0)
,

(E17)

J̃4 =
√

3J3(ω0 − iγQ)

4ω0
−

√
3J2(γQ + 2iω0)

4ω0
− 1

4

√
3J1 (E18)
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=
√

3h̄{4Mω2
0γ (x0) + (3γQ + 2iω0)[F ′

SF(x0) − p0γ
′(x0)]}

64M2ω3
0�x2

th

+
√

3�x2
th(γQ + 2iω0)[F ′

SF(x0) − p0γ
′(x0)]

4ω0 h̄

+ i
√

3M�x4
th(γQ + iω0)[γ ′(x0)2 + γ (x0)γ ′′(x0)]

2h̄γ (x0)
+ i

√
3h̄(γQ + iω0)[γ ′(x0)2 − 3γ (x0)γ ′′(x0)]

32Mω2
0γ (x0)

, (E19)

J̃6 =
√

5J7(2ω0 − iγQ)

8ω0
+

√
5J5(2ω0 − 3iγQ)

8ω0
+

√
5J6(γQ − iω0)

4ω0
− 1

4
i
√

5J4 (E20)

= −
√

5(γQ − iω0)

L3ω0
�x4

thγ
′(x0) +

√
5(γQ − iω0)

4ω0
L�x2

thγ
(3)(x0)

+
√

5L

16Mω2
0

{(iγQ − 2ω0)[F ′′
SF(x0) − p0γ

′′(x0)] + 3(2γq − iω0)Mω0γ
′(x0)}, (E21)

J̃8 = J7(2ω0 − 3iγQ)

8ω0
− 3J6(γQ + iω0)

4ω0
+ 3iJ5(γQ + 2iω0)

8ω0
+ iJ4

4
(E22)

= 3�x4
th(γQ + iω0)γ ′(x0)

L3ω0
− 3L�x2

thγ
(3)(x0)(γQ + iω0)

4ω0

− L

16Mω2
0

{(2ω0 − 3iγQ)[F ′′
SF(x0) − p0γ

′′(x0)] + 3Mω0(2γQ + 3iω0)γ ′(x0)}, (E23)

and J̃2 = J̃∗
1 , J̃5 = J̃∗

4 , J̃7 = J̃∗
6 , and J̃9 = J̃∗

8 . For γQ � ω0, the eigenvalues of M are approximately given by

λα ∈
{

− γQ

2
− iω0,−γQ

2
+ iω0,−γQ,−γQ − 2iω0,−γQ + 2iω0,−3γQ

2
− iω0,−3γQ

2
+ iω0,−3γQ

2
− 3iω0,−3γQ

2
+ 3iω0

}
,

(E24)

which leads to

�V (t ) =
9∑

α=1

�eα

∫ t

0
dt ′ eλα (t−t ′ )J̃α (t ′). (E25)

From this expression, we can draw several conclusions.
(i) First-order perturbative effects on mean position and mo-
mentum are described through terms involving J̃1 and J̃2 in
solution (E25). These terms are not affected by quantum ef-
fects. They are affected by thermal fluctuations through terms
proportional to �xth in Eq. (E15), but a numerical estimate
shows that this influence is small, roughly on the order of
10−4. Therefore, in agreement with numerical simulations, we
conclude that the point-particle approximation is appropriate
if only the position of the tip is measured. (ii) Terms involving

J̃6 to J̃9 describe the influence of the surface force and quan-
tum effects on skewness. Numerical simulations show that the
overall size of skewness remains small, so that we do not
discuss the details of this case. (iii) The third-order expansion
presented above is sufficient to describe squeezing and skew-
ness for up to 300 cycles of the cantilever. For longer times,
fourth-order terms (coupling to variances �nm with n + m =
4) can have a strong influence on squeezing and skewness.
We have analyzed the corresponding coupling numerically,
but since it is not relevant for normal AFM time scales we do
not discuss it here. (iv) Squeezing of second-order variances
is the most interesting case, since it may be observable and
exhibits the largest contributions due to quantum dynamics.
Squeezing is introduced through terms involving J̃3 to J̃5. To
first order in γQ, the corresponding eigenvectors of M are
given by

�e3 =
(

1√
2
,− γQ

2
√

2ω0
,

1√
2
, 0, 0, 0, 0, 0, 0

)
, (E26)

�e4 =
(

− 1√
3

− iγQ√
3ω0

,− γQ

2
√

3ω0

+ i√
3
,

1√
3
, 0, 0, 0, 0, 0, 0

)
, (E27)

and �e5 = �e∗
4. In this expression, the first three components correspond to position variance, �11, and momentum variance,

respectively. For brevity, we will only discuss the position variance, for which Eq. (E25) yields

�
(1)
20 =

∫ t

0
dt ′eγQ (t ′−t )

[
γQ
(

L4

16 − �x4
th

)
2Mω2

0�x2
th

[F ′
SF(x0(t ′)) − p0(t ′)γ ′(x0(t ′))] −

(
�x4

th − 3L4

16

)
γ ′′(x0(t ′)) −

(
L4

16
+ �x4

th

)
γ ′(x0(t ′))2

γ (x0(t ′))

]

+
∫ t

0
dt ′ e

γQ (t ′−t ) cos[2ω0(t − t ′)]
�x2

th

[
�x2

th

(
�x4

th − 3L4

16

)
γ ′′(x0(t ′)) − L4

8
γ (x0(t ′))
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− γQ

2Mω2
0

(
L4

16
− �x4

th

)
[F ′

SF(x0(t ′)) − p0(t ′)γ ′(x0(t ′))] + �x2
th

(
L4

16
+ �x4

th

)
γ ′(x0(t ′))2

γ (x0(t ′))

]

−
∫ t

0
dt ′ e

γQ (t ′−t ) sin[2ω0(t − t ′)]
Mω0�x2

th

[(
L4

16
+ �x4

th

)
[F ′

SF(x0(t ′)) − p0(t ′)γ ′(x0(t ′))] + L4

8
MγQγ (x0(t ′))

]
. (E28)

This expression shows that quantum effects are generally very
small. They enter through the ground-state width L, which, at
room temperature, is about a factor of 10−4 smaller than the
thermal variance �xth of the tip position.

To gain a better understanding of quantum effects, we
have analyzed this expression for the special case of a single-
frequency driving force [F2 = 0 in Eq. (2)] oscillating at
resonance frequency, ω1 = ω0. Furthermore, we concentrate
on the effect of a dissipative surface force of the form (B12).
The integral then reduces to Eq. (14). The implications of this
result are discussed in the main text.

APPENDIX F: COMMUTATORS OF FUNCTIONS OF
POSITION AND MOMENTUM

We consider functions of operator x̂ and want to evaluate
commutators of the form

Xn = [V (x̂), p̂n]. (F1)

We note that, since the commutator between δx̂ and δ p̂ of
Eqs. (B6) and (B7) is the same as that of x̂ and p̂, our results
are also valid for commutators of the form [V (δx̂), δ p̂n].

Lemma 1.

Xn = i
n∑

l=1

cn,l h̄
lR(n−l )(V (l ) ), (F2)

R(m)( f (x̂)) = p̂m f (x̂) + f (x̂) p̂m, (F3)

with coefficients cn,l that need to be determined.

Proof. For n = 1 we have

X1 = ih̄c1,1R(0)(V (1) ), (F4)

with c1,1 = 1
2 . Assuming relation (F2) holds for n − 1, we

obtain

Xn = i

(
h̄

2
R(n−1)(V ′) + 1

2

n−1∑
r=1

cn−1,r h̄r
[
p̂R(n−1−r)(V (r) ) + R(n−1−r)(V (r) ) p̂

])
. (F5)

Now,

p̂ R(m)( f ) + R(m)( f ) p̂ = 2R(m+1)( f ) +
m∑

k=1

cm,k h̄k+1R(m−k)( f (k+1)), (F6)

so that

Xn = i

(
h̄

2
R(n−1)(V ′) +

n−1∑
l=1

cn−1,l h̄
lR(n−l )(V (l ) ) + 1

2

n−2∑
r=1

cn−1,r

n−1−r∑
k=1

cn−1−r,k h̄r+k+1R(n−1−r−k)(V (r+k+1))

)
. (F7)

Introducing the new summation index l = r + k + 1, we find

Xn = i

(
h̄

2
R(n−1)(V ′) +

n−1∑
l=1

cn−1,l h̄
lR(n−l )(V (l ) ) + 1

2

n∑
l=3

h̄lR(n−l )(V (l ) )
l−2∑
r=1

cn−1,rcn−1−r,l−r−1

)
(F8)

= i
n∑

l=1

cn,l h̄
lR(n−l )(V (l ) ), (F9)

with

cn,1 = 1
2 + cn−1,1, (F10)

cn,2 = cn−1,2, (F11)

cn,l = cn−1,l + 1

2

l−2∑
r=1

cn−1,rcn−1−r,l−r−1 for 3 � l � n. (F12)

This completes the proof of Lemma 1.
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Equation (F12) provides us with a recursion relation that
can be used to determine all factors cn,l . We have verified that,
up to n = 15, these factors correspond to coefficients of Euler
polynomials En(x). More specifically, we found that

n∑
l=1

cn,l x
n−l = i(inEn(−ix) − xn). (F13)

We can now introduce superoperators defined by

→
P

m

V (x̂) =
(

p̂m

h̄ ∂
∂ x̂

)m

V (x̂), (F14)

←
P

m

V (x̂) =
(

1

h̄ ∂
∂ x̂

)m

V (x̂) p̂m, (F15)

to write the commutation relations in a compact form:

[V (x̂), p̂n] = −
(

h̄
∂

∂ x̂

)n

[inEn(−i
→
P ) −

→
P

n

+ inEn(−i
←
P ) −

←
P

n

]V (x̂). (F16)

It may appear strange that a derivative operator appears in

the denominator of superoperators
↔
P . However, no negative

powers of derivative operators appear in result (F16). We
remark that a similar result for quadratic potentials has been
proven by De Angelis and Vignat [54].

An important special case is when the function is a power,
V (x̂) = x̂m. It is easy to see that the (mean value of the)
commutator then reduces to

〈[δx̂m, δ p̂n]〉 = 2i
min(m,n)∑

l=1

(
m

l

)
cn,l h̄

l

l!
�m−l,n−l . (F17)
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