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Enhancing energy transfer in quantum systems via periodic driving: Floquet master equations
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We provide a comprehensive study of the energy-transfer phenomenon—populating a given energy level—in
three- and four-level quantum systems coupled to two thermal baths. In particular, we examine the effects of
an external periodic driving and the coherence induced by the baths on the efficiency of the energy transfer.
We consider the Floquet-Lindblad and the Floquet-Redfield scenarios, which both are in the Born-Markov,
weak-coupling regime but differ in the treatment of the secular approximation, and for the latter we develop
an appropriate Floquet-type master equation by employing a partial secular approximation. Throughout the
whole analysis we keep Lamb-shift corrections in the master equations. We observe that, especially in the
Floquet-Redfield scenario, the driving field can enhance the energy-transfer efficiency compared to the nondriven
scenario. In addition, unlike nondriven degenerate systems where Lamb-shift corrections do not contribute
significantly to the energy transfer, in the Redfield and the Floquet-Redfield scenarios these corrections have
non-negligible effects.
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I. INTRODUCTION

The process of energy transfer is a fundamental subject
in physics, chemistry, and biology, which involves energy
exchange among parts of physical, chemical, and biolog-
ical systems. In particular, it is interesting to study such
processes in quantum regimes [1,2]. There exists a vast lit-
erature of pertinent studies in various systems such as crystals
with impurities [3], quantum-dot nanostructures [4], polymer
chains [5,6], and light-harvesting complexes in photosynthesis
[7–10]. Increasing efficiency (or power) of energy-transfer
processes has been one of the main objectives in these investi-
gations [11,12]. Energy transfer usually occurs in two forms:
(i) in real space, where energy in the form of excitation (or
exciton) is to move from one particular “site” of a lattice to
another target site [13–16]; and (ii) in energy space, where en-
ergy is to move from an eigenstate of the system Hamiltonian
to populate another target eigenstate or energy level [17,18].
The latter event in an open quantum system in the presence of
baths is of our interest in this paper.

In real systems, interaction between the system and its
environment (or bath) is inevitable. This results in dissipative
dynamics of the system in the sense that the system evolu-
tion is given by nonunitary master equations, usually after
applying relevant approximations such as the Born-Markov,
weak-coupling, and secular approximations [19–22]. Under
the first two approximations, the Redfield master equation is
obtained; the three approximations yield the Lindblad master
equation [21]. The Redfield equation may not necessarily
guarantee the complete positivity of the system density matrix
(nonpositivity issue), and evolution of populations (diagonal
terms of the density matrix) through this equation may involve
dependence on coherence (off-diagonal) terms. Applying the
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secular approximation (if it holds) retrieves the complete posi-
tivity in the resulting Lindblad equation. If the Hamiltonian of
the system is nondegenerate, the Lindblad equation yields an
evolution for populations fully independently from coherence
terms [23–25]. Although there are some arguments against
the use of the Redfield equation [26], several recent studies
have shown the utility of this equation in some applications
[27,28]. In fact, the main nonpositivity issue with the Redfield
equation may be partially alleviated without the need to apply
the full secular approximation, e.g., by applying a suitable
“partial” secular approximation [27–29]. This approach yields
a Redfield equation which generates positive density matrices.

In this paper, we consider a model which includes a mul-
tilevel system S in contact with two thermal baths at two
different temperatures. The hot bath (e.g., sunlight) is set
to excite the system to its highest energy level(s) and then
the exciton moves through the energy space in the presence
of another cold bath. We work in the local master equation
approximation where the couplings are so weak that the baths
can be assumed to act only locally on the part of the sys-
tem they directly interact with [30,31], and thus effectively
do not see each other. We consider four scenarios—as in
Fig. 1—and their impacts on the energy-transfer efficiency:
(i) the Lindblad scenario—assuming the Born-Markov and
secular approximations, with no applied driving field on the
system; (ii) the Floquet-Lindblad scenario—the Born-Markov
and secular approximations and driving the system by a
time-periodic applied field; (iii) the Redfield scenario—the
Born-Markov approximation, no secular approximation, and
no applied field on the system; and (iv) the Floquet-Redfield
scenario—the Born-Markov approximation, a partial secular
approximation, and driving the system by a time-periodic
applied field.

Each of these scenarios requires its own dynamical equa-
tion for the system. In particular, in the time-dependent driven
cases since the applied field is periodic, one needs to use
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FIG. 1. Four scenarios of the energy transfer. (a) Lindblad scenario: Time-independent system by applying the Born-Markov and secular
approximations. Here the standard Lindblad equation [Eq. (6)] applies. (b) Redfield scenario: Time-independent system and performing only
the Born-Markov approximation. Here the Redfield equation [Eq. (27)] applies. (c) Floquet-Lindblad scenario: Time-dependent system with
the Born-Markov and secular approximations. Here the Floquet-Lindblad equation [Eq. (11)] applies. (d) Floquet-Redfield scenario: Time-
dependent system with the Born-Markov approximation and a partial secular approximation. Here the Floquet-Redfield equation [Eq. (34)]
applies. In time-dependent cases the system is driven by a time-periodic applied field.

Floquet theory. Scenarios (i), (ii), and (iii) can be described by,
respectively, the Lindblad equation, Floquet-Lindblad equa-
tion, and Redfield equation [32,33]. However, for scenario (iv)
we develop an appropriate Floquet-type Redfield equation,
where we employ a particular partial secular approximation
(which is different from that of Ref. [29]). For a different
Floquet-based study of energy transfer (in the site basis), see
Ref. [34].

Our objective is to populate a particular energy level of the
system as the target state (denoted by |b〉). Performance of this
task can be quantified by the time averaging of the population
of the target state [35–38]:

η(t f ) = (1/t f )
∫ t f

0
ds 〈b|�S (s)|b〉, (1)

where t f is the final time and �S (s) denotes the state of the
system at time 0 � s � t f . Our results show that driving the
system by a periodic external field leads to increasing the
population of the target level relative to the case where no
external field is applied. In the Redfield and Floquet-Redfield
master equations we include the Lamb-shift terms, which are
computed by appropriate QED considerations. According to
our analysis, it is seen that for nondriven degenerate systems
the Lamb-shift terms do not have impact on the dynamics.
In addition, we observe that in the presence of a periodic
external field, generating coherence in the system through the
dynamics can enhance the energy-transfer efficiency (in the
Floquet-Lindblad and Floquet-Redfield scenarios).

The structure of this paper is as follows. In Sec. II we
investigate the Lindblad and Floquet-Lindblad scenarios and
their associated dynamical equations. In addition, we consider
the case of a three-level quantum system and calculate the
energy-transfer efficiency for each of the scenarios. In Sec. III
we move to the Redfield and Floquet-Redfield scenarios. In
particular, we delineate how one can derive an appropriate
dynamical equation which holds for a driven quantum system
under a time-periodic external field under the Born-Markov
condition. To do so, we introduce a specific partial secular ap-
proximation. Next, we calculate the energy-transfer efficiency

for these scenarios for a four-level system, which also enables
us to see how coherence may also affect the energy-transfer
efficiency. We conclude the paper with a summary in Sec. IV.
Several appendices are also included to elaborate further de-
tails and steps of derivations.

II. LINDBLAD AND FLOQUET-LINDBLAD SCENARIOS

Here we sketch a derivation of the quantum master equa-
tion for the state of an open quantum quantum system which
is driven by a periodic external field. Before presenting the
Floquet-Lindblad equation we set up the problem and briefly
review the standard Lindblad master equation.

A. Lindblad scenario

Consider a nondriven, closed bipartite quantum system
with the total Hamiltonian

Htot = HS + HB + Hint, (2)

where HS = ∑
ε ε|ε〉〈ε|, HB, and Hint = ∑

α Sα ⊗ Bα are, re-
spectively, the system, bath, and interaction Hamiltonians.
It is more convenient to derive the master equation in the
interaction picture which is defined by

�tot(t ) = U †
S (t, 0) ⊗ U †

B (t, 0)�tot(t )US (t, 0) ⊗ UB(t, 0), (3)

H int(t ) = U †
S (t, 0) ⊗ U †

B (t, 0)HintUS (t, 0) ⊗ UB(t, 0), (4)

where US (t, 0) = e−itHS/h̄ and UB(t, 0) = e−itHB/h̄. Hereafter
we use boldface letters for the interaction picture. The dynam-
ics of the total system in this picture is given by

d�tot(t )

dt
= − i

h̄
[H int(t ), �tot(t )]. (5)

It has been argued that under the Born-Markov and secular
approximations the dynamics of the open quantum system is
given by the Lindblad quantum master equation [21]:

d�S (t )

dt
= − i

h̄
[HLamb, �S (t )] + D[�S (t )], (6)
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where

HLamb = (1/h̄)
∑
α,α′

∑
ω

ξαα′ (ω)S†
α (ω)Sα′ (ω), (7)

D[�S (t )] = (1/h̄2)
∑
α,α′

∑
ω

γαα′ (ω)

[
Sα′ (ω)�S (t )S†

α (ω)

− 1

2
{S†

α (ω)Sα′ (ω), �S (t )}
]

(8)

are the Lamb-shift Hamiltonian and the dissipator, respec-
tively. Here γαα′ (ω) and ξαα′ (ω) are related to the bath
correlation functions (Appendix A), and the Lindblad oper-
ators Sα (ω) are defined based on the system Hamiltonian as

Sα (ω) =
∑

ε−ε′=h̄ω

|ε〉〈ε|Sα|ε′〉〈ε′|. (9)

B. Floquet-Lindblad scenario

Now we study a driven open quantum system the
Hamiltonian of which is periodic in time, HS (t + τ ) = HS (t )
with period τ . It is known from the Floquet theorem [39,40]
that the unitary operator US (t, 0) satisfying the equation
ih̄ d

dt US (t, 0) = HS (t )US (t, 0) can also be represented in the
form

US (t, 0) = P(t, 0)e−iH̄t/h̄, (10)

where H̄ is a Hermitian time-independent operator, referred to
as the Floquet Hamiltonian, and P(t, 0) is a time-periodic uni-
tary operator, referred to shortly as the periodic operator, such
that P(t + nτ, nτ ) = P(t + nτ, 0) = P(t, 0) and P(nτ, 0) =
I, ∀n ∈ N.

Starting from the dynamical equation (5) and employing
the Floquet theorem, it has been argued that under appropri-
ate Born-Markov and secular approximations the dynamical
equation of an open system S is given by [21,33]

d�S (t )

dt
= − i

h̄

[
H (F )

Lamb, �S (t )
] + D(F )[�S (t )], (11)

where

H (F )
Lamb =

∑
α,α′

∑
ω

∑
q∈Z

1

h̄
ξαα′ (ω + q
)S†

α (q, ω)Sα′ (q, ω), (12)

D(F )[�S (t )] = 1

h̄2

∑
α,α′

∑
ω

∑
q∈Z

γαα′ (ω + q
)

×
[

Sα′ (q, ω)�S (t )S†
α (q, ω)

− 1

2
{S†

α (q, ω)Sα′ (q, ω), �S (t )}
]

(13)

are the Lamb-shift Hamiltonian and the dissipator, respec-
tively. Here the Floquet-Lindblad operators Sα (q, ω) are
defined as follows. First, note that we can Fourier transform
the periodic factor P†(t, 0)SαP(t, 0) as P†(t, 0)SαP(t, 0) =∑

q∈ZSα (q)eiq
t , with 
 = 2π/τ being the frequency of the
applied field. Next, we define

Sα (q, ω) =
∑

ε̄−ε̄′=h̄ω

|ε̄〉〈ε̄|Sα (q)|ε̄′〉〈ε̄′|, (14)

where H̄ |ε̄〉 = ε̄|ε̄〉. In addition, the coefficients γαα′ (ω + q
)
and ξαα′ (ω + q
) are the real and imaginary parts of the one-
sided Fourier transformation of the bath correlation functions.
For details, see Appendix A. An immediate observation is
that, unlike the Lindblad scenario, in this case the Lamb-shift
Hamiltonian (12) does not necessarily commute with the sys-
tem Hamiltonian.

C. Case study: Three-level system

Consider a driven three-level system which is weakly cou-
pled to two bosonic baths Bh and Bc with temperatures Th and
Tc (Th � Tc); see Fig. 2. The baths are assumed sufficiently
large and initially in their associated equilibrium states �B =
e−βBHB/ZB, where βB = 1/(kBTB) and ZB = Tr[e−βBHB ], with
B ∈ {Bc, Bh}. One can simulate the baths with electromagnetic
radiation fields which interact with a system through dipole
interaction. A careful analysis of this interaction is reviewed
in Appendix B. As a result, the total Hamiltonian of a driven
three-level system interacting with a radiation field can be
written as

Htot(t ) = HS (t ) + HBh + HBc + HSBh + HSBc , (15)

where

HS (t ) = H0 + Vi(t ), (16)

H0 = ε0|ε0〉〈ε0| + εb|εb〉〈εb| + ε1|ε1〉〈ε1|, (17)

Vi(t ) = μ cos(
t )(|εb〉〈εi| + |εi〉〈εb|), i ∈ {0, 1}, (18)

FIG. 2. A three-level system ({|0〉, |1〉, |b〉}) coupled to two baths and driven by an external periodic field V (t ). In panel (a) the external
field couples |0〉 and |b〉, while in panel (b) it couples |1〉 and |b〉.
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TABLE I. Temperatures and constants of the spectral density
functions of the cold and hot baths [denoted by (c) and (h)], in the
form J (ω) = J0ωe−ω2/ω2

cutoff , in natural units.

1/βh 1/βc J (h)
0 J (c)

0 ω
(h)
cutoff ω

(c)
cutoff

30 4 4×10−4 4×10−3
√

2
√

0.2

HBh =
∑

k

h̄ζk (â†
k âk + 1/2), (19)

HBc =
∑

q

h̄νq(b̂†
qb̂q + 1/2), (20)

HSBh =
∑

k

fk (|ε0〉〈ε1| ⊗ â†
k + |ε1〉〈ε0| ⊗ âk ), (21)

HSBc =
∑

q

gq(|εb〉〈ε1| ⊗ b̂†
q + |ε1〉〈εb| ⊗ b̂q). (22)

Here H0 denotes the free Hamiltonian of the nondriven sys-
tem, with distinct energy levels ε0 < εb < ε1. For brevity,
hereafter and throughout the paper we use the shorthand |i〉
rather than |εi〉. (For an n-level system, the free Hamiltonian
can be extended to

H0 =
∑

i

εi|i〉〈i|, i ∈ {0, b, 1, 2, . . . , n − 2}, (23)

with ε0 < εb < ε1 < · · · < εn−2). The external field V0(t )
[V1(t )] couples the ground level |0〉 and the target level |b〉
(level |1〉 to the target level |b〉). The operators â†

k and b̂†
k are

the creation operators of the kth mode of the hot and the cold
baths, respectively, which satisfy the bosonic commutation
relations [âl , â†

k] = [b̂l , b̂†
k] = δlk . Moreover, the interaction

Hamiltonians between the system and the hot and the cold
baths are given, respectively, by Eqs. (21) and (22), where we
assume fks and gks to be real-valued parameters.

In the Born-Markov and secular approximations, the evo-
lution of system S is governed by Eq. (11). Specifically,
here we consider H0 with (ε0, εb, ε1) = (0, 2.5, 3) and {|0〉 =
(1, 0, 0)T , |1〉 = (0, 1, 0)T , |b〉 = (0, 0, 1)T }. The system is
assumed to be initially in the state �S (0) = |0〉S〈0|, and is cou-

pled to two thermal baths with βc/βh = 30/4. We also assume
(μ,
) = (0.1, 2.25). In all simulations throughout the paper,
we consider natural units where we set h̄ ≡ c ≡ kB ≡ 1, with
c being the speed of light and kB being the Boltzmann con-
stant. The properties of the baths are listed in Table I. We
consider three cases: (i) there is no driving field; (ii) there is
an external field V0(t ) which couples the |0〉 and |b〉 levels;
and (iii) the external field V1(t ) couples the |1〉 and |b〉 levels.
(Table II shows the parameters of the Floquet-Lindblad master
equation for this example.) We also study the effect of the
Lamb shift in the Lindblad and Floquet-Lindblad scenarios
for these cases.

Figure 3 shows the evolution of the state of the system.
When the system is not driven, it is observed that it reaches
its stationary state monotonically [Fig. 3(a)]. Since there
is no coherence in the initial state and also noting that the
master equation of the system is the Lindblad equation, no
coherence is generated during this evolution either. However,
when the system is driven by a time-dependent periodic field
[Figs. 3(b) and 3(c)], it is observed that the system eventually
reaches a stationary state, experiencing some fluctuations in
the meanwhile. The amplitudes of these transient fluctuations
depend on the ratio 
/ωb0 [which for Fig. 3(b) is in the
near-resonance regime] and 
/ω1b [which for Fig. 3(c) is in
the off-resonance regime]. In the former case, at earlier times
the amplitude of the fluctuations are considerable, whereas
eventually the baths would suppress them. In the latter case,
in contrast, the system effectively experiences an effective
static potential, which implies negligible fluctuations [39]. We
note that at long times |�0b| = 0 [in case (ii)] and |�b1| = 0
[in case (iii)], which implies a bath-induced decoherence. In
addition, by comparing Figs. 3(a)–3(c), it is observed that
in case (iii) the driven system reaches its stationary state
relatively sooner than in the other cases. See Appendix C for
details of calculations.

Figure 4 shows the time evolution of the population of
the target level (�bb) and the efficiency of energy transfer [as
defined in Eq. (1)] for the three cases. It is observed that
the external field improves this efficiency. However, at earlier
times for case (ii) the efficiency is higher compared to the two

TABLE II. Parameters of the master equation (11). Here we consider two cases for the external field: (i) the field couples |0〉 and |b〉 levels
[Eq. (18)], and (ii) the field couples |1〉 and |b〉 states [Eq. (C40)]. All matrix representations are in the {|0〉, |1〉, |b〉} eigenbasis of H0 (as
introduced in Sec. II C), and all quantities are in natural units.

Field couples |0〉 and |b〉 Field couples |1〉 and |b〉

H̄

⎛
⎝ 0.0317 0 −0.2939 + 0.3347i

0 3 0
−0.2939 − 0.3347i 0 2.4683

⎞
⎠

⎛
⎝0 0 0

0 2.9991 0.0250
0 0.0250 2.5009

⎞
⎠

ε̄ {3, 2.5472, −0.0472} {3.0003, 2, 4997, 0}
ω {±0.4528, ±3.0472, ±2.5943, 0} {±0.5006, ±3.0003, ±2.4997, 0}
q [−24, 24] [−3, 3]

H (F ),(h)
Lamb

⎛
⎝ −0.0145 0 −0.0016 + 0.0018i

0 0.0166 0
−0.0016 − 0.0018i 0 −0.0015

⎞
⎠

⎛
⎝−0.0190 0 0

0 0.0162 0.0006
0 0.0006 0.0035

⎞
⎠

H (F ),(c)
Lamb

⎛
⎝ −0.0073 0 0.0243 − 0.0277i

0 0.2392 0
0.0243 + 0.0277i 0 −0.2088

⎞
⎠

⎛
⎝0 0 0

0 0.1912 0.0182
0 0.0182 −0.1711

⎞
⎠
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FIG. 3. Time evolution of the reduced density-matrix elements of a three-level system (see Sec. II). The system is coupled to two baths with
βc/βh = 30/4. (a) Applying no external driving field on the system. (b) Applying an external driving field V0(t ). Note that here 
/ωb0 = 0.9.
(c) Applying an external driving field V1(t ). Note also that 
/ω1b = 4.5. The properties of the system, baths, and external fields are listed in
Table I and the paragraph after Eq. (23). All quantities are in natural units.

other cases. At long times, at t ≈ 6000, when V0(t ) is applied,
the efficiency grows by ≈7% compared to the nondriven case.
Similarly, when V1(t ) is applied, the efficiency increases by
≈8% compared to the nondriven case. As a remark, note that
for two baths with equal temperature ratios, their interactions
with the corresponding energy levels can be guided through
appropriate frequency filters [41–44].

In practical studies of open quantum systems through
master equations, it is often assumed that the Lamb-shift
Hamiltonian HLamb is negligible [45–47]. However, a remark
is in order. We note that HLamb in the Lindblad and Floquet-
Lindblad scenarios is of the second order with respect to
Hint—so is the dissipator [21,33]. One can better analyze the
effect of HLamb on the system evolution by removing this term
from the master equation and comparing the results with the
complete equation. In the Lindblad scenario, since the master
equation is a rate-type equation for the population, then the
Lamb term does not affect the population evolutions for the
nondegenerate case [see Fig. 5(a)]. However, the evolution of

t
0 2000 4000 6000

0

0.1

0.2

0.3

V
0

(t) field

V
1

(t) field

no field

η

t
0 2000 4000 6000

0

0.2

0.4

ρ
bb

FIG. 4. The comparison of energy transfer for the three cases of
Fig. 3, when βc/βh = 30/4; see Sec. II. All quantities are in natural
units.

the off-diagonal terms of the state of the system �S (in the
eigenbasis of HS) depends on the Lamb-shift Hamiltonian;
that is, HLamb contributes to the coherence effects of HS in
the dynamics. Hence, due to its smallness, neglecting HLamb

compared to HS seems justifiable.
Nevertheless, note that unlike the Lindblad case, in the

Floquet-Lindblad scenario keeping the Lamb-shift Hamilto-
nian affects the system evolution because H (F )

Lamb does not
commute with the bare system Hamiltonian HS . Thus, care
must be taken when in particular one deals with such cases.
From Figs. 5(a) and 5(c) we observe that neglecting the
Lamb-shift Hamiltonian in the Lindblad scenario as well
as the off-resonance Floquet-Lindblad scenario are plausi-
ble assumptions, because in these cases coherent oscillations
are already negligible. Nevertheless, in the near-resonance
regime of the Floquet-Lindblad scenario this assumption
does not hold unless at the long-time limit of the dynamics
[see Fig. 5(b)].

III. REDFIELD AND FLOQUET-REDFIELD SCENARIOS

Here we study the effect of the coherence on the energy-
transfer efficiency. To do so, we consider two levels |1〉 and
|2〉 for the system Hamiltonian and investigate the effect of
their coherence on the evolution of the population of the target
level |b〉. We note that the Lindblad and the Floquet-Lindblad
master equations [Eqs. (6) and (11)] are not appropriate for
this particular purpose because neither of them can couple the
evolution of the populations to the coherences of the system
state. However, if we relax the full secular approximation
and retain only the Born-Markov approximation, the resulting
Redfield equations for the nondriven and driven cases can
offer a physically relevant framework to study the coherence
effect. As we explain later, in the driven case (the Floquet-
Redfield scenario) we shall still need a suitable partial secular
approximation to guarantee physicality of the system states.

A. Redfield scenario

Consider an open quantum system with a time-independent
Hamiltonian HS . When the system and the bath interact

012208-5
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FIG. 5. Lamb shift vs no Lamb shift in the dynamics (see Sec. II). (a) As Fig. 3(a), with no applied field. (b) As Fig. 3(b), with a near-
resonant applied field V0(t ). Here the dotted lines indicate the cases with the no-Lamb-shift Hamiltonian. (c) As Fig. 3(c), with an off-resonant
applied field V1(t ). All quantities are in natural units.

weakly so that we can apply the Born-Markov approximation,
then the dynamical master equation of the system is given by
the Redfield equation, the general form of which is as follows
[21]:

d�S (t )

dt
= 1

h̄2

∫ ∞

0
ds TrB[H int(t − s)�S (t ) ⊗ �BH int(t )

− H int(t )H int(t − s)�S (t ) ⊗ �B + H.c.]. (24)

This is to some extent similar to the Lindblad equation but
without invoking the secular approximation. To review the
details of the derivation, see Appendix A [where we need
to consider HS time independent and all discussions up to
Eq. (A11) go through]. This equation has been widely used in
various applications in order to study problems such as light
harvesting [27].

To be specific, let us consider a multilevel system in-
teracting with a bath of a radiation field, where the total
Hamiltonian is given by Eq. (2) with HS = H0 as in Eq. (23)

and the system and the field are coupled through the electric
dipole interaction within the “ �E · �r” representation [48–50]
(see also Appendix B):

HB =
∑
k,λ

h̄νk (â†
k,λ

âk,λ + 1/2), (25)

Hint =
∑
i, j

∑
k,λ

g(i j)
kλ

|i〉〈 j| ⊗ âk,λ + H.c. (26)

Here “H.c.” denotes the Hermitian conjugate; â†
kλ

is the cre-
ation operator of a bath bosonic mode (harmonic oscillator)
with frequency νk , wave vector {k}, and polarization λ; and
g(i j)

kλ
is the coupling constant of the dipole interaction of the

|i〉 ↔ | j〉 transition of the system with the (k, λ)th mode of
the bath; in particular, g(i j)

kλ
= �μi j · êkλ, with êkλ being the unit

polarization vector and �μi j = 〈i| �μ| j〉 being the electric dipole
transition matrix elements in the system energy basis [51].

After some algebra one obtains (Appendix D) the master
equation in the Schrödinger picture as

d�S (t )

dt
= − i

h̄
[HS, �S (t )] − 1

6πc3h̄ε0

∑
i

∑
i′ j′

[(�μi′i · �μi′ j′ )N1(ωi′ j′ , β )(|i〉〈 j′|�S (t ) + �S (t )| j′〉〈i|)

+ (�μi j′ · �μi′ j′ )N2(ωi′ j′ , β )(|i〉〈i′|�S (t ) + �S (t )|i′〉〈i|)] + 1

6πc3h̄ε0

∑
i j

∑
i′ j′

�μi j · �μi′ j′

× [N1(ωi′ j′ , β )[|i〉〈 j|�S (t )| j′〉〈i′| + |i′〉〈 j′|�S (t )| j〉〈i|] + N2(ωi′ j′ , β )[| j〉〈i|�S (t )|i′〉〈 j′| + | j′〉〈i′|�S (t )|i〉〈 j|]]

− 1

h̄

∑
ii′ j

�μi j · �μi′ j

6ε0π2c3
C2(ωi′ j, β )(|i〉〈i′|�S (t ) − �S (t )|i′〉〈i|) − 1

h̄

∑
i j j′

�μi j · �μi j′

6ε0π2c3
C1(ωi j′ , β )[�S (t )| j′〉〈 j| − | j〉〈 j′|�S (t )]

+ 1

h̄

∑
ii′ j j′

�μi j · �μi′ j′

6ε0π2c3
[C1(ωi′ j′ , β )(|i〉〈 j|�S (t )| j′〉〈i′| − |i′〉〈 j′|�S (t )| j〉〈i|) + C2(ωi′ j′ , β )(| j′〉〈i′|�S (t )|i〉〈 j|

− | j〉〈i|�S(t )|i′〉〈 j′|)], (27)

where

C1(x, β ) = i

π
P

∫ ∞

0
dν

ν3n(ν, β )

x − ν
,

C2(x, β ) = i

π
P

∫ ∞

0
dν

ν3(n(ν, β ) + 1)

x − ν
,

N1(x, β ) = x3n̄(x, β ),

N2(x, β ) = x3[n̄(x, β ) + 1]. (28)

Here n̄(ω, β ) = (eβ h̄ω − 1)−1. We see that in the time-
independent case, there are not any oscillatory terms on
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FIG. 6. A four-level system which is in contact with two thermal baths. Two pairs of states are coupled with the hot bath, and two other
pairs are coupled with the cold bath. (a) The system is not driven. (b) An external field couples the |0〉 and |b〉 levels to each other (V0 field).

the right-hand side (RHS) of the master equation in the
Schrödinger picture. Hence it seems that this equation
[Eq. (27)] may generate non-negative populations.

Before studying examples, there are two points to take into
account.

(i) Unlike the Lindblad master equation, in general in the
Redfield master equation the spectral density function does
not appear. This complicates the comparison of the results
of these two approaches. To alleviate this issue and make a
fairer comparison, we can study a specific example where the
two approaches can yield the similar master equations and
then by comparing the equations one can read corresponding
parameters. For example, for a qubit interacting with a thermal
bath, with an odd spectral density function [J (−ω) = −J (ω)],
comparing the Lindblad and the Redfield equations yields

(μ10/
√

6πc3h̄ε0)2 = πJ (ω10)/ω3
10, (29)

where ω10 is the Hamiltonian gap of the qubit. We remind the
reader that in all examples throughout this paper, we choose
our parameters according to the explanation after Eq. (23),
Table I, and Eq. (29).

(ii) Note the integrals in Eq. (28) which appear in the Red-
field and Floquet-Redfield master equations. As explained in
Appendix D, these integrals are associated to the Lamb-shift
terms. It has been known that the Lamb-shift terms give rise
to modifications of the energy levels. Since the corrections of
the energy levels due to the Lamb shift are typically small,
in some applications they can be safely ignored [29,45–47].
In contrast to the Lindblad scenarios, in the Redfield ones
without introducing the spectral density functions, some
Lamb-shift terms mathematically diverge. However, by intro-
ducing a suitable cutoff frequency (which is compatible with
the dipole approximation) and employing appropriate QED
considerations [49,52–55], these terms take finite values and
the divergence issue can be removed. We also follow a similar
approach to investigate the Lamb-shift effect in Sec. III C.
In some situations such as nondegenerate or time-dependent
system Hamiltonians, we observe that the Lamb-shift terms
lead to considerable effects on the dynamics.

Now we study a specific example. To see the effect of
neglecting the secular approximation, we examine a four-level
system which is coupled to two thermal baths as in Fig. 6(a).
The Hamiltonian of the system is

HS = H0 =
2∑

i=0

εi|i〉〈i| + εb|b〉〈b|. (30)

We assume that the hot bath leads to the two transitions
|0〉 ↔ |1〉 and |0〉 ↔ |2〉, whereas the cold bath causes the
|b〉 ↔ |1〉 and |b〉 ↔ |2〉 transitions. The system-bath interac-
tion Hamiltonian reads as

Hint = HSBh + HSBc , (31)

where

HSBh =
∑
i=1,2

∑
k,λ

g(i0)
kλ

|i〉〈0| ⊗ âk,λ + H.c.,

HSBc =
∑
i=1,2

∑
q,ν

f (ib)
qν |i〉〈b| ⊗ b̂q,ν + H.c. (32)

We study two cases according to the value of the gap
between |1〉 and |2〉. First, we consider the nonzero gap case
ω21 = (ε2 − ε1)/h̄ = 0.05, and next we focus on the gap-
less case where |1〉 and |2〉 are degenerate states. At first,
let us disregard the integrals in Eq. (27), i.e., C1(x, β ) and
C2(x, β ) coefficients, and analyze the solutions of this dynam-
ical equation. In Fig. 7 the evolutions of the system in both
degenerate and nondegenerate cases are shown (for the cor-
responding analysis of the dynamics with Lamb-shift terms,
see Sec. III C). In Figs. 7(a) and 7(b) the temperature ratio of
the two baths is 30/4. When there is a gap between |1〉 and
|2〉, the final configuration of the system has populations in
all levels, which yields a relative reduction of the population
of the target level. As expected, according to Eq. (27) even
in the nondegenerate case a nonvanishing coherence between
the levels |1〉 and |2〉 is generated because the two |0〉 ↔ |1〉
and |0〉 ↔ |2〉 (|b〉 ↔ |1〉 and |b〉 ↔ |2〉) transitions are due to
the same bath, i.e., there is more than one way to populate the
levels |1〉 and |2〉. The role of coherence in the energy-transfer
efficiency is studied in Sec. III C, where the Lamb-shift terms
are included in the master equation.

B. Floquet-Redfield scenario

Now consider a quantum system which interacts with a
bath and is driven by a periodic external field. The total system
Hamiltonian is

Htot(t ) = HS (t ) + HB + Hint, (33)

where the terms on the RHS are given by Eqs. (16), (23), (25),
and (26).

Recalling Sec. II B, one can obtain a related master
equation for this scenario. However, complete positivity
of this dynamics is not necessarily guaranteed. To allevi-
ate this issue, we apply a partial secular approximation
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dictated by the assumption 
−1 � TR, where TR is the
relaxation time of the driven system. This approximation
neglects all terms in the master equation with q′ �= q. This
removes some fast oscillating terms. Note that this approx-

imation is different from that of Ref. [29]. After some
algebra (see Appendix D for details), we obtain the fol-
lowing Floquet-Redfield master equation in the Schrödinger
picture:

d�S (t )

dt
= − i

h̄
[HS (t ), �S (t )] − 1

6πc3h̄ε0

∑
i j

∑
i′ j′

∑
q

∑
ωω′

(�μi j · �μi′ j′ )

× {[N2(ω′ + q
,β ) + C2(ω′ + q
,β )] × [Li j (q, ω; t )L†
i′ j′ (q, ω′; t )�S (t ) − L†

i′ j′ (q, ω′; t )�S (t )Li j (q, ω; t )]

+ [N2(ω′ + q
,β ) − C2(ω′ + q
,β )] × [�S (t )Li′ j′ (q, ω′; t )L†
i j (q, ω; t ) − L†

i j (q, ω; t )�S (t )Li′ j′ (q, ω′; t )]

+ [N1(ω′ + q
,β ) + C1(ω′ + q
,β )] × [�S (t )L†
i′ j′ (q, ω′; t )Li j (q, ω; t ) − Li j (q, ω; t )�S (t )L†

i′ j′ (q, ω′; t )]

+ [N1(ω′ + q
,β ) − C1(ω′ + q
,β )] × [L†
i j (q, ω; t )Li′ j′ (q, ω′; t )�S (t ) − Li′ j′ (q, ω′; t )�S (t )L†

i j (q, ω; t )]}, (34)

where the coefficients are defined in Eqs. (28) and

Li j (q, ω; t ) = P(t, 0)σi j (q, ω)P†(t, 0) (35)

with σi j (q, ω) defined through

σi j ≡ |i〉〈 j|,
P†(t, 0)σi jP(t, 0) =

∑
q∈Z

σi j (q)eiq
t ,

σi j (q, ω) =
∑

ε̄−ε̄′=h̄ω

|ε̄〉〈ε̄|σi j (q)|ε̄′〉〈ε̄′|.

Note that Eq. (34) includes the Lamb-shift terms.
As an example we consider a four-level system coupled

to two thermal baths and assume that an external field V0(t )
couples the |0〉 and |b〉 energy levels—see Fig. 6(b). The total
system Hamiltonian is described by Eq. (33), where

HS (t ) = H0 + V0(t )

=
2∑

i=0

εi|i〉〈i| + εb|b〉〈b| + μ cos(
t )(|0〉〈b| + |b〉〈0|).

(36)

The Hamiltonians of the baths and their interaction are also
given by Eqs. (25) and (31), respectively.

At first, we ignore the contribution of the Lamb-shift terms
in the dynamics, i.e., we remove the C1(x, β ) and C2(x, β )
coefficients from Eq. (34). We consider two degenerate and
nondegenerate cases. For the temperature ratio βc/βh = 30/4
the time evolutions of the states of these two systems are
represented in Figs. 8(a) and 8(b). It is observed that in the
degenerate case [Fig. 8(a)] the coherence |�12|, which is also
equal to the populations of the degenerate levels, is not de-
stroyed by the bath. However, the coherence |�0b|, which is
due to the external field, is affected significantly by the baths.
On the other hand, in the nondegenerate case [Fig. 8(b)] the
coherence |�12| seems to be affected by the baths (note its tail)
and decreases slowly. We also observe that the coherence |�0b|
is destroyed by the baths.

By comparing Figs. 7 and 8, it is seen that when the dy-
namics is driven and given by the Floquet-Redfield equation
(34), the system approaches an almost stationary configura-
tion sooner than in the nondriven Redfield dynamics (27). Due
to the tradeoff between energy and time, the excess energy
pumped by the applied field to the system can modify time
scales for some transitions. See Refs. [56,57] for relevant
earlier studies.

In the next section, we consider the full master equations
(27) and (34) with the Lamb-shift terms included and investi-
gate the effect of the noise-induced coherence as well as the
Lamb-shift terms on the energy-transfer efficiency.

C. Effect of the Lamb-shift terms in the Redfield
master equations

In the derivation of the Redfield-type master equations
we substitute

∫ ∞
0 ds e−i(x+ν)s = πδ(x + ν) − iP1/(x + ν)—

see Appendix D2. The delta function leads to terms which
appear in the dissipator and the Cauchy principal value results
in the Lamb-shift term, which contributes to the coherent
evolution. Although in some studies the principal value part
is disregarded (which leads to ignoring the Lamb-shift Hamil-
tonians in these master equations), a careful analysis of the
Lamb-shift term is still in order. To do so, we start from the
Hamiltonian of a system interacting with a radiation field.
This Hamiltonian is written in the �E · �r representation and in
the long-wavelength approximation. That is, only the modes
with frequency less than a cutoff frequency value W < ∞
are taken into account. Hence the upper limit of all integrals
in Eq. (28) should be replaced with the parameter W . In
addition, we assume a low-intensity and low-energy radiation,
which, respectively, lead to disregarding the second-order
terms O( �A2) and the interaction of the magnetic field of the
radiation and the spin of the system. Now consider the expres-
sion for C2(ω, β ), which includes integrals of the following
types:

P

∫ W

0
dν

ν3

ω − ν
+ P

∫ W

0
dν

ν3n(ν, β )

ω − ν
, (37)
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FIG. 7. Time evolution of a four-level nondriven system in con-
tact with two thermal baths with βc/βh = 30/4. The Lamb-shift term
is not included here. (a) The levels |1〉 and |2〉 are degenerate. (b) The
gap between |1〉 and |2〉 is assumed to be 0.05. All quantities are in
natural units.

where

P

∫ W

0
dν

ν3

ω − ν
= −

∫ W

0
dν ν2 − ω

∫ W

0
dν ν

−ω2
∫ W

0
dν + P

∫ W

0
dν

ω3

ω − ν
. (38)

By employing appropriate QED arguments (see Ap-
pendix E), one can find that the first term on the RHS of
the above relation is completely compensated with another
term with opposite sign, which is attributed to a self-energy
term. In addition, the second term of the above relation can
be concluded to be irrelevant within the low-intensity approx-
imation. Thus, keeping only the relevant terms of Eq. (37), in
the master equation we can effectively replace

P

∫ W

0
dν

ν3(n(ν, β ) + 1)

ω − ν
→P

∫ W

0
dν

ν3n(ν, β )

ω − ν
− ω2W

+ ω3 ln(W/ω). (39)

Note that to establish the validity of the long-wavelength ap-
proximation, the cutoff frequency W is chosen large compared

FIG. 8. Time evolution of the density matrix for the four-level
driven system in two different temperature ratios. The external field
is given by Eq. (18). The Lamb-shift term is not included here.
(a) The levels |1〉 and |2〉 are degenerate. (b) The levels |1〉 and |2〉
are nondegenerate, and the gap between them is 0.05. All quantities
are in natural units.

to the characteristic frequency of the system and much smaller
than the relativistic modes, ω0 � W � mc2/h̄, where m is the
mass of the charged particle [48].

At first we discuss the time-independent Redfield scenario
in the presence as well as absence of the Lamb-shift terms.
Our simulations show that for the time-independent degen-
erate four-level system (with |1〉 and |2〉 degenerate levels)
the Lamb-shift terms do not affect the dynamics of the sys-
tem and the results are the same as Fig. 7(a). Thus, for the
nondriven scenario [Fig. 6(a)], we only discuss the nondegen-
erate system. In all plots of Fig. 9, we consider a nondriven
nondegenerate four-level system with a 0.05 gap between the
|1〉 and |2〉 levels. This figure shows the evolution of the
state of the system in the presence as well as absence of the
Lamb-shift terms. Here we have taken W ≈ 4×104 (in natural
units). Note that the correct value of the cutoff frequency W
in a model depends on its specifics. Here, however, we have
estimated this frequency simply by trial and error such that
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FIG. 9. Dynamics of a nondriven nondegenerate four-level sys-
tem evolving through Eq. (27). The solid curves correspond to the
Redfield scenario with the Lamb-shift correction, while the dotted
curves correspond to the dynamics without the Lamb-shift terms.
Note that the evolution of the nondriven degenerate system in the
presence of the Lamb-shift terms is similar to Fig. 7(a). All quantities
are in natural units.

the dynamics generates positive density matrices during the
evolution—for a similar analysis see Ref. [58].

It is evident that the Lamb-shift terms are non-negligible.
In the absence of the Lamb-shift terms �11 and �22 are close to
each other and the coherence |�12| (which initially was created
by the baths) is finally destroyed by the baths. In contrast, in
the presence of the Lamb-shift terms, the time evolutions of
all elements of the system density matrix change significantly
and also �11 and �22 are not close to each other either. In ad-
dition, the coherence |�12| like the other elements eventually
reaches a nonvanishing stationary value. As mentioned before,
the coherence |�12| (induced by the baths and the Lamb-shift
terms) is not destroyed by the baths, i.e., the Lamb-shift terms
preserve this coherence.

To see the effect of coherence on the efficiency of en-
ergy transfer see Fig. 10, where we compare the Redfield
scenario [Eq. (27)] with the Lindblad scenario [Eq. (6)] for
two degenerate and nondegenerate cases with the tempera-
ture ratio βc/βh = 30/4. At long times the efficiencies of the
Redfield scenario for both cases are greater than the similar
efficiencies of the Lindblad scenario. For example, at t ≈
2800, the Redfield dynamics yields ≈8 and ≈24% increases in
the efficiency over the Lindblad dynamics for the degenerate
and nondegenerate (ω12 = 0.05) cases, respectively. These
increases of the efficiency can be attributed to the coupling
between the populations and coherence terms in the Redfield
scenarios.

Now we consider a four-level system which is driven by
a time-dependent periodic field. We deal with the Floquet-
Redfield scenario [Eq. (34)] and investigate the effect of
the Lamb-shift terms on the dynamics. Similar to the
time-independent models, we study both degenerate and non-
degenerate systems. Figure 11 compares the Floquet-Redfield
scenarios with and without the Lamb-shift terms for the de-

FIG. 10. Energy-transfer efficiency vs time for the nondriven
cases of the Lindblad and the Redfield scenarios by taking into
account the Lamb-shift terms. All quantities are in natural units.

generate four-level system. The solid curves are related to
the presence of the Lamb-shift terms, and other curves are
related to the absence thereof. We observe that in the Floquet-
Redfield scenario for the degenerate system, the Lamb-shift
terms have a considerable impact on the dynamics. After the
system reaches its stationary state, there is a regular oscil-
lating behavior in all density-matrix elements, the period of
which is comparable to the period of the external field (τ ).
Another considerable difference caused by the Lamb-shift
terms is related to the coherence |�0b|. In the absence of the
Lamb-shift terms, |�0b| does not have a determined oscillating
behavior and almost immediately vanishes. In contrast, when
the Lamb-shift terms are included, |�0b| even after reaching
stationarity manifests an oscillating behavior with a nonva-
nishing trend. Similar behaviors are observed for the driven
nondegenerate four-level system. Figure 12 compares the ef-
fects of the presence and absence of the Lamb-shift terms
in the driven four-level system time evolution. According to
Figs. 11 and 12, in the presence of the Lamb-shift terms,

FIG. 11. Effect of the Lamb-shift terms in the Floquet-Redfield
scenario for the degenerate four-level system. Solid curves are related
to the dynamics with the Lamb-shift terms, and the dotted curves are
associated with the no-Lamb-shift dynamics. All quantities are in
natural units.
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FIG. 12. Effect of the Lamb-shift terms on the dynamics of the
nondegenerate driven four-level system. The Floquet-Redfield sce-
nario is considered. Similar behaviors in the time evolution of the
density-matrix elements in both cases are observed at least until time
50τ ≈ 140. All quantities are in natural units.

there are some specific and non-negligible fluctuations even
after the system reaches a stationary state. In addition, Fig. 13
shows the effect of Lamb-shift terms and the degeneracy on
the energy-transfer efficiency. Moreover, the inset of Fig. 13
shows the effect of the external periodic field on the efficiency
in the presence of Lamb-shift terms. It shows that the external
field causes an increase in the energy-transfer efficiency.

We close this section by a discussion of the full and partial
secular approximations. Consider the Floquet-Redfield and

t0 50 100
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noField-Degenerate
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Field-nonDegenerate
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degenerate-with Lamb
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FIG. 13. Energy-transfer efficiency vs time for the degenerate
and nondegenerate driven four-level systems in the Floquet-Redfield
scenario. In the main plot, in addition to considering degeneracy
the Lamb-shift effect has also been taken into account. One can
observe similar behaviors for these three cases at least until time
50τ ≈ 140—for the nondegenerate system with and without Lamb-
shift terms and the degenerate system with Lamb-shift terms. The
inset shows the effect of the external periodic field on the efficiency
for the degenerate and nondegenerate systems. All quantities are in
natural units.

FIG. 14. State of the degenerate four-level system. The curves
for the main plot are related to the Floquet-Redfield dynamics (34),
whereas the inset curves correspond to the Floquet-Lindblad dy-
namics (11). Both equations include the Lamb-shift terms. Similar
behaviors in the time evolution of the density-matrix elements for the
Floquet-Redfield case are observed at least until time 200τ ≈ 560.
All quantities are in natural units.

Floquet-Lindblad scenarios for a degenerate four-level sys-
tem the dynamics of which are given by Eqs. (34) and (11),
respectively. Figure 14 shows how the Floquet-Lindblad and
Floquet-Redfield master equations compare (while keeping
the Lamb-shift terms). Similar behaviors in the time evolution
of the density-matrix elements for the Floquet-Redfield sce-
nario are observed at least until time 200τ ≈ 560. This means
that for the Floquet-Lindblad scenario the oscillations have
diminished in time, whereas for the Floquet-Redfield scenario
the oscillations seem to be relatively robust. In Fig. 15 the
energy-transfer efficiencies of these two cases are plotted.
Since in the Floquet-Redfield scenario the system reaches its
stationary state relatively sooner than the Floquet-Lindblad
case, from short times the efficiency takes its maximum value
and remains so. The difference between these two scenarios
is indeed related to the type of the secular approximation

FIG. 15. Effect of the coherence on the energy-transfer efficiency
in the presence of the external field. The orange curve corresponds
to the Floquet-Redfield master equation (with the Lamb-shift terms),
and the blue one is related to the Floquet-Lindblad master equation
(with the Lamb-shift term). All quantities are in natural units.
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employed in each. When the secular approximation is applied
partially, the evolutions of the population and coherence terms
are coupled to each other, hence there are additional processes
which contribute to populating the energy levels.

IV. SUMMARY AND CONCLUSIONS

We have studied the problem of energy transfer in a multi-
level system in contact with two thermal baths at two different
temperatures. The hot bath excites the system to its high-
est energy level(s) and then the excitation moves through
the energy space in the presence of another cold bath. We
have considered four different dynamical scenarios within the
Born-Markov regime: (i) the Lindblad scenario—assuming
the secular approximation, with no applied driving field on the
system; (ii) the Floquet-Lindblad scenario—assuming the sec-
ular approximation and driving the system by a time-periodic
driving field; (iii) the Redfield scenario—assuming no secular
approximation and no driving field on the system; and (iv) the
Floquet-Redfield scenario—assuming a particular partial sec-
ular approximation and driving the system by a time-periodic
applied field. We have developed a particular dynamical equa-
tion for the last scenario. Our overall objective has been to
study the efficiency of energy transfer to a particular energy
level from other energy levels of the system Hamiltonian in
each of the dynamical scenarios.

We have shown that in the two Floquet-Lindblad and
Floquet-Redfield scenarios, applying an external periodic field
on three-level and four-level systems which couple the tar-
get energy level to another energy level has yielded higher
efficiency for the energy-transfer phenomenon. We have in-
vestigated the effect of the Lamb-shift correction to the system
Hamiltonian. In particular, we have shown that for the no-field
Lindblad scenario the Lamb-shift term does not have any ef-
fect on the dynamics of the system—and hence on the energy
transfer. A similar behavior also has manifested for the case
in which an applied field has coupled the target energy level
to another level in the off-resonance regime. However, when
the applied field is in the near-resonance regime, it affects the
dynamics at short times, while this effect diminishes as time
increases.

For the two Redfield scenarios, Redfield and Floquet-
Redfield, we have considered a four-level system, in which
a coherence between the two upper levels can be generated
through the dynamics. In the Redfield and Floquet-Redfield
scenarios we have considered both nondegenerate and degen-

erate cases. Moreover, we have investigated the effect of the
Lamb-shift terms in the Redfield scenarios. We have observed
that in the Redfield scenario, the Lamb-shift terms have sig-
nificant impact on the dynamics for the nondegenerate system,
and for the Floquet-Redfield scenario they have remarkable
effect on the dynamics—and then on the energy-transfer effi-
ciency.

Our careful and comprehensive study can be useful in the
analysis of energy transfer in synthetic systems, and it offers
outlooks about how one can enhance such processes through
suitable driving fields. As a next step, for example, one can
study how correlation effects may play a role in enhancing or
reducing energy-transfer efficiency [59].
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APPENDIX A: DERIVATION OF THE
FLOQUET-LINDBLAD MASTER EQUATION

Here based on Ref. [33], we reproduce the derivation of
the Floquet-Lindblad master equation. Consider a quantum
system which is in contact with a bath and is driven by an
external periodic field. We want to obtain a master equation
which describes the dynamic of the system. The total Hamil-
tonian is given by

Htot(t ) = HS (t ) + HB + Hint, (A1)

where HS (t ) is the periodic driving Hamiltonian of the system
[HS (t + τ ) = HS (t ) with period τ ], HB is the bath Hamilto-
nian, and Hint describes the interaction between the system
and the bath. Evolution of the total system in the interaction
picture is governed by

d�tot(t )

dt
= − i

h̄
[H int(t ), �tot(t )], (A2)

where the interaction Hamiltonian in the interaction picture is
defined as

H int(t ) = U †
S (t, 0) ⊗ U †

B (t, 0)HintUS (t, 0) ⊗ UB(t, 0). (A3)

From Eq. (A2) we obtain

d�tot(t )

dt
= − i

h̄

{
[H int(t ), �tot(0)] − i

h̄

[
H int(t ),

∫ t

0
ds [H int(s), �tot(s)]

]}
. (A4)

By considering the Markov approximation, the dynamical equation reduces to

d�tot(t )

dt
= − i

h̄
[H int(t ), �tot(0)] − 1

h̄2

∫ t

0
ds [H int(t ), [H int(s), �tot(t )]], (A5)

from which

d�S (t )

dt
= − i

h̄
TrB[H int(t ), �tot(0)] − 1

h̄2

∫ t

0
ds TrB[H int(t ), [H int(s), �tot(t )]]. (A6)
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Consider the general form of the interaction Hamiltonian
in the Schrödinger picture as

Hint =
∑

α

Sα ⊗ Bα, (A7)

where S†
α = Sα and B†

α = Bα . Substituting Eq. (A7) into
Eq. (A3) yields

H int(t ) =
∑

α

U †
S (t, 0)SαUS (t, 0) ⊗ U †

B (t, 0)BαUB(t, 0)

=
∑

α

Sα (t ) ⊗ Bα (t ), (A8)

where US (t, 0) = Te(−i/h̄)
∫ t

0 ds HS (s), UB(t, 0) = e(−it/h̄)HB ,
Sα (t ) = U †

S (t, 0)SαUS (t, 0), and Bα (t ) = U †
B (t, 0)BαUB(t, 0).

If we assume that the initial state of the total system is
an uncorrelated state �tot(0) = �S (0) ⊗ �B(0) and the bath is
prepared in a thermal state, then the first term in Eq. (A6)
vanishes,

TrB[H int(t ), �tot(0)]

= TrB

[∑
α

Sα (t ) ⊗ Bα (t ), �S (0) ⊗ �B(0)

]

=
∑

α

[Sα (t ), �S (0)]TrB[Bα (t )�B(0)] = 0, (A9)

because TrB[Bα (t )�B(0)] = 0. In addition, we assume the
Born approximation, where the coupling between the system
and the bath is considered to be weak such that one can neglect
the effects of the system on the bath. This approximation is
often incorporated by writing the instantaneous state of the
total system approximately as a tensor product of the system
state �S (t ) and the bath state is assumed almost unchanged
in the course of time, �B(t ) ≈ �B(0) ≡ �B; that is, �tot(t ) ≈
�S (t ) ⊗ �B. Thus, by applying this approximation, Eq. (A6)
becomes

d�S (t )

dt
= − 1

h̄2

∫ t

0
ds TrB[H int(t ), [H int(s), �S (t ) ⊗ �B]].

(A10)

If we substitute s → t − s in Eq. (A10) and set the upper
limit of the integral to be infinity (presuming that the inte-
grand, which is proportional to the bath correlation functions,
does not have a substantial contribution for s � TB) [21],
this reduces Eq. (A10) to the following Markovian master
equation:

d�S (t )

dt
= 1

h̄2

∫ ∞

0
ds TrB[H int(t − s)�S (t ) ⊗ �BH int(t )

− H int(t )H int(t − s)�S (t ) ⊗ �B + H.c.]. (A11)

We now need to incorporate H int(t ) in the above equation
from Eq. (A8). To do so, we need to calculate US (t, 0),
which in general requires a time ordering as US (t, 0) =
Te−(i/h̄)

∫ t
0 HS (s) ds. However, noting that the system Hamilto-

nian HS (t ) is assumed to be periodic, one can employ the
Floquet theorem to partially simplify the form of US (t, 0).

The Floquet theorem states that [39] the time evolu-
tion operator associated to a periodic Hamiltonian HS (t ),

ih̄ d
dt US (t, t0) = HS (t )US (t, t0), can be factorized as

US (t, t0) = P(t, t0)e−iH̄ (t−t0 )/h̄, (A12)

where H̄ is a Hermitian time-independent operator, referred
to as the Floquet Hamiltonian, and P(t, t0) is a unitary and
periodic operator such that P(t + nτ, nτ ) = P(t + nτ, 0) =
P(t, 0) and P(nτ, 0) = I, with τ being the period of the
Hamiltonian and n ∈ N.

The Floquet theorem helps us rewrite Sα (t ) operators in
Eq. (A8) as

Sα (t ) = eiH̄t/h̄P†(t, 0)SαP(t, 0)e−iH̄t/h̄. (A13)

Since the operator P(t, 0) is periodic, then P†(t, 0)SαP(t, 0)
is also periodic and hence has a Fourier expansion as

P†(t, 0)SαP(t, 0) =
∑
q∈Z

Sα (q)eiq
t , (A14)

where 
 = 2π/τ is the frequency of the periodic Hamiltonian
HS (t ). The Fourier coefficients read

Sα (q) = 1

τ

∫ τ

0
dt e−iq
t P†(t, 0)SαP(t, 0), (A15)

the calculation of which needs the knowledge of the periodic
operator P(t, 0) only in the first period 0 � t � τ .

One can construct another set of related operators as

Sα (q, ω) =
∑

ε̄−ε̄′=h̄ω

|ε̄〉〈ε̄|Sα (q)|ε̄′〉〈ε̄′|, (A16)

where ε̄ and |ε̄〉 are, respectively, the eigenvalues and
eigenvectors of the Floquet Hamiltonian, H̄ |ε̄〉 = ε̄|ε̄〉. The
summation in Eq. (A16) is over all eigenvalues with the same
(quasi) energy difference h̄ω, and whenever we encounter a∑

ω it denotes the summation over all possible (quasi) energy
gaps.

It is useful to identify several symmetries here. By compar-
ing Eqs. (A14) and (A16) with their Hermitian conjugates, we
find S†

α (q) = Sα (−q) and S†
α (q, ω) = Sα (−q,−ω). By sum-

ming Sα (q, ω) over all ωs we have

∑
ω

Sα (q, ω) = Sα (q). (A17)

Substituting Eq. (A14) into Eq. (A13) and then using
Eq. (A16) gives

Sα (t ) =
∑
q∈Z

∑
ω

eit (ω+q
)Sα (q, ω), (A18)

which in turn yields

H int(t ) =
∑

α

∑
q∈Z

∑
ω

eit (ω+q
)Sα (q, ω) ⊗ Bα (t ). (A19)
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Inserting this form in Eq. (A11) gives the following dynamical equation:

d�S (t )

dt
= 1

h̄2

∑
α,α′

∑
ω,ω′

∑
q,q′

eit[(ω−ω′ )+(q−q′ )
]

{[
Sα′ (q, ω)�S (t )S†

α (q′, ω′) − S†
α (q′, ω′)Sα′ (q, ω)�S (t )

]

×
∫ ∞

0
ds e−is(ω+q
)TrB[B†

α (t )Bα′ (t − s)�B]

}
+ H.c. (A20)

This form can still be simplified further by introducing the one-sided Fourier transformation of the bath correlation functions as

�αα′ (ω + q
) ≡
∫ ∞

0
ds e−is(ω+q
)〈B†

α (t )Bα′ (t − s)〉, (A21)

where 〈B†
α (t )Bα′ (t − s)〉 = TrB[B†

α (t )Bα′ (t − s)�B]. If we assume the thermal equilibrium state as �B = e−βHB/ZB, with β =
1/kBT and ZB = Tr[e−βHB ], then one can see that the bath correlation functions become homogeneous in time:〈

B†
α (t )Bα′ (t − s)

〉 = 〈
B†

α (s)Bα′ (0)
〉
. (A22)

Thus, we obtain

d�S (t )

dt
= 1

h̄2

∑
α,α′

∑
ω,ω′

∑
q,q′

�αα′ (ω + q
)eit[(ω−ω′ )+(q−q′ )
][Sα′ (q, ω)�S (t )S†
α (q′, ω′) − S†

α (q′, ω′)Sα′ (q, ω)�S (t )] + H.c. (A23)

If the time scale TS = maxω �=ω′,m |ω − ω′ + m
|−1 is con-
siderably small compared to the relaxation time scale of the
driven system (TR), i.e., maxω �=ω′,m |ω − ω′ + m
|−1 � TR,
then in the summation

∑
α,α′ and

∑
ω,ω′ only the terms for

which ω = ω′ and q = q′ will have a nonvanishing contribu-
tion. This condition is called the secular approximation, and
gives

d�S (t )

dt
= 1

h̄2

∑
α,α′

∑
ω

∑
q

�αα′ (ω + q
)[Sα′ (q, ω)�S (t )

× S†
α (q, ω) − S†

α (q, ω)Sα′ (q, ω)�S (t )] + H.c.
(A24)

We can decompose �αα′ (x) to a real part and an imaginary
part as follows:

�αα′ (x) = 1
2γαα′ (x) + iξαα′ (x). (A25)

By substituting the above expression in Eq. (A24), we
obtain the master equation of the system in the interaction
picture as follows:

d�S (t )

dt
= − i

h̄

[
H (F )

Lamb, �S (t )
] + D(F )[�S (t )], (A26)

where

H (F )
Lamb = 1

h̄

∑
α,α′

∑
ω

∑
q

ξαα′ (ω + q
)S†
α (q, ω)Sα′ (q, ω),

(A27)

D(F )[�S (t )] = 1

h̄2

∑
α,α′

∑
ω

∑
q

γαα′ (ω + q
)

×
[

Sα′ (q, ω)�S (t )S†
α (q, ω)

− 1

2
{S†

α (q, ω)Sα′ (q, ω), �S (t )}
]
. (A28)

Here H (F )
Lamb is referred to as the Lamb-shift Hamiltonian,

which is due to the interaction between the system and the
bath. The second term on the RHS of Eq. (11), D(F )[�S (t )], is
a decoherence term induced by the bath.

For the sake of comparison, we close this Appendix with
recalling the standard Lindblad master equation for a time-
independent system in the interaction picture:

d�S (t )

dt
= − i

h̄
[HLamb, �S (t )] + D[�S (t )], (A29)

where

HLamb =
∑
α,α′

∑
ω

1

h̄
ξαα′ (ω)S†

α (ω)Sα′ (ω), (A30)

D[�S (t )] = 1

h̄2

∑
α,α′

∑
ω

γαα′ (ω)

[
Sα′ (ω)�S (t )S†

α (ω)

− 1

2
{S†

α (ω)Sα′ (ω), �S (t )}
]
. (A31)

Unlike the time-dependent case, here the Lindblad operators
Sα (ω) are obtained according to the system Hamiltonian, i.e.,
HS = H0. In addition, here the ωs are the gaps of the system
Hamiltonian. Note that the γαα′ (ω) and ξαα′ (ω) coefficients
are obtained by Eq. (A25), too.

APPENDIX B: HAMILTONIAN OF THE
CHARGE-FIELD INTERACTION

Consider a particle of charge q and mass m (an atom or
a molecule) localized in the origin and coupled to a (quan-
tized) electromagnetic radiation field. Let us also assume the
long-wavelength approximation, which neglects the spatial
variation of the electromagnetic field on the length scale of
the charged particle, and the Coulomb gauge for the electro-
magnetic field. Based on elementary physical principles the
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total charge-field Hamiltonian is given by [48]

Htot = 1

2m
[ �p − q �A(0)]2 + VCoul(�r) +

∑
j

h̄ω j (â
†
j â j + 1/2),

(B1)

where �p is the momentum operator of the charged particle,
�A is the vector potential operator associated with the electro-
magnetic field, VCoul is the Coulomb potential, {ω j} are the
quantized frequencies or modes of the field, and â j is the
annihilation operator corresponding to mode ω j of the field.
This form of the Hamiltonian is usually referred to as the
“ �A · �p” representation. One can rewrite this Hamiltonian such
that wherein three separate terms can be discerned:

Htot = HP + HR + HI , (B2)

where

HP = �p2

2m
+ VCoul, (B3)

HR =
∑

j

h̄ω j (â
†
j â j + 1/2), (B4)

HI = HI1 + HI2 (B5)

are the Hamiltonians associated to the particle, the radiation
field, and the interaction, respectively. Here HI1 is linear in
terms of the field �A and HI2 is quadratic:

HI1 = − q

m
�p · �A(0), (B6)

HI2 = q2

2m
[ �A(0)]2. (B7)

For practical purposes, it might be more useful to transform
the �A · �p representation to another equivalent “ �E · �r” repre-
sentation which explicitly depends on the associated electric
field �E rather than the vector potential �A. The transformation
between these two representations is carried out by the unitary
operator T = e−(i/h̄)q�r· �A(0), which yields

H ′
tot = T HtotT

†

= �p2

2m
+ VCoul +

∑
j

h̄ω j (â
†
j â j + 1/2)

− �d · �E (0) + εdipole, (B8)

where εdipole is the dipole self-energy related to the charged
particle Hamiltonian (which is usually ignored in the litera-
ture), and the fourth term is the expected dipole interaction,
where �d = q�r is the dipole operator of the charged particle.
It is seen that another appeal of the �E · �r representation is
that in this representation the Hamiltonian only depends on
the electric field linearly. One can note that the charge-field
Hamiltonian (B8) can be recast in the well-known form

H ′
tot = HP + HR − �d · �E (0), (B9)

where the first, second, and last terms denote the particle, the
reservoir, and the particle-reservoir dipole interaction, respec-
tively. In this paper we work in the �E · �r representation and
simply denote the associated Hamiltonian by Htot (without
prime).

Remark 1. In some physical applications, one may assume
the low-intensity approximation which corresponds to ignor-
ing the O( �A2) term from the Hamiltonian (B1). In the �E · �r
representation this approximation leads to the subtraction of
HI2 from the Hamiltonian (B8).

APPENDIX C: FLOQUET HAMILTONIAN AND PERIODIC
OPERATOR FOR A DRIVEN SYSTEM

1. General analysis

As it was shown in the Born-Markov and secular approx-
imations, the evolution of a driven system with a periodic
external field is governed by Eq. (11), and for using this
equation we should calculate the Floquet Hamiltonian. Thus,
we present a way to obtain the Floquet Hamiltonian approxi-
mately.

On the one hand, we have

US (t, 0) = Te−(i/h̄)
∫ t

0 ds HS (s), (C1)

where HS (t ) = H0 + V (t ) and T denotes time ordering. On
the other hand, from the Floquet theory, we have

US (τ, 0) = e−iH̄τ/h̄. (C2)

According to Eq. (C2) to obtain the Floquet Hamiltonian
H̄ it is better that we have the evolution operator in the
exponential form; to do this notice the following equation
which relates the evolution operator in both the Schrödinger
and interaction picture together:

US (t, 0) = U0(t, 0)U I (t, 0), (C3)

where U0(t, 0) = e−iH0t/h̄ and U I (t, 0) is the evolution opera-
tor in the interaction picture which evolves as

dU I (t, 0)

dt
= − i

h̄
V I (t )U I (t, 0), (C4)

where V I (t ) = eiH0t/h̄V (t )e−iH0t/h̄. By straightforward calcu-
lation the operator V I (t ) takes the following form for the
operator defined as Eq. (18) (see Fig. 2):

V I (t ) = μ cos(
t )
[
e−itωb0 |0〉〈b| + eitωb0 |b〉〈0|], (C5)

where ωb0 ≡ (εb − ε0)/h̄ is the gap of the two states which
are coupled together through the external field with strength
μ. Thus the RHS of the differential Eq. (C4) is proportional
to μ and we can apply the Magnus expansion to obtain the
U I (t, 0) as follows:

U I (t, 0) = e�(t ), (C6)

where the operator �(t ) is obtained by the following series
expansion:

�(t ) =
∞∑

n=1

(−iμ/h̄)n�n(t ). (C7)
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The three first terms of the series Eq. (C7) are as follows [60]:

�1(t ) =
∫ t

0
dt1 V (t1),

�2(t ) = (1/2!)
∫ t

0
dt1

∫ t1

0
dt2[V (t1),V (t2)],

�3(t ) = (1/3!)
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3{[V (t1), [V (t2),V (t3)]] + [[V (t1),V (t2)],V (t3)]}, (C8)

where V (t ) = cos(
t )(e−itωb0 |0〉〈b| + eitωb0 |b〉〈0|). Here we keep U I (t ) up to O(μ3). By direct calculation the evolution operator
in the interaction picture is obtained as

U I (t, 0) = ex(t )|0〉〈b|+y(t )|b〉〈0|+h(t )|0〉〈0|−h(t )|b〉〈b|, (C9)

where

x(t ) ≡ g(t ) + a(t ) + b(t ) + c(t ) + d (t ) + e(t ) + f (t ),

y(t ) ≡ −[g∗(t ) + a∗(t ) + b∗(t ) − c(t ) + d∗(t ) + e∗(t ) + f ∗(t )],

h(t ) ≡ μ2

h̄2

iωb0

ω2
b0 − 
2

[

 cos(ωb0t ) sin(
t ) − ωb0 cos(
t ) sin(ωb0t )

ω2
b0 − 
2

+ 2t
 + sin(2t
)

4


]
, (C10)

and the functions a(t ), b(t ), c(t ), d (t ), e(t ), f (t ), and g(t ) are defined as follows:

a(t ) ≡ μ3ωb0

12h̄3

(

2 − ω2

b0

)[
4
2 sin(t
)e−itωb0

(
t
2 + 2iωb0 − tω2

b0

) − 4

(

2 + ω2

b0

)
(

2 − ω2

b0

)2

+ e−itωb0 [
 cos(
t ) + iωb0 sin(
t )] − 


ω2
b0 − 
2

+ e−itωb0 [3
 cos(3
t ) + iωb0 sin(3
t )] − 3


ω2
b0 − 9
2

+ 4
e−itωb0 cos(t
)
(

2 − it
2ωb0 + ω2

b0 + itω3
b0

)
(

2 − ω2

b0

)2

]
, (C11)

b(t ) ≡ − 2μ3ωb0

3h̄3
(

2 − ω2

b0

)2 × e−2itωb0

8

(
ω2

b0 − 
2
){


 cos(2t
)
[

2(1 + e2itωb0 ) − ω2

b0(e2itωb0 − 1)
]

− 
3
[
e2itωb0 (1 + 2itωb0) + 1

] + 
ω2
b0

[
1 + e2itωb0 (2itωb0 − 1)

]
+ iωb0 sin(2t
)

[

2(2 − e2itωb0 ) + ω2

b0e2itωb0
]}

,

c(t ) ≡ 2iμ3ω2
b0

3h̄3
(

2 − ω2

b0

)2

[

 cos(tωb0) sin(t
) − ωb0 cos(t
) sin(tωb0)


2 − ω2
b0

− 2t
 + sin(2t
)

4


]
,

d (t ) ≡ iμ3

12h̄3


2 − 2ω2
b0(


2 − ω2
b0

)3

{−iωb0 + eitωb0 [iωb0 cos(t
) + 
 sin(t
)]
}
, (C12)

e(t ) ≡ iμ3

12h̄3
(
2 − ω2
b0)2(9
4 − 10
2ω2

b0 + ω4
b0)

[
i
ωb0

(
9
2 − ω2

b0

)(
ω2 + 4ω2

b0

)
+ sin(t
)

[−ω6
b0 − 2
2ω4

b0(1 + itωb0) + 4
4ω2
b0(13 + 5itωb0) − 9
6(1 + 2itωb0)

− ω2
b0

(
ω4

b0 − 3
4 + 2
2ω2
b0

)] + 2i
ω3
b0

(

2 − ω2

b0

) − 2i
ω3
b0 cos(3t
)

(

2 − ω2

b0

)
+ e−itωb0

{−
ωb0 cos(t
)
(
9
2 − ω2

b0

)[−2ω2
b0(−2i + tωb0) + 
2(i + 2tωb0)

]}
, (C13)

f (t ) ≡ −μ3e−itωb0

24h̄3
(

2 − ω2

b0

)2(
9
4 − 10
2ω2

b0 + ω4
b0

){
cos(3t
)

(
ω5

b0 − 3
4ωb0 + 2
2ω3
b0

)
+ 2


[−8
ωb0eitωb0
(
ω2

b0 − 3
2
) − i
2 sin(t
)(e2itωb0 − 1)

(
ω2

b0 − 9
2
)

+ 2iω2
b0 sin(3t
)

(
ω2

b0 − 
2)] − ωb0 cos(t
)
(
ω2

b0 − 9ω2
)[

ω2
b0 − 
2(3 + 2e2itωb0 )

]}
,

g(t ) ≡ −iμ

h̄

{−iωb0 + ie−itωb0 [ωb0 cos(t
) + i
 sin(t
)]
}
. (C14)
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Now we want to calculate the evolution operator in the Schrödinger picture by applying the Baker-Campbell-Hausdorff
(BCH) formula to the RHS of Eq. (C3). By keeping only first 12 terms of this formula, we obtain the operator E as [61]

E(t ) = ln[e�(t )e�(t )] ≈ �(t ) + �(t ) + 1
2 [�(t ),�(t )]

+ 1
12 ([�(t ), [�(t ),�(t )]] + [�(t ), [�(t ),�(t )]]) − 1

24 [�(t ), [�(t ), [�(t ),�(t )]]]

− 1
720 ([�(t ), [�(t ), [�(t ), [�(t ),�(t )]]]] + [�(t ), [�(t ), [�(t ), [�(t ),�(t )]]]])

+ 1
360 ([�(t ), [�(t ), [�(t ), [�(t ),�(t )]]]] + [�(t ), [�(t ), [�(t ), [�(t ),�(t )]]]])

+ 1
120 ([�(t ), [�(t ), [�(t ), [�(t ),�(t )]]]] + [�(t ), [�(t ), [�(t ), [�(t ),�(t )]]]]) + · · · , (C15)

where

�(t ) ≡ (−it/h̄)H0 = −it
(
ω0|0〉〈0| + ωb|b〉〈b| +

n−2∑
j=1

ω j | j〉〈 j|),
�(t ) ≡ x(t )|0〉〈b| + y(t )|b〉〈0| + h(t )|0〉〈0| − h(t )|b〉〈b|, (C16)

ω j ≡ ε j/h̄,

US (t, 0) = eE(t ). (C17)

Equation (C16) is related for n-level atoms. In the following a general expression for the evolution operator in the Schrödinger
picture for an n-level system two levels of which are coupled together via an external field is obtained:

E(t ) = u00(t )|0〉〈0| + u0b(t )|0〉〈b| + ub0(t )|b〉〈0| + ubb(t )|b〉〈b| − it
n−2∑
j=1

ω j | j〉〈 j|. (C18)

where the functions u00(t ), u0b(t ), ub0(t ), and ubb(t ) have been obtained by BCH expansion as follows:

u00(t ) ≡ − itω0 + h(t ) + i

6
tx(t )y(t )ωb0 − i

90
tx(t )y(t )ωb0[h(t )2 + x(t )y(t )]

+ i

180
t3ω3

b0x(t )y(t ) + 1

30
t2ω2

b0h(t )x(t )y(t ),

u0b(t ) ≡ x(t ) + i

2
tx(t )ωb0 − 1

12
ω2

b0t2x(t ) − i

6
tx(t )h(t )ωb0 + 1

12
h(t )ω2

b0t2x(t )

+ i

90
tx(t )h(t )ωb0(h2(t ) + x(t )y(t )) − 1

720
t4ω4

b0x(t ) + i

60
t3ω3

b0x(t )h(t )

− i

180
t3ω3

b0x(t )h(t ) − 1

30
t2ω2

b0x(t )h2(t ) + 1

90
t2ω2

b0x(t )[h2(t ) + x(t )y(t )],

ub0(t ) ≡ y(t ) − i

2
ty(t )ωb0 − 1

12
ω2

b0t2y(t ) − i

6
ty(t )h(t )ωb0 − 1

12
h(t )ω2

b0t2y(t )

+ i

90
ty(t )h(t )ωb0[h2(t ) + x(t )y(t )] − 1

720
t4ω4

b0y(t ) + i

60
t3ω3

b0y(t )h(t )

− i

180
t3ω3

b0y(t )h(t ) − 1

30
t2ω2

b0y(t )h2(t ) + 1

90
t2ω2

b0y(t )[h2(t ) + x(t )y(t )],

ubb(t ) ≡ − itωB − h(t ) − i

6
tx(t )y(t )ωb0 + i

90
tx(t )y(t )ωb0[h(t )2 + x(t )y(t )]

− i

180
t3ω3

b0x(t )y(t ) − 1

30
t2ω2

b0h(t )x(t )y(t ). (C19)

Thus, from Eq. (C2) the Floquet Hamiltonian is

H̄ = (ih̄/τ )E(τ ), (C20)

from which we can also obtain the eigensystem {ε̄, |ε̄〉}. By having the Floquet Hamiltonian and using Eq. (A12) with t0 = 0 the
periodic operator P(t, t0) is as follows:

P(t, 0) = US (t, 0)eitH̄/h̄, (C21)
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where US (t, 0) is obtained by solving Eq. (C1) numerically. To construct the master equation, the next step is to calculate the
correlation functions of the baths. In doing so we should rewrite the interaction Hamiltonian between the system and the hot and
the cold baths [Eqs. (21) and (22)] as in the following:

HSBh = σ (h)
x ⊗

∑
k

fk (âk + â†
k ) + σ (h)

y ⊗
∑

k

i fk (âk − â†
k ), (C22)

HSBc = σ (c)
x ⊗

∑
q

gq(b̂q + b̂†
q) + σ (c)

y ⊗
∑

q

igq(b̂q − b̂†
q), (C23)

where

σ (h)
x ≡ 1

2
(|0〉〈1| + |1〉〈0|), B(h)

1 =
∑

k

fk (âk + â†
k ),

σ (h)
y ≡ i

2
(|0〉〈1| − |1〉〈0|), B(h)

2 =
∑

k

i fk (âk − â†
k ), (C24)

σ (c)
x ≡ 1

2
(|b〉〈1| + |1〉〈b|), B(c)

1 =
∑

q

gq(b̂q + b̂†
q),

σ (c)
y ≡ i

2
(|b〉〈1| − |1〉〈b|), B(c)

2 =
∑

q

igq(b̂q − b̂†
q). (C25)

According to Eq. (A21), we also need to calculate the bath operators in the interaction picture, B(t ) = eiHBt/h̄Be−iHBt/h̄, which
are obtained as

B(h)
1 (t ) =

∑
k

fk (e−itζk âk + eitζk â†
k ),

B(h)
2 (t ) =

∑
k

i fk (e−itζk âk − eitζk â†
k ), (C26)

B(c)
1 (t ) =

∑
q

gq(e−itνq b̂q + eitνq b̂†
q),

B(c)
2 (t ) =

∑
q

igq(e−itνq b̂q − eitνq b̂†
q). (C27)

All �i j (x) coefficients can be obtained similarly. For example,

�
(h)
11 (x) =

∫ ∞

0
ds e−isx

〈
B(h)†

1 (s)B(h)
1 (0)

〉 =
∫ ∞

0
ds e−isx

∑
k

f 2
k

[
n̄(ζk, β )eisζk + [n̄(ζk, β ) + 1]e−isζk

]

=
∑

k

f 2
k

{
n̄(ζk, β )

∫ ∞

0
ds e−i(x−ζk )s + [n̄(ζk, β ) + 1]

∫ ∞

0
ds e−i(x+ζk )s

}

=
∫ ∞

∞
dν

∑
k

δ(ν − ζk ) f 2
k

{
n̄(ν, β )

∫ ∞

0
ds e−i(x−ν)s + [n̄(ν, β ) + 1]

∫ ∞

0
ds e−i(x+ν)s

}

=
∫ ∞

−∞
dν J (h)(ν)

{
n̄(ν, β )

[
πδ(x − ν) − iP

1

x − ν

]
+ [n̄(ν, β ) + 1]

[
πδ(x + ν) − iP

1

x + ν

]}

= π n̄(x, β )[J (h)(x) − J (h)(−x)] − iP
∫ ∞

−∞
dν J (h)(ν)

[
n̄(ν, β )

x − ν
+ n̄(ν, β ) + 1

x + ν

]
, (C28)

where we have introduced the spectral density function of the hot bath as

J (h)(x) =
∑

k

f 2
k δ(x − ζk ), (C29)

and also we have used the following formula:∫ ∞

0
ds e−i(x+ν)s = πδ(x + ν) − iP

1

x + ν
, (C30)
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with P being the Cauchy principal value. Moreover, the following relations for the bosonic creation and annihilation operators
have been used:

〈â†
k âl〉 = δkl n̄(ζk, β ), (C31)

〈âl â
†
k〉 = δkl (n̄(ζk, β ) + 1), (C32)

〈âk âl〉 = 0, (C33)

〈â†
k â†

l 〉 = 0, (C34)

where β is the inverse temperature of the bath. Finally according to Eq. (A25) by separating the real part from the imaginary
part of the bath correlation function, we find the following expressions:

γ
(h)

11 (x) = 2π n̄(x, β )[J (h)(x) − J (h)(−x)], ξ
(h)
11 (x) = −P

∫ ∞

−∞
dν J (h)(ν)

[
n̄(ν, β )

x − ν
+ n̄(ν, β ) + 1

x + ν

]
,

γ
(h)

12 (x) = 2P
∫ ∞

−∞
dνJ (h)(ν)

[
n̄(ν, β )

x − ν
− n̄(ν, β ) + 1

x + ν

]
, ξ

(h)
12 (x) = π n̄(x, β )

[
J (h)(x) + J (h)(−x)

]
,

γ
(h)

21 (x) = 2P
∫ ∞

−∞
dν J (h)(ν)

[
n̄(ν, β ) + 1

x + ν
− n̄(ν, β )

x − ν

]
, ξ

(h)
21 (x) = −π n̄(x, β )[J (h)(x) + J (h)(−x)],

γ
(h)

22 (x) = 2π n̄(x, β )[J (h)(x) − J (h)(−x)], ξ
(h)
22 (x) = −P

∫ ∞

−∞
dν J (h)(ν)

[
n̄(ν, β )

x − ν
+ n̄(ν, β ) + 1

x + ν

]
. (C35)

For specificity, we choose the Ohmic spectral density function for the baths:

J (x) = J0xe−x2/ω2
cutoff , (C36)

where J0 is a model-dependent and also frequency-independent constant and ωcutoff is the bath cutoff frequency. Hence Eqs. (C35)
yield

γi j (x) = 0, i �= j,

γii(x) =
{

4π n̄(x, β )J (x), x �= 0
4πJ0/(h̄β ), x = 0,

(C37)

ξi j (x) = 0, i �= j,

ξii(x) = −2P
∫ ∞

0
dω G(x, ω), (C38)

where

G(x, ω) ≡
{

J0ωe−ω2/ω2
cutoff

(x−ω)eβ h̄ω+x+ω

(eβ h̄ω−1)(x2−ω2 ) , ω �= 0,

2J0/(h̄βx), ω = 0.
(C39)

Remark 2. If rather than taking the external field as in Eq. (18), we had chosen the field as

V1(t ) = μ cos(
t )
(|1〉〈b| + |b〉〈1|), (C40)

then Eqs. (C5), (C16), and (C18) would be, respectively, replaced with

V I (t ) = μ cos(
t )[eitω1b |1〉〈b| + e−itω1b |b〉〈1|], (C41)

�(t ) = x(t )|b〉〈1| + h(t )|b〉〈b| − h(t )|1〉〈1| + y(t )|1〉〈b|, (C42)

E(t ) = vbb(t )|b〉〈b| + vb1(t )|b〉〈1| + v1b(t )|1〉〈b| + v11(t )|1〉〈1| − itω0|0〉〈0| − it
n−1∑
j=2

ω j | j〉〈 j|, (C43)

where the time-dependent functions vbb(t ), vb1(t ), v1b(t ),
and v11(t ) have the same definitions as u00(t ), u0b(t ),
ub0(t ), and ubb(t ), respectively, after the replacements
0 → b and b → 1. Thus, the Floquet Hamiltonian H̄ ,
the periodic operator P(t, 0), and the Lindblad operators
would similarly be determined through Eqs. (C20), (C21),
and (A16).

2. Benchmarking the results

As in Sec. II C, here we assume that H0 is given
by (ε0, εb, ε1) = (0, 2.5, 3) and {|0〉 = (1, 0, 0)T , |1〉 =
(0, 1, 0)T , |b〉 = (0, 0, 1)T }. The system is assumed to be
initially in the state �S (0) = |0〉S〈0|, and is coupled to
two thermal baths with βc/βh = 30/4. We also assume
(μ,
 = 2π/τ ) = (0.1, 2.25).
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FIG. 16. (a) The fidelity between the exact and approximate solutions (Magnus + BCH expansions) of the evolution operator in the
Schrödinger picture and in the first period (τ ≈ 2.8) for the model discussed in Sec. II C. (b) The fidelity of P(t, 0) in two periods which
demonstrates the periodic property of P(t, 0). All quantities are in natural units.

In order to obtain the Floquet Hamiltonian we first need
to employ the Magnus+BCH expansions to obtain the op-
erator US (t, 0) as an exponential in the form of Eq. (C17).
Since these expansions are infinite series, in practice we
need to truncate them, which in turn renders the obtained
US (t, 0), H̄ , and P(t, 0) approximate. As a result, one
should investigate the validity of these approximations. To
benchmark the approximate operators, here we have also cal-
culated US (t, 0) numerically through the fourth-order Runge-
Kutta method [62]. Our figures of merit are the following
fidelities [63]:

F
[
U app

S (t, 0),U ex
S (t, 0)

] = 1
3

∣∣Tr
[
U app

S (t, 0)U ex †
S (t, 0)

]∣∣,
(C44)

F [Papp(t, 0), Papp †(t + τ, τ )]

= 1
3 |Tr[Papp(t, 0), Papp †(t + τ, τ )]|, (C45)

where 0 � t � τ . The first quantity measures the fidelity be-
tween the approximate and almost exact solutions for US (t, 0).
The second quantity measures periodicity of the approximate
P(t, 0) [obtained according to Eq. (C21) where we have used
only the Magnus expansion in order to calculate US (t, 0)], as
expected in P(t + nτ, nτ ) = P(t + nτ, 0) = P(t, 0) and the
discussion after Eq. (A12), for two periods. Figure 16(a)
shows that the fidelity of the approximate and almost-exact
unitaries US (t, 0) is more than 0.97 in 0 � t � τ . Figure 16(b)
demonstrates that the fidelity between the periodic unitary
operators P(t, 0) in two periods is more than 0.96. We remark
that in numerical calculations of Sα (q, ω), we have offset all
values less than 10−3 to zero. With these favorable results, we
obtain the other relevant quantities of the model (the Floquet
Hamiltonian H̄ , the Lamb-shift Hamiltonian H (F )

Lamb, and the
range of qs and ωs) as in Table II. These results have then
been used to obtain the results discussed in Sec. II C.

APPENDIX D: REDFIELD MASTER EQUATION

In this section, we explain how the Redfield master equa-
tion for a multilevel quantum system can be obtained, and in

particular we focus on the Jaynes-Cummings model discussed
in this paper.

1. Time-independent system Hamiltonian:
Redfield master equation

Consider a quantum system which is coupled to a radiation
bath. The total system Hamiltonian is described by Eq. (33),
where we consider the time-independent case with HS = H0,
and the bath is composed of bosons with wave vectors �k, fre-
quencies νk , and polarization λ [see Eq. (25)]. The interaction
Hamiltonian is described as Eq. (26), where the couplings
between the system and the bath are given by

g(i j)
kλ

= −Ek �μi j · êkλ, (D1)

where êkλ denotes the unit vector of λ polarization for mode
k, and �μi j = e〈i|�r| j〉 is the electric dipole transition matrix
elements, with e being the electric charge [50]. Here the
quantity Ek has the dimension of an electric field and is
defined as Ek = √

h̄νk/(2ε0V ), where V is the quantization
volume and ε0 is the vacuum permittivity. We stress that in
the derivation of the master equation we use Eq. (C30) for
the integral

∫ ∞
0 ds e−i(x+ν)s, including both the delta function

and the Cauchy principal value terms, contributing to the
decoherence operators and the Lamb-shift Hamiltonian, re-
spectively. We recall the following relation for transforming
the interaction picture back to the Schrödinger picture:

�S (t ) = U †
S (t, 0)�S (t )US (t, 0), (D2)

d�S (t )

dt
= − i

h̄
[HS (t ), �S (t )] + US (t, 0)

[
d�S (t )

dt

]
U †

S (t, 0),

(D3)

where US (t, 0) is the unitary operator generated by HS (t ) =
H0. After doing some algebra, we obtain the following
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Redfield master equation in the Schrödinger picture:

d�S (t )

dt
= − i

h̄
[HS, �S (t )] − 1

6πc3h̄ε0

∑
i

∑
i′ j′

ω3
i′ j′ [(�μi′i · �μi′ j′ )n̄(ωi′ j′ , β )(|i〉〈 j′|�S (t ) + �S (t )| j′〉〈i|)

+ (�μi j′ · �μi′ j′ )[n̄(ωi′ j′ , β ) + 1](|i〉〈i′|�S (t ) + �S (t )|i′〉〈i|)] + 1

6πc3h̄ε0

∑
i j

∑
i′ j′

�μi j · �μi′ j′ω
3
i′ j′

× [
n̄(ωi′ j′ , β )[|i〉〈 j|�S (t )| j′〉〈i′| + |i′〉〈 j′|�S (t )| j〉〈i|] + [n̄(ωi′ j′ , β ) + 1][| j〉〈i|�S (t )|i′〉〈 j′| + | j′〉〈i′|�S (t )|i〉〈 j|]]

− i

h̄

∑
i j

∑
i′

�μi j · �μi′ j

6ε0π2c3

[
(|i〉〈i′|�S (t ) − �S (t )|i′〉〈i|)P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ωi′ j − ν

]

− i

h̄

∑
i j

∑
j′

�μi j · �μi j′

6ε0π2c3

[
(�S (t )| j′〉〈 j| − | j〉〈 j′|�S (t ))P

∫ ∞

0
dν

ν3n̄(ν, β )

ωi j′ − ν

]

+ i

h̄

∑
i j

∑
i′ j′

�μi j · �μi′ j′

6ε0π2c3

[
(|i〉〈 j|�S(t )| j′〉〈i′| − |i′〉〈 j′|�S (t )| j〉〈i|)P

∫ ∞

0
dν

ν3n̄(ν, β )

ωi′ j′ − ν

]

+ i

h̄

∑
i j

∑
i′ j′

�μi j · �μi′ j′

6ε0π2c3

[
(| j′〉〈i′|�S (t )|i〉〈 j| − | j〉〈i|�S (t )|i′〉〈 j′|)P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ωi′ j′ − ν

]
. (D4)

We have used this equation in Sec. III A.

2. Time-periodic system Hamiltonian:
Floquet-Redfield master equation

Now we consider a quantum system in contact with a bath
and also driven by an external periodic field. The model we
use is similar to the one discussed in the previous section. To
derive the master equation for such a system system, we need
to combine both Redfield and Floquet approaches. According
to Appendix A, to derive the master equation we need H int(t ).
By using Eqs. (A8) and (A12) we obtain

H int(t ) = −
∑
i, j

∑
k,λ

g(i j)
kλ

eiH̄t/h̄P†(t, 0)σi jP(t, 0)e−iH̄t/h̄

⊗ U †
B (t, 0)âk,λUB(t, 0) + H.c.,

= −
∑
i, j

∑
k,λ

∑
q

∑
{ω}

g(i j)
kλ

eit (ω+q
−νk )σi j (q, ω) ⊗ âk,λ

+ H.c., (D5)

where

σi j ≡ |i〉〈 j|, (D6)

U †
B (t, 0)âk,λUB(t, 0) = e−iνkt âk,λ, (D7)

P†(t, 0)σi jP(t, 0) =
∑
q∈Z

σi j (q)eiq
t ,

σ
†
i j (q) = σ ji(−q), (D8)

σi j (q, ω) =
∑

ε̄−ε̄′=h̄ω

|ε̄〉〈ε̄|σi j (q)|ε̄′〉〈ε̄′|,

σ
†
i j (q, ω) = σ ji(−q,−ω), (D9)

σi j (t ) =
∑

q

∑
ω

eit (ω+q
)σi j (q, ω). (D10)

By inserting H int(t ) [Eq. (D5)] in Eq. (A10) and after some
algebra, we obtain the master equation of the system in the
interaction picture:

d�S (t )

dt
= − 1

6πc3h̄ε0

∑
i, j

∑
i′, j′

∑
q,ω

∑
q′,ω′

(�μi j · �μi′ j′ )

×
(

eit (ω−ω′+(q−q′ )
)

[
(ω′ + q′
)3[n̄(ω′ + q′
,β ) + 1] + i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q′
 − ν

]
σi j (q, ω)σ †

i′ j′ (q
′, ω′)�S (t )

+ e−it (ω−ω′+(q−q′ )
)

[
(ω′ + q′
)3n̄(ω′ + q′
,β ) − i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q′
 − ν

]
σ

†
i j (q, ω)σi′ j′ (q

′, ω′)�S (t )

− eit (ω−ω′+(q−q′ )
)

[
(ω′ + q′
)3n̄(ω′ + q′
,β ) + i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q′
 − ν

]
σi j (q, ω)�S (t )σ †

i′ j′ (q
′, ω′)

− e−it (ω−ω′+(q−q′ )
)

[
(ω′ + q′
)3[n̄(ω′ + q′
,β ) + 1] − i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q′
 − ν

]
σ

†
i j (q, ω)�S (t )σi′ j′ (q

′, ω′)
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− e−it (ω−ω′+(q−q′ )
)

[
(ω′ + q′
)3n̄(ω′ + q′
,β ) − i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q′
 − ν

]
σi′ j′ (q

′, ω′)�S (t )σ †
i j (q, ω)

− eit (ω−ω′+(q−q′ )
)

[
(ω′ + q′
)3[n̄(ω′ + q′
,β ) + 1] + i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q′
 − ν

]
σ

†
i′ j′ (q

′, ω′)�S (t )σi j (q, ω)

+ e−it (ω−ω′+(q−q′ )
)

[
(ω′ + q′
)3[n̄(ω′ + q′
,β ) + 1] − i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q′
 − ν

]
�S (t )σi′ j′ (q

′, ω′)σ †
i j (q, ω)

+ eit (ω−ω′+(q−q′ )
)

[
(ω′ + q′
)3n̄(ω′ + q′
,β ) + i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q′
 − ν

]
�S (t )σ †

i′ j′ (q
′, ω′)σi j (q, ω)

)
. (D11)

To transform back into the Schrödinger picture, we apply Eq. (D2), where now US (t, 0) is the unitary operator given by
Eq. (A12). Substituting Eq. (D11) on the RHS of Eq. (D3) then yields

d�S (t )

dt
= − i

h̄
[HS (t ), �S (t )] − 1

6πc3h̄ε0

∑
i j

∑
i′ j′

∑
qω

∑
q′ω′

(�μi j · �μi′ j′ )

{
eit (q−q′ )


[
(ω′ + q′
)3[n̄(ω′ + q′
,β ) + 1]

+ i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q′
 − ν

]
P(t, 0)σi j (q, ω)σ †

i′ j′ (q
′, ω′)P†(t, 0)�S (t ) + e−it (q−q′ )


[
(ω′ + q′
)3n̄(ω′ + q′
,β )

− i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q′
 − ν

]
P(t, 0)σ †

i j (q, ω)σi′ j′ (q
′, ω′)P†(t, 0)�S (t ) − eit (q−q′ )


[
(ω′ + q′
)3n̄(ω′ + q′
,β )

+ i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q′
 − ν

]
P(t, 0)σi j (q, ω)P†(t, 0)�S (t )P(t, 0)σ †

i′ j′ (q
′, ω′)P†(t, 0) − e−it (q−q′ )


[
(ω′ + q′
)3

× [n̄(ω′ + q′
,β ) + 1] − i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q′
 − ν

]
P(t, 0)σ †

i j (q, ω)P†(t, 0)�S (t )P(t, 0)σi′ j′ (q
′, ω′)P†(t, 0)

− e−it (q−q′ )


[
(ω′ + q′
)3n̄(ω′ + q′
,β ) − i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q′
 − ν

]
P(t, 0)σi′ j′ (q

′, ω′)P†(t, 0)�S (t )P(t, 0)

× σ
†
i j (q, ω)P†(t, 0) − eit (q−q′ )


[
(ω′ + q′
)3[n̄(ω′ + q′
,β ) + 1] + i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q′
 − ν

]

× P(t, 0)σ †
i′ j′ (q

′, ω′)P†(t, 0)�S (t )P(t, 0)σi j (q, ω)P†(t, 0) + e−it (q−q′ )


[
(ω′ + q′
)3[n̄(ω′ + q′
,β ) + 1]

− i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q′
 − ν

]
�S (t )P(t, 0)σi′ j′ (q

′, ω′)σ †
i j (q, ω)P†(t, 0)

+ eit (q−q′ )


[
(ω′ + q′
)3n̄(ω′ + q′
,β ) + i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q′
 − ν

]
�S (t )P(t, 0)σ †

i′ j′ (q
′, ω′)σi j (q, ω)P†(t, 0)

}
.

(D12)

The above master equation contains some fast oscillating terms which may lead to nonpositivity of the density matrices. To
alleviate this problem, we remove some fast oscillating terms by applying a partial secular approximation which is given by the
assumption 
−1 � TR, where TR is the relaxation time of the driven system. This approximation neglects all terms where q′ �= q.
Note that this approximation is different from that of Ref. [29]. As a result, we obtain the following modified Floquet-Redfield
master equation:

d�S (t )

dt
= − i

h̄
[HS (t ), �S (t )] − 1

6πc3h̄ε0

∑
i j

∑
i′ j′

∑
q

∑
ωω′

(�μi j · �μi′ j′ )

×
{

Li j (q, ω; t )L†
i′ j′ (q, ω′; t )�S (t )

[
(ω′ + q
)3[n̄(ω′ + q
,β ) + 1] + i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q
 − ν

]
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+ L†
i j (q, ω; t )Li′ j′ (q, ω′; t )�S (t )

[
(ω′ + q
)3n̄(ω′ + q
,β ) − i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q
 − ν

]

− Li j (q, ω; t )�S (t )L†
i′ j′ (q, ω′; t )

[
(ω′ + q
)3n̄(ω′ + q
,β ) + i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q
 − ν

]

− L†
i j (q, ω; t )�S (t )Li′ j′ (q, ω′; t )

[
(ω′ + q
)3[n̄(ω′ + q
,β ) + 1] − i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q
 − ν

]

− Li′ j′ (q, ω′; t )�S (t )L†
i j (q, ω; t )

[
(ω′ + q
)3n̄(ω′ + q
,β ) − i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q
 − ν

]

− L†
i′ j′ (q, ω′; t )�S (t )Li j (q, ω; t )

[
(ω′ + q
)3[n̄(ω′ + q
,β ) + 1] + i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q
 − ν

]

+ �S (t )Li′ j′ (q, ω′; t )L†
i j (q, ω; t )

[
(ω′ + q
)3[n̄(ω′ + q
,β ) + 1] − i

π
P

∫ ∞

0
dν

ν3[n̄(ν, β ) + 1]

ω′ + q
 − ν

]

+ �S (t )L†
i′ j′ (q, ω′; t )Li j (q, ω; t )

[
(ω′ + q
)3n̄(ω′ + q
,β ) + i

π
P

∫ ∞

0
dν

ν3n̄(ν, β )

ω′ + q
 − ν

]}
, (D13)

where

Li j (q, ω; t ) = P(t, 0)σi j (q, ω)P†(t, 0). (D14)

We have used this equation in Sec. III B.
As a final remark, in our numerical simulations the Cauchy

principal values

P

∫ b

a
dx f (x) =

∫ x0−ε

a
dx f (x) +

∫ b

x0+ε

dx f (x) (D15)

have been calculated with a small ε chosen such that for
smaller values the integral does not change appreciably.

APPENDIX E: COMPUTING THE LAMB-SHIFT
CORRECTION IN THE REDFIELD EQUATION

In both Eqs. (D4) and (D13) we have included the Lamb-
shift terms. These terms may give rise to divergence. It has
been known that by introducing a finite cutoff frequency W <

∞ one can make these corrections finite. In fact, the physical
reason for the introduction of the cutoff frequency is related
to the long-wavelength approximation (ω|�r|/c � 1, where |�r|
is of the order of the atom size) [48]. After introducing W we
need the following integral for the computation of the Lamb-
shift corrections:

P

∫ W

0
dν

ν3[n̄(ν, β ) + 1]

ω − ν
= P

∫ W

0
dν

ν3n̄(ν, β )

ω − ν

+ P

∫ W

0
dν

ν3

ω − ν
. (E1)

Note that the second term of the RHS can also be recast as

P

∫ W

0
dν

ν3

ω − ν
= −

∫ W

0
dν ν2 − ω

∫ W

0
dν ν − ω2

∫ W

0
dν

+ P

∫ W

0
dν

ω3

ω − ν
. (E2)

A careful QED investigation reveals that the first term of
Eq. (E2) is fully compensated and canceled out by other terms
emerging from the QED treatment [49]. As in Appendix B,
consider a charged particle (an atom or a molecule) cou-
pled to a radiation field. Based on Eq. (B8) in the “ �E · �r”
representation, we have an extra term εdipole corresponding
to a dipole self-energy of the particle. In particular, in the
Jaynes-Cummings model by considering a cutoff frequency
this dipole self-energy term is simply a constant energy value
and thus it is usually discarded in the literature [64]. However,
interestingly, it has been known that this term contributes an
extra term in the Lamb-shift correction which is the same as
the first term of the RHS of Eq. (E2), now with the opposite
sign. That is, the dipole self-energy contribution in the energy
shift completely cancels out the effect of the first term of the
RHS of Eq. (E2). Furthermore, as argued in Remark 1 of
Appendix B, in the low-intensity regime, the appearance of
the −HI2 term in the Hamiltonian contributes an opposite term
in the Lamb-shift correction, which cancels out the effect of
the second term of the RHS of Eq. (E2).

Remark 3. Note that for low-energy photons one can ignore
the interaction between the spin magnetic moment of the
charged particle and the magnetic field of the radiation field
[48].
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