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Causal reappraisal of the quantum three-box paradox
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The quantum three-box paradox is a prototypical example of some bizarre predictions for intermediate
measurements made on pre- and postselected systems. Although in principle those effects can be explained
by measurement disturbance, it is not clear what mechanisms are required to fully account for the observed
correlations. In this paper, this paradox is scrutinized from the causal point of view. We consider an array
of potential causal structures behind the experiment, eliminating those without enough explanatory power. A
distinction is made between the propagation in the system of just the measurement outcome and the information
about the full measurement context. We also discuss the consequences of the realist position in which preexisting
values are revealed by measurements. Interestingly, the answers depend crucially on whether the original version
of the paradox is considered or its extension where the third box is allowed for inspection too. This illustrates
the richness of the paradox which is better appreciated from the causal perspective.
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I. INTRODUCTION

A paradox builds upon a conflict between observed facts
and preconceptions that we hold about them, with a view
to elicit a revision of the latter for a deeper understanding
of a given problem or phenomenon. On the one hand, this
may be just a warning about a superficial understanding of
the mathematics, which if correctly applied does not lead to
any contradictions. It is particularly true about the problems
involving probability. On the other hand, a paradox can be
an indication of a deeper misconception regarding the mech-
anisms at work, and thus potentially revealing something new
about the nature itself. Therein lies the interest for the founda-
tional issues of quantum theory and, in particular, the question
about the causal nature behind its predictions. Notably, some
remarkable results on quantum nonlocality [1–3] or contextu-
ality [4–6] are prime examples with a paradox and causality
at the background.

A three-box paradox [7] is a flagship example of the pre-
and postselection (PPS) scenarios, in which some surprising
predictions about intermediate measurements are made. It was
originally proposed as an illustration of the so-called ABL
rule [8] (after Aharonov, Bergmann, and Lebowitz). For the
three-box paradox case it makes a strange prediction regarding
the position of a particle which is always found where it is
looked for. This has sparked controversy regarding the nature
of the paradox and conclusions that can be drawn from this
bizarre effect [9–15]. The first objection concerns the presence
of postselection in the experiment, since the rejection of data
is a potential source of noncausal correlations known as a se-
lection bias [16]. The second problem stems from the possible
role of measurement disturbance in the experiment, since in
this case the disturbance can propagate in the system making
the information about the intermediate measurements avail-
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able at the moment of postselection. Those issues certainly
affect interpretation of the paradox and thus need careful
reassessment within a proper conceptual framework.

In this paper we tread the path eloquently expressed in
Pearl’s [17] conjecture that “human intuition is organized
around casual, not statistical, relations.” It suggests that in
an attempt at resolving a paradox one should rather focus on
causal mechanisms behind the observed correlations. Not only
does this give a way to the bottom of the paradox by explicat-
ing the implicit assumptions that we make, but it sometimes
may even offer something new about the causal mechanisms
at work. Notably, the causal approach has recently gained a
solid mathematical foundation in the works of Pearl and oth-
ers [16,18,19] (which goes along similar lines as introduced
by Bell [1]). Some remarkable results in the field of causal
inference pertinent to the present paper include d-separation
rules and instrumental inequalities. This novel approach has
helped in resolving various conundrums in observational stud-
ies in epidemiology, computer science, and social sciences
[20–22]. Despite a fairly recent development, mostly outside
of physics, those methods have already influenced the re-
search in quantum foundations (see, e.g., Refs. [23–31]).

In this paper, we employ the tools of causal inference
to analyze measurement disturbance and its impact on post-
selection in the three-box paradox. This approach allows
differentiating between the various mechanisms in which
measurement disturbance can propagate. We also bring to
light some implicit assumptions about realism that are typi-
cally made, which explains where the clash with our intuition
might come from.

II. THREE-BOX PARADOX IN A NUTSHELL

Consider an experiment with a system prepared at time
t0 in some state initial state ρ0 on which at a later time t2 a
projective measurement M2 is made checking for state �post.
Let us agree to retain only the positive results M2 = 1, which
are deemed a success, and discard all the rest M2 = 0. This
is the so-called PPS scenario. To make it more interesting we

2469-9926/2022/105(1)/012207(8) 012207-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3457-2870
https://orcid.org/0000-0003-0446-2782
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.012207&domain=pdf&date_stamp=2022-01-10
https://doi.org/10.1103/PhysRevA.105.012207


PAWEL BLASIAK AND EWA BORSUK PHYSICAL REVIEW A 105, 012207 (2022)

FIG. 1. Three-box experiment. Consider a particle that can be in
one of three boxes labeled 1, 2, and 3. The system is preselected
in state ρ0 and postselected in state �post . In each experimental trial
we choose a box C = 1, 2, 3 checking whether the particle is there or
not. Quantum mechanics makes a puzzling prediction that whichever
box C = 1 or 2 we choose to look at, the particle will be always found
there [see Eq. (4)].

allow ourselves to make a measurement MC
1 in some interme-

diate time t1 (t0 < t1 < t2) described by a projection-valued
measure (PVM) {�C

i }, where C stands for the choice of mea-
surement in a given experimental run. Then, the conditional
probability of obtaining outcome M1 = i in the PPS scenario
is given by the ABL rule [8]

P(M1 = i|M2 = 1,C) = Tr[�post �C
i ρ0 �C

i ]∑
l Tr[�post �C

l ρ0 �C
l ] . (1)

It is a straightforward application of Bayes’ theorem to the
joint probability

P(M1 = i, M2 = j|C) = Tr
[
�

post
j �C

i ρ0 �C
i

]
, (2)

which is obtained by the usual von Neumann–Lüders rule.
Here the final measurement M2 is described by the PVM
{�post

j } j=0,1 ≡ {1 − �post,�post}.
A three-box paradox [7] is a specific realization of the

PPS scenario in which the intermediate measurements MC
1

are assigned deterministic conditional outcomes. It concerns
a single particle that can be localized in one of three boxes
labeled 1, 2, and 3 described by the respective quantum states
|1〉, |2〉, and |3〉. Suppose in the intermediate measurements
we check whether the particle is in a given box C = 1, 2, 3,
or not, which is implemented by the PVM {�C

i }i=0,1 ≡ {1 −
|C〉〈C|, |C〉〈C|}. See Fig. 1. Now, if we choose for the pre-
and postselected states, ρ0 = |φ〉〈φ| and �post = |ψ〉〈ψ |, the
following nonorthogonal pair,

|φ〉 = |1〉+|2〉+|3〉√
3

and |ψ〉 = |1〉+|2〉−|3〉√
3

, (3)

then, from the ABL rule Eq. (1), we get

P(M1 = 1|M2 = 1,C) = 1 for C = 1, 2. (4)

Hence, we have a paradoxical conclusion that whatever box
we check, C = 1 or 2, the particle is always there.

FIG. 2. Full statistics in three-box experiment. The joint proba-
bility P(M1, M2|C) of obtaining measurement outcomes M1 = 0, 1
(i.e., particle not found or found) and M2 = 0, 1 (i.e., postselection
is a failure or success) for the choice of experiment C = 1, 2, 3 (i.e.,
which box to check).

The full statistics observed in the experiment is given in
Fig. 2, which readily follows from Eq. (2). This shows that for
C = 1, 2 postselection succeeds with the probability equal to
P(M2 = 1|C) = 1/9.1 Let us note in advance that although the
original formulation of the paradox in Eq. (4) concerns just
two (out of three possible) experimental choices C = 1, 2, it
becomes more revealing and weird when we look at the full
statistics C = 1, 2, 3.

III. CAUSAL PICTURE OF THE THREE-BOX
EXPERIMENT

Let us consider the possible causal structures hiding behind
the experiment which will be further assessed against their
capacity for generating the three-box statistics in Fig. 2. We
need to decide about the variables deemed relevant for the
description of the experiment and then ponder their causal
relationships.

A. Pure causal setting

In the description of the three-box experiment there are
three observed variables:

C : choice of measurement setting (C = 1, 2, 3),

M1 : outcome of measurement MC
1 (M1 = 0, 1),

M2 : outcome of measurement M2 (M2 = 0, 1).

Furthermore, let us postulate the existence of some unob-
served variable:

� : hidden (or latent) variable.

This variable is aimed to describe any other factors relevant
for the experiment (e.g., the details of the preparation proce-
dure). It is left unspecified in order not to restrict the range
of possible explanations behind the observed correlations. We
call it a pure causal setting as it involves the least number of
assumptions (this should be compared with the more restricted
framework below).

B. Realist causal setting

It is very instructive to consider in parallel the additional
realism assumption. This is a position which derives from the
worldview in which physical objects and their properties exist,

1We remark that this probability is the same as when no inter-
mediate measurement MC

1 is made, in which case we also have
P(M2 = 1| without MC

1 ) = Tr[�post ρ0] = |〈ψ | φ〉|2 = 1/9.
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FIG. 3. Causal diagrams for the three-box experiment. In both di-
agrams, the variables C, M1, and M2 are observed in the experiment,
whereas � and V are unobserved (latent or hidden) variables. These
are directed acyclic graphs (DAGs) which are allowed by the tempo-
ral structure of the experiment (no retro-causation) and assuming C
to be a free variable. The diagram on the right includes an additional
structure (shaded in gray) which reflects the realism assumption. In
both diagrams the red arrows (with question marks) are responsible
for different types of measurement disturbance propagating in the
system, i.e., whether it is just the outcome M1 or the full measurement
context C that affects M2.

and the measurements reveal those preexisting values. In our
case this view boils down to the existence of an additional
variable

V : position of the particle (V = 1, 2, 3),

having a definite value before the measurement is made
(possibly a derivative of the hidden variable �). Since the
measurement MC

1 answers the question “Is the particle in a
given box C?”, we have the following consistency condition:

M1(C,V ) := δC,V . (5)

It is a direct expression of the requirement that the measure-
ment reveals the property of the particle being in a given box.
We remark that those additional structural components make
the realist causal setting more restrictive compared to the pure
causal setting, as we shall see shortly.

C. Causal diagrams for the experiment

Let us draw the diagrams compatible with the above two
descriptions. In Fig. 3 the arrows represent cause-and-effect
relationships between the variables. Observe that the temporal
structure of the experiment allows us to eliminate certain
arrows in the diagrams. Namely, we assume only forward-
in-time causation. Also, since the choice of measurement is
considered to be a free variable, we assume there is no arrow
incoming to C. [Note that, although in principle in the realist
causal directed acyclic graph (DAG) (right) there could be an
arrow V → M2, it has not been drawn since we can always
incorporate it in the arrow � → M2 (by appropriately modi-
fying �).]

We note that the diagrams in Fig. 3 include all arrows
compatible with the experiment. In this paper we pose the
question about the necessity of arrows M1 → M2 and C →
M2. Both are responsible for the causal effects of the interme-
diate measurement MC

1 in the experiment. The lack of both
arrows means no measurement disturbance. Conversely, their
presence is a sign of different types of disturbance propagating

in the system, i.e., whether it is just the measurement outcome
M1 or the full context specified by the choice of measurement
(parameter) C that affects the final measurement M2. Using
the terminology borrowed from the analysis of Bell nonlocal-
ity [32], we call those arrows as

M1 → M2 : outcome dependence,

C → M2 : parameter dependence.

Having specified causal structures of interest we may as-
sess their potential for explaining the statistics of the three-box
paradox in Fig. 2.

IV. MAIN RESULTS

A. Inspection of causal structures

In the causal inference field we are interested in verifying
whether a given causal structure can explain the observed
experimental behavior, i.e., whether the statistics can be repro-
duced by some structural causal model (SCM) consistent with
a given causal DAG (see Refs. [16,18–29,31]). Since adding
arrows to the diagram extends its expressive power, we are
looking for structures with the fewest number of arrows which
can still explain the observed experimental behavior.

As noted, the realist causal setting is more restrictive than
the pure causal setting (see Fig. 3), i.e., not all behaviors com-
patible with the pure causal DAG (left) are admitted by the
realist causal DAG (right). In the following we consider both
cases separately. Furthermore, we also distinguish between
the statistics in the three-box experiment in Fig. 2 for the full
choice of three measurements C = 1, 2, 3, and the case lim-
ited to the two choices C = 1, 2 (as in the original exposition
of the paradox). This will make an interesting case regarding
our perception of the paradox and its further ramifications as
explained below.

Our results are summarized in Fig. 4. For the proofs of
necessity of the respective arrows see Appendix A (which
employs the tools of causal inference [16]: the d-separation
criterion and instrumental inequalities). The proofs of suf-
ficiency are given in Appendix B (this requires explicit
construction of SCMs in each case).

B. Conclusions

Having analyzed possible causal explanations of the three-
box experiment it is natural to ask why people find it
surprising. Notably, the original formulation of the paradox
[7] concerns just two (out of three possible) experimental
choices C = 1, 2; here the postselected behavior is determin-
istic, which makes it better suited for human judgment. In
this case the paradox seems to arise from the tension between
the assumption of realism and the deceptive impression, from
how the paradox is phrased, as to the lack of measurement
disturbance in the experiment. We showed that both assertions
are intrinsically contradictory. The requirement of realism
necessitates measurement disturbance of some sort [see
Fig. 4(b)], i.e.,

Realism ⇒
C=1,2

measurement disturbance.
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FIG. 4. Summary of the results. The table answers the question of which red arrows in the two causal diagrams in Fig. 3 can be removed
while still retaining their capacity for generating the statistics in the three-box experiment in Fig. 2. There is a difference whether the full
statistics is considered C = 1, 2, 3 or just its part related to the “paradoxical” choice of measurements C = 1, 2. This shows what kind of
measurement disturbance (outcome vs parameter dependence) is required depending on the preferred worldview (pure vs realist) and the
selection of measurements under consideration.

Accordingly, if the disturbance is taken on board, then the
paradoxical correlations in the postselected regime can be
explained as an instance of the selection bias [16] [see the
proof of Fig. 4(b) in Appendix A].

Interestingly, in the pure causal setting (no realism) the
paradox can be explained without measurement disturbance of
any sort. In this case we showed, by constructing the explicit
SCM, that confounding is just enough to explain the effect
[see Fig. 4(a)], i.e.,

No realism /⇒
C=1,2

measurement disturbance.

Thus without claiming realism the question of measurement
disturbance turns out immaterial, and hence the paradox be-
comes less of a surprise.

As noted, both conclusions above concern the original for-
mulation of the paradox with just two boxes being considered
for inspection (C = 1, 2).

Our discussion relies on a proper treatment of measure-
ment disturbance as a genuine causal notion. This approach
allows us to make a further distinction between various types
thereof, that is, outcome vs parameter dependence represented
by the respective arrows M1 → M2 and C → M2 in Fig. 3.
For this purpose the full statistics, which includes checking
the third box (C = 1, 2, 3), appears to be more interesting.
It allows us to show that parameter dependence is actually
necessary in both pure and realist frameworks [see Figs. 4(c)
and 4(d)], i.e.,

Full statistics ⇒
C=1,2,3

parameter dependence.

We also showed, by construction of the explicit SCM, that
parameter dependence is sufficient to explain the observed
statistics (this can be also deduced from the general property
regarding saturation of the model by the single arrow C →
M2, as proved in Ref. [33]).

Let us emphasize that a statement that an arrow is unnec-
essary does not mean that in reality it is not present (this
only means that one can explain the statistics without its
assistance). However, the necessity of an arrow implies that
it cannot be replaced by any other arrow and still correctly
reproduce the statistics. In this sense the causal DAGs in
Fig. 4 are the minimal structures compatible with the observed
statistics under the given realist or pure assumption.

V. DISCUSSION

In this paper we focused on the assessment of the role
of the various causal mechanisms capable of generating the
statistics observed in the quantum three-box paradox. Such an
approach seems to be more revealing regarding the structure
of measurement disturbance than the mere acknowledgment
of its presence of some sort. The analysis based on the in-
strumental inequalities shows the necessity of the parameter
dependence in the system (but interestingly, only when the full
statistics is taken into account). Furthermore, the use of the
d-separation criterion allows us to see the paradox as a case of
the selection bias [16] (see Refs. [34,35] for a related issue of
postselection in the definition of weak values [36]). Note that
in our discussion we take the conservative point of view with
single measurement outcomes (in contrast to the many-worlds
interpretation) as well as exclude backward-in-time causation.
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We remark that for the three-box paradox there is no
physical principle that would prohibit the propagation of
measurement disturbance in the experiment (like the locality
principle for Bell experiments [1–3]). This is because the PPS
paradigm consists of a sequence of two measurements MC

1
and M2, with the second one being made on the whole system
(i.e., even if the boxes can be kept separate while checking
a given box C in the measurement MC

1, all of them have
to merge together at the end to implement the measurement
M2). See Fig. 1. It is also clearly seen in the experimental
realizations of the three-box paradox [37,38]. This makes all
the information about the outcome MC

1 and the parameter C
in principle available upon postselection, and hence neither
of the disturbance arrows can be excluded by locality argu-
ments. It is in fact possible to construct a generic local hidden
variable model of a single particle in arbitrary linear optical
circuits (where measurement disturbance propagates locally
too) [39].

It is instructive to observe that the quantum description of
the paradox, if interpreted literally in the causal terms, works
according to the pure causal DAG in Fig. 3 with both arrows
M1 → M2 and C → M2 present. This is readily seen from
the corresponding SCM which boils down to the identifica-
tion � ≡ ρ0 and the structural equations implementing the
standard quantum recipe. See Appendix C for details. Note
that such a quantumlike model is not optimal, as it features
the unnecessary arrow M1 → M2 (outcome dependence) [see
Fig. 4(c) as well as Ref. [33]]. However, it is an interesting
open question regarding the scope of scenarios in which out-
come dependence can be taken out of the picture in favor of
parameter dependence alone (note that in the standard Bell
scenario either one of those arrows is just enough).

The aforementioned quantumlike causal model reflects the
standard view of quantum theory which turns down the dis-
cussion of unobserved properties. It falls within the pure
causal setting [see Fig. 3 (left)]. This should be compared with
the concept of measurement as an act of observation which
reveals some preexisting property of the system. The latter
entails including additional structure in the causal modeling of
the system as indicated in the realist causal setting [see Fig. 3
(right)]. It is not without consequences for the expressive
power of the considered causal structures, which in turn may
entail the necessity of certain mechanisms of measurement
disturbance in the system (see the comparison in Fig. 4).

Let us note that the PPS paradoxes can be turned into the
proofs of contextuality [40–43]. Since in principle all those
effects can be attributed to measurement disturbance, it is
natural to ask about the possible causal mechanisms allowing
for this to be fully attained. This makes the question about
the causal resources (here taken as different sorts of arrows)
that are enough to explain a given class of contextual effects
an interesting research problem. This paper provides a strong
hint that parameter dependence is in general indispensable.
However, we have also seen that it may be superfluous in some
restricted settings (see case C = 1, 2 vs C = 1, 2, 3 in Fig. 4).
We note in passing an interesting question regarding the role
of signaling in our argument. Observe that the marginals of
M2 in the behavior in Fig. 2 change only when C = 3 is also
considered, and it is where the parameter dependence in the
three-box statistics can be proved (this should be compared

with the nonsignaling Popescu-Rohrlich boxes for which the
outcome dependence is just enough). We leave it as a curious
remark regarding contextuality in the presence of signaling
[44,45].

In conclusion, we mention the existence of several related
PPS paradoxes discussed in the literature, e.g., Refs. [46–51].
Their resemblance to the three-box paradox suggests that the
causal approach might shed more light there too.
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APPENDIX A: PROOFS OF NECESSITY

Here we answer the question of which of the two red
arrows in the causal DAGs in Fig. 3 is necessary in order to
reproduce the statistics in Fig. 2. For the proofs we use modern
tools of causal inference [16], i.e., the d-separation criterion
[Fig. 4(b)] and instrumental inequalities [Figs. 4(c) and 4(d)].

Proof of Fig. 4(b). Let us consider the realist causal frame-
work with just two measurement choices C = 1, 2. In that
case, from Eq. (4), we have P(M1 = 1|M2 = 1,C) = 1. As
a consequence of the assumption Eq. (5) it means that V =
C whenever M2 = 1. This necessitates the conditional de-
pendence V �⊥⊥ C | M2. However, in the realist causal DAG
with both arrows M1 → M2 and C → M2 absent [see Fig. 3
(right)], the variables C and V are d-separated conditioned
on M2 (since the only path C → M1 ← V is blocked by
the collider M1), which entails their statistical independence
V ⊥⊥ C | M2. This contradiction means that at least one of
those arrows must be present in the realist causal DAG. In-
deed, either arrow M1 → M2 or C → M2 lifts the d-separation
by opening the respective path V ← � → M2 ← M1 ← C
or V ← � → M2 ← C (here M2 is not a collider because of
conditioning). This opens a way for both variables to become
correlated (whether it is enough with a single arrow is proved
by an explicit SCM in Appendix B). In the field of causal
inference the phenomenon of correlation due to conditioning
is known as a selection bias or Berkson’s paradox [16].

Proof of Figs. 4(c) and 4(d). Now we are concerned with
the full choice of measurements C = 1, 2, 3. For the proof it is
enough to consider the pure causal DAG, i.e., Fig. 4(c) [since
this framework is more permissive, the necessity for Fig. 4(c)
automatically carries over to the realist case Fig. 4(d)].

Let us reformulate our problem in causal inference terms.
Suppose we admit the arrow M1 → M2 in the pure causal
DAG [see Fig. 3 (left)] and ask about the necessity of the
arrow C → M2. (Note that proving the necessity of arrow
C → M2 in this case will entail its necessity when the arrow
M1 → M2 is missing, since adding the latter only increases
the expressive power of the DAG.) This can be recast as
the instrumental scenario [16,52], where the instrument C is
used for determining causal influence of M1 on M2, both of
which are affected by some unobserved (or latent) variable
�. The crucial assumption in this scenario is the absence of
any arrow incoming or outgoing from C except for C → M1.
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It appears that this assumption can be tested by the so-called
instrumental inequalities [16,52] which adopted to our case
take the form

max
i

∑
j

[
max

k
P(M1 = i, M2 = j|C =k)

]
� 1, (A1)

where i, j = 0, 1 and k = 1, 2, 3. Violation of those inequali-
ties by the observed statistics testifies to the presence of some
other arrow incoming or outgoing from C (whatever the char-
acter of the arrow M1 → M2). In our case this could be only
the arrow C → M2, and hence a way to check its necessity.

To unfold the condition Eq. (A1) we observe that it is
equivalent to the following set of equations:

P(M1 =0, M2 =0|C =k) + P(M1 =0, M2 =1|C = l ) � 1,

P(M1 =1, M2 =0|C =k) + P(M1 =1, M2 =1|C = l ) � 1,

P(M1 =0, M2 =1|C =k) + P(M1 =0, M2 =0|C = l ) � 1,

P(M1 =1, M2 =1|C =k) + P(M1 =1, M2 =0|C = l ) � 1,

(A2)

where kl = 12, 13, 23. Now it is straightforward to check that
the statistics in Fig. 2 violates those inequalities for kl = 13
and 23. For example, for kl = 23 in the first line in Eq. (A2)
we get

2/3 + 4/9 = 10/9 > 1. (A3)

Therefore, if the full choice of measurements C = 1, 2, 3 is
considered, then the arrow C → M2 must be present in the
causal DAG in Fig. 3 (either pure or realist), if it is to repro-
duce the statistics in Fig. 2 (this single arrow is also enough
as proved by an explicit SCM in Appendix B). We note that
for the limited choice C = 1, 2 (i.e., kl = 12) the instrumental
inequalities Eq. (A2) remain inviolate, which means that in
that case the arrow is unnecessary [in full agreement with
Figs. 4(a) and 4(b1)].

APPENDIX B: PROOFS OF SUFFICIENCY

Here we give a repository of explicit SCMs proving the
sufficiency of the considered causal DAGs for each case in
Fig. 4. In the following we just specify the structural equations
for the respective SCMs and observe that the joint proba-
bility distributions P(M1 = i, M2 = j|C =k) are obtained by
a straightforward application of the product decomposition
(Markov property) for the associated causal DAGs.

Proof. Note that the joint probability distribution gen-
erated by the causal DAG in Fig. 4(a) has the following
decomposition:

P(M1 = i, M2 = j|C =k)

=
∑

λ

P(M1 = i|C =k,�=λ)P(M2 = j|λ)P(�=λ). (B1)

Now, in order to recover the statistics in Fig. 2 for C = 1, 2
it is enough to consider a Bernoulli distributed hidden variable
� ∼ Ber (1/3), i.e., we have � = 0, 1 and

P(� = 0) = 2/3, P(� = 1) = 1/3. (B2)

Then, we set the following structural equations compatible
with the diagram in Fig. 4(a):

M1(C,�) := �, (B3)

M2(�, N ) := �N, (B4)

where N ∼ Ber (1/3) is an independent noise variable hav-
ing a Bernoulli distribution. This defines the SCM, which
via Eq. (B1) gives the correct statistics in Fig. 2 for
C = 1, 2 (only).

Proof of Fig. 4(b1). Let us start by justifying the suffi-
ciency of the causal DAG in Fig. 4(b1). In this case, the joint
probability distribution has the following decomposition:

P(M1 = i, M2 = j|C =k)

=
∑
λ,v

P(M1 = i|C =k,V =v)P(M2 = j|M1 = i,�=λ)

P(V =v|�=λ)P(�=λ). (B5)

In this case we posit a uniformly distributed hidden vari-
able � ∼ Uni (1, 3), i.e., we have � = 1, 2, 3 with

P(� = i) = 1/3 for i = 1, 2, 3. (B6)

The following structural equations define an SCM compatible
with the diagram in Fig. 4(b1):

M1(C,V ) := δC,V , [see Eq. (5)] (B7)

V (�) := �, (B8)

M2(M1,�) := M1N, (B9)

where N ∼ Ber (1/3) is a noise variable with a Bernoulli dis-
tribution. This is enough to recover, via Eq. (B5), the statistics
in Fig. 2 for C = 1, 2 (only).

The sufficiency of the DAG in Fig. 4(b2) follows imme-
diately from the model in Fig. 4(c) which works for all C =
1, 2, 3.

Proof of Fig. 4(c). Here the joint probability distribution
generated by the causal DAG in Fig. 4(c) has the following
decomposition:

P(M1 = i, M2 = j|C =k)

=
∑

λ

P(M1 = i|C =k,�=λ)

P(M2 = j|C =k,�=λ)P(�=λ). (B10)

We need an SCM which reconstructs the statistics in Fig. 2
for C = 1, 2, 3 (all of them). Consider a uniformly distributed
hidden variable � ∼ Uni (1, 3) which takes three values
� = 1, 2, 3. Then we define the following set of structural
equations in accord with the diagram in Fig. 4(c):

M1(C,�) := δC,�, [see Eq. (5)] (B11)

M2(C,�) :=
{
δC,�N for C = 1, 2,

(1 − δC,�)(1 − N ) + δC,�N for C = 3,

(B12)

where N ∼ Ber (1/3) is a noise variable with a Bernoulli distri-
bution. Such a definition of the SCM recovers, via Eq. (B10),
the full statistics in Fig. 2 for all C = 1, 2, 3.
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Proof of Fig. 4(d). This case is a straightforward extension
of the SCM in Fig. 4(c). Here the causal DAG in Fig. 4(d)
entails decomposition of the joint probability distribution in
the form

P(M1 = i, M2 = j|C =k)

=
∑
λ,v

P(M1 = i|C =k,V =v)P(M2 = j|C =k,�=λ)

P(V =v|�=λ)P(�=λ). (B13)

Following the constriction in Fig. 4(c) we take the hid-
den variable � = 1, 2, 3 with a uniform distribution � ∼
Uni (1, 3). Then we introduce an additional variable V =
1, 2, 3 and equate it with �. This trivial extension provides
the required SCM which takes the following explicit form [see
Eqs. (B11) and (B12)]:

M1(C,V ) := δC,V , [see Eq. (5)] (B14)

V (�) := �, (B15)

M2(C,�) :=
{
δC,�N for C = 1, 2,

(1 − δC,�)(1 − N ) + δC,�N for C = 3,

(B16)

where N ∼ Ber (1/3) is again a Bernoulli noise variable. Those
structural equations comply with the diagram in Fig. 4(d)
reconstructing, via Eq. (B13), the full statistics in Fig. 2 for
all C = 1, 2, 3.

APPENDIX C: QUANTUMLIKE CAUSAL MODEL

The formalism of quantum theory in the considered se-
quential scenario indicates the following. The outcomes of the
first measurement MC

1 are distributed as

P(M1 = i|C) = Tr
[
�C

i ρ0
]
. (C1)

Then the initial quantum state ρ0 gets updated according to the
von Neumann–Lüders rule and the conditional distribution of
the outcomes of the second measurement M2 is given by

P(M2 = j|M1 = i,C) = Tr[�post
j �C

i ρ0 �C
i ]

Tr[�C
i ρ0] . (C2)

Note that this is how Eq. (2) is derived.
Let us construct an SCM as suggested by Eqs. (C1) and

(C2). It will have the structure of the pure causal DAG in
Fig. 3 (left) with both arrows M1 → M2 and C → M2 present,
i.e., admit the following decomposition of the joint probability
distribution:

P(M1 = i, M2 = j|C =k)

=
∑

λ

P(M1 = i|C =k,�=λ)

P(M2 = j|C =k, M1 = i,�=λ)P(�=λ). (C3)

The obvious choice follows from the trivial identification
of the hidden variable � with the quantum state � ≡ ρ. In
our case, the system is prepared in a given initial state ρ0,
so we have P(� = ρ0) = 1. Now, the model needs to recover
the probabilistic behavior in Eqs. (C1) and (C2). This can be
attained with the help of two noise variables N1 and N2 with a
uniform distribution over interval [0,1]. They are assumed to
be independent and correspond, respectively, to M1 and M2.
Thus we define the following structural equations:

M1(C,�) :=
{

0 if N1 < Tr
[
�C

0 ρ0
]
,

1 otherwise,
(C4)

and

M2(C, M1,�) :=
{

0 if N2 <
Tr[�post

0 �C
M1

ρ0 �C
M1

]
Tr[�C

M1
ρ0] ,

1 otherwise.
(C5)

Clearly, such a defined SCM agrees with the structure of
the pure causal DAG in Fig. 3 (left) with both arrows M1 →
M2 and C → M2 present. Furthermore, the statistics generated
by the model, as obtained from Eq. (C3), recovers the desired
distribution in Eq. (2) or equivalently Eqs. (C1) and (C2).
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