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Amount of quantum coherence needed for measurement incompatibility
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A pair of quantum observables diagonal in the same “incoherent” basis can be measured jointly, so some
coherence is obviously required for measurement incompatibility. Here we first observe that coherence in a single
observable is linked to the diagonal elements of any observable jointly measurable with it, leading to a general
criterion for the coherence needed for incompatibility. Specializing to the case where the second observable
is incoherent (diagonal), we develop a concrete method for solving incompatibility problems, tractable even
in large systems by analytical bounds, without resorting to numerical optimization. We verify the consistency
of our method by a quick proof of the known noise bound for mutually unbiased bases, and apply it to study
emergent classicality in the spin-boson model of an N-qubit open quantum system. Finally, we formulate our
theory in an operational resource-theoretic setting involving “genuinely incoherent operations” used previously
in the literature, and show that if the coherence is insufficient to sustain incompatibility, the associated joint
measurements have sequential implementations via incoherent instruments.
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I. INTRODUCTION

Coherence typically refers to nonzero off-diagonal ele-
ments in a quantum state, and is an essential resource for
quantum information tasks [1–5]. Coherence in measurements
(observables) [6,7] is equally fundamental, with an obvious
relation to the noncommutativity of projective measurements,
which has recently been refined [8–10]. It is therefore natural
to ask how coherence is related to incompatibility of general
observables—positive operator valued measures (POVMs).
Incompatibility is a resource as well [5,11], specifically for
steering [12–17] and state discrimination [18–20], and clearly
requires noncommutativity, hence coherence.

As usual [2], we define coherence relative to a fixed “in-
coherent” basis (there is also a basis-independent approach
[21]). Our key observation is the following: while incom-
patibility of POVMs is not linked to the overall coherence
in their matrices, there is an asymmetric entrywise relation:
coherences in one POVM are linked to the corresponding
diagonal probabilities of any POVM jointly measurable with
it. Heuristically, an observable that sharply distinguishes a pair
of basis elements is incompatible with observables detecting
coherence between that pair. An extreme case is any basis
observable mutually unbiased [22] to the incoherent basis—it
is both complementary and maximally coherent.

We warm up in Sec. II by formalizing the above obser-
vation into a simple but completely general inequality, the
violation of which witnesses incompatibility. Combined with
a sufficient condition for incompatibility, this leads to an
analytical method for tackling the incompatibility problem,
generalizing the usual robustness idea [23,24], and easily re-
producing the known noise bound for incompatible mutually
unbiased bases (MUBs) [19,25–28]. In Sec. III we special-

ize to the physically motivated setting where measurement
coherence is given by a fixed “pattern matrix” describing
decoherence [29–31], and subsequently use it to study emer-
gent classicality in the spin-boson model [31–33], including
the role of decoherence-free subspaces [33–36]. Unlike ex-
isting results on incompatibility in open systems [37], our
method works for arbitrary system size. Finally, in Sec. IV,
we formulate the idea in general operational terms motivated
by resource theory, including genuinely incoherent operations
[4,38,39] and introducing incoherent instruments, which turn
out to provide sequential implementations for any joint mea-
surement in an instance of channel-observable compatibility
[40–42].

II. GENERAL FORMULATION

Let H be a Hilbert space of dim H = d < ∞, and {|n〉}d
n=1

its incoherent basis [2]. An observable (POVM) M with a
finite outcome set � consists of positive semidefinite (PSD)
matrices M(i) � 0, for which

∑
i∈� M(i) = 1 (the identity

matrix). For any POVM M we define the entrywise coherence

cohnm(M) :=
∑
i∈�

|〈n|M(i)|m〉|, for each n, m.

We note that 0 � cohnm(M) � 1, and call M maximally co-
herent if cohnm(M) = 1 for all n �= m. We now observe
(Appendix A) that any maximally coherent M with d out-
comes is mutually unbiased to the incoherent basis {|n〉},
i.e., M(i) = |ψi〉〈ψi| with |〈ψi|n〉|2 = d−1 for all n, i. This re-
flects the importance of MUBs in the context of measurement
coherence.

For any M we let pM
n ( j) := 〈n|M( j)|n〉 be the outcome

distribution in state |n〉. The ability of M to distinguish |n〉
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from |m〉 can be quantified by f divergences [43] between pM
n

and pM
m ; we use the Hellinger distances [44]

d2
nm(M) := 1 −

∑
j

√
pM

n ( j)pM
m ( j).

Finally, an observable M is jointly measurable with an ob-
servable F if there is a joint observable G = (G(i, j))(i, j) with∑

j G(i, j) = M(i) for all i, and
∑

i G(i, j) = F( j) for all j;
otherwise M and F are incompatible [45].

A. Joint measurability criteria

The following observation provides a simple tradeoff be-
tween distinguishability and coherence, under the assumption
of joint measurability:

Proposition 1. If M and F are jointly measurable, then

cohnm(M) + d2
nm(F) � 1 for all n, m. (1)

Proof. We have cohnm(M) � ∑
i, j |〈n|G(i, j)|m〉| for any

joint POVM G of M and F. But G(i, j) is PSD, and hence
|〈n|G(i, j)|m〉| � √

pG
n (i, j)pG

m(i, j) so
∑

i |〈n|G(i, j)|m〉| �√∑
i pG

n (i, j)
∑

i pG
m(i, j) = √

pF
n ( j)pF

m( j) by the Schwarz
inequality. �

Hence, M and F are incompatible if (1) is violated for at
least one pair n, m; the result is an upper bound for the co-
herence needed for incompatibility. The interpretation is that
coherence between |n〉 and |m〉 cannot be precisely detected
by a measurement capable of distinguishing these states. In
particular, if cohnm(M) = 1 then M is incompatible with any
F having pF

n �= pF
m.

Necessary conditions for incompatibility require finding
joint observables, equivalent to hidden variable models for
quantum steering [12–17]. This is hard to tackle analytically,
and often restricted to single qubits or highly symmetric cases.
Surprisingly, we now obtain a very general result using the
Schur product theorem [46], which states that the entrywise
(Hadamard or Schur) product A ∗ B of PSD matrices A and
B is also PSD. We call an observable P incoherent if P(i) =∑d

n=1 pP
n (i)|n〉〈n| for all i ∈ �P, and define a matrix S(P) by

Snm(P) = (1 − d2
nm(P))−1 if d2

nm(P) < 1 for all n, m.
Proposition 2. If P is incoherent and S(P) ∗ M(i) � 0 for

all i ∈ �M, then M and P are jointly measurable.
Proof. Define CP( j) � 0 by cP

nm( j) = √
pP

n ( j)pP
m( j). Then

G(i, j) := S(P) ∗ M(i) ∗ CP( j) � 0 by the assumption and
the Schur product theorem. But

∑
j G(i, j) = M(i), and∑

i G(i, j) = S(P) ∗ 1 ∗ CP( j) = P( j) as P is incoherent.
Hence G is a joint observable for M and P. �

To appreciate how this result describes the coherence
needed for incompatibility, note that the diagonal elements of
P enter into the matrix S(P), while the positivity condition
describes the (lack of) coherence in M. More specifically,
when the coherences cohnm(M) are small enough relative to
1 − d2

nm(P), then the off-diagonal elements 〈n|M(i)|m〉(1 −
d2

nm(P))−1 of the matrix S(P) ∗ M(i) are small relative to the
unit diagonal, and hence (e.g., by the Sylvester determinant
criterion) the positivity condition S(P) ∗ M(i) of Proposition
2 will hold. This ensures the existence of a joint observable,
showing that the (collective) coherence in M is not enough
for incompatibility. In examples with suitable parametriza-

tion, this then translates into a lower bound for the coherence
needed for incompatibility.

B. Basic examples

We now link the above results to the noise bounds for
incompatibility [5,23–25]: consider

Pα ( j) = α| j〉〈 j| + (1 − α)d−11, 0 � α � 1. (2)

Let αM be the minimal α for which a given observable M
is incompatible with Pα; this is a way of quantifying in-
compatibility robustness of P1 relative to M [23]. Now Pα

has only one Hellinger distance; d2
nm(Pα ) = 1 − gd (α) and

Snm(Pα ) = 1/gd (α) for n �= m, with

gd (α) = 1

d
((d − 2)(1 − α) + 2

√
1 − α

√
1 + (d − 1)α).

Here α 	→ d2
nm(Pα ) is monotone increasing, setting up a cor-

respondence between αM and the Hellinger distance, the latter
providing a link to coherence via Propositions 1 and 2:

max
n,m �=n

cohnm(M) � gd (αM) � max
n,i

∑
m �=n

|〈n|M(i)|m〉|
pM

n (i)
.

The upper bound follows from Proposition 2, as S(Pα ) ∗ M(i)
is diagonally dominant [47], hence PSD, if gd (α) exceeds this
bound. As a simple example take a qubit with σz basis as the
incoherent basis. Then Pα (0) = 1

2 (1 + ασz ), so any observ-
able M with coh01(M) > g2(α) = √

1 − α2 is incompatible
with Pα . If M is binary with M(0) = 1

2 (1 + m · σ ), we have

1 � g2(αM)2

m2
1 + m2

2

� max

{
1

1 + m3
,

1

1 − m3

}
.

We can check this using the standard qubit criterion [48], ac-
cording to which g2(αM)2 = (m2

1 + m2
2 )/(1 − m2

3 ); hence our
bounds are exact if and only if (iff) m3 = 0.

Next we obtain a quick proof for the known noise bound
for the incompatibility of MUBs [19,25–28].

Proposition 3. Let M(i) = λQ0(i) + (1 − λ)d−11 where
Q0 is mutually unbiased to the incoherent basis. Then αM =
gd (λ) for any λ ∈ [0, 1].

Proof. The crucial observation is that M = C ∗ Q0, where
C has unit diagonal and cnm = λ for n �= m. Hence
cohnm(M) = λ, so λ � gd (α) by Proposition 1 if M and
Pα are jointly measurable. Conversely, if λ � gd (α) then
S(Pα ) ∗ C � 0, so S(Pα ) ∗ M(i) = S(Pα ) ∗ C ∗ Q0(i) � 0,
so Pα and M are jointly measurable by Proposition 2. There-
fore αM = gd (λ) as g−1

d = gd on [0,1]. �
We note that gd (λ) is precisely the bound obtained in

the cited literature by other methods. We will return to this
example later.

III. INCOMPATIBILITY DUE TO A
COHERENCE PATTERN

Here we specialize to the physically relevant class of ob-
servables, introducing first their general structure, and then
focusing on the spin-boson model.
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A. General consideration of coherence matrices

Starting with a brief motivation, we consider again the
above qubit example: when m3 = 0, we have M = C ∗ Q0

where C is a PSD matrix with c00 = c11 = 1, c01 = m1 − im2,
and Q0(0) = 1

2 (1 + σx ). Note that coh01(Q0) = 1 (maximal
coherence), and M is a “noisy” version of Q0 obtained via
pure decoherence [29,31,39]. The same structure appears in
the case of MUBs (proof of Proposition 3), in any dimension.
Accordingly, we call any PSD matrix C with unit diagonal
a coherence (pattern) matrix, and consider noisy observables
M(i) = C ∗ Q(i). In the special case where Q0 is maximally
coherent, we have cohnm(M) = |cnm| so the coherence in M
is “imprinted” by C. This setting captures a remarkable in-
terplay of maximal incompatibility and coherence. Indeed, in
Appendix C we use dilation theory to prove the following
result:

Theorem 1. Let C be a coherence matrix and Q0 a maxi-
mally coherent observable. If an incoherent observable P is
jointly measurable with C ∗ Q0, it is jointly measurable with
C ∗ Q for every observable Q.

Hence, any maximally coherent observable (such as one
mutually unbiased to the incoherent basis) is also maximally
incompatible in this setting (which is not true in general [25]).
Incompatibility arising from coherence is now described as
follows:

Definition 1. For a coherence matrix C, we denote by CC

the set of incoherent observables P jointly measurable with
C ∗ Q for every observable Q. If P /∈ CC we say that P has
incompatibility due to the coherence (pattern) C.

Note that to find out whether a given P lies in CC , it suffices
(by Theorem 1) to check whether P is jointly measurable with
C ∗ Q0 for some fixed maximally coherent observable Q0. The
general results of the preceding section have the following
useful corollaries:

Corollary 1. Let C be a coherence matrix. Any P ∈ CC has
d2

nm(P) � 1 − |cnm| for all n, m.
Proof. Follows by Proposition 1, as cohnm(C ∗ Q0) =

|cnm|. �
Corollary 2. Let C be a coherence matrix and P an inco-

herent observable. If C ∗ S(P) � 0 then P ∈ CC .
Proof. Let Q be an arbitrary observable, and M = C ∗

Q. Then S(P) ∗ M(i) = (C ∗ S(P)) ∗ Q(i) � 0 by the Schur
product theorem, so P is jointly measurable with M by Propo-
sition 2, hence P ∈ CC . �

The coherence matrix model is strongly motivated by
open quantum systems. In fact, quantum coherence is noto-
riously fragile against noise, and one of the basic mechanisms
by which it decays is pure decoherence (i.e., no dissipa-
tion), typically arising as subsystem dynamics from a unitary
evolution on a larger system which leaves the incoherent ba-
sis unchanged (see Chap. 4 of [31]). While incompatibility
seems rarely tractable under general dynamics (see [37] for
a qubit case), our theory applies neatly to this type of dy-
namics. Each incoherent observable represents a conserved
quantity, whose incompatibility with all other system observ-
ables is lost when the decaying coherence fails to sustain
it; this characterizes the emergent classicality of the open
system in a more operational way than the decoherence
itself.

More formally, suppose we have a family of coherence ma-
trices C[λ] depending on a parameter λ ∈ [0, 1]. If λ = λ(t )
depends on a time parameter 0 � t < ∞, the map �t (ρ) :=
C[λ(t )] ∗ ρ defines a quantum dynamical map, i.e., a family
of completely positive trace-preserving maps on the set of
density matrices. A natural “Markovianity” property in this
setting is

C[λλ′] = C[λ] ∗ C[λ′], λ, λ′ ∈ [0, 1], (3)

which leads to the CP-divisibility of the dynamical map if
the function λ(t ) is monotone decreasing. Then the loss of
incompatibility is irreversible, and (as the Heisenberg picture
evolution has the same form) the above corollaries can be used
to bound the critical time at which a given incoherent observ-
able loses its incompatibility by entering the set Cλ(t ). Next
we show, by considering a specific model, that this approach
is amenable to analytical results even in large systems.

B. Spin-boson model

We consider the spin-boson model with collective interac-
tion [31–33]: N qubits coupled to bosonic modes bk via the
total spin Sz = 1

2

∑N
l=1 σ (l )

z . The total Hamiltonian is

H = HS +
∑

k

ωkb†
kbk +

∑
k

Sz(gkb†
k + gkbk ),

where HS = ω0Sz is the system Hamiltonian. The incoherent
basis is the σz basis {|m〉}, where m = (m1, . . . , mN ), and we
let |m| = ∑

l ml . With the bath initially in a thermal state, the
system state at time t is ρ(t ) = C[λ(t )] ∗ ρ0, where C[λ] is
the coherence matrix cn,m[λ] = λ(|n|−|m|)2

, and λ(t ) ∈ [0, 1]
is given by the bath temperature and spectral density (see
Sec. 4.2 of [31]). In the Heisenberg picture, the dynamics
transform the system observables Q into C[λ(t )] ∗ Q, which
is precisely of the form considered above, and has the divisi-
bility property (3). The task is to characterize the set CC[λ] for
λ ∈ [0, 1].

If t 	→ λ(t ) is monotone decreasing (as in p. 230 of [31]),
the loss of incompatibility is irreversible due to (3). How-
ever, the model also has decoherence-free subspaces (DFSs)
D j = span{|n〉 | |n| = j} [33–36]; basis elements in the same
DFS have cn,m[λ] = 1 for all λ. By Corollary 1, each DFS
“protects” the incompatibility of any P not proportional to 1
inside it. Observables P exhibiting a transition to classicality
therefore have pP

n = pP
m when |n〉, |m〉 lie in the same DFS.

In Appendix D we show that for these P the problem reduces
to an (N + 1)-dimensional space with incoherent basis {|k〉}
indexed by the DFS labels k = 0, . . . , N : we have P ∈ CC[λ]

iff P̃ ∈ CC̃[λ] where pP̃
k = pP

n for |n〉 ∈ Dk , and the coherence
matrix is

C̃[λ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 λ λ4 · · · · · · λN2

λ 1 λ
. . .

...

λ4 λ
. . .

. . .
. . .

...
...

. . .
. . .

. . . λ λ4

...
. . . λ 1 λ

λN2 · · · · · · λ4 λ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)
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FIG. 1. The convex set Csym
C[λ] for N = 2, λ = 0.7, parametrized by

(p, q, r) where p = pP
1 (0), q = pP

4 (0), r = pP
2 (0) = pP

3 (0). The line
{PC

α | α ∈ [0, 1]} is shown connecting ( 1
4 , 1

4 , 1
4 ) to (1,0,0); it enters

the set at α = α2(0.7) ≈ 0.58.

We further focus on the measurements of the DFS label j =
0, . . . , N which are covariant for the permutation j 	→ N − j
leaving C[λ] invariant, i.e., pP

n ( j) = pP
m(N − j) when |n| =

N − |m|. We denote by Csym
C[λ] the set of covariant P ∈ CC[λ].

This set has affine dimension 1
2 N (N + 1), and we find it ana-

lytically for N = 2 in Appendix G (see Fig. 1). In Sec. IV C
and Appendix D we develop a general theory of covariance
systems for coherence matrices.

For larger N we focus on covariant observables PC
α :=

αPC + (1 − α)PC
dep, α ∈ [0, 1], where PC is the spectral res-

olution of HS [so PC ( j) is the projector onto the DFS
D j], and PC

dep its depolarization PC
dep( j) := 1

2N tr[PC ( j)]1 =
cN ( j)1 into the “coin toss” distribution cN ( j) = (N

j ) 1
2N . The

proportion of {PC
α | α ∈ [0, 1]} having lost incompatibility at

time t is αN (λ(t )) where

αN (λ) := max{α > 0 | PC
α ∈ CC[λ]}.

With reduction (4) we find αN (λ) = max{α > 0 | P̃C
α ∈

CC̃[λ]}, where P̃C
α ( j) = α| j〉〈 j| + (1 − α)cN ( j)1. The task is

to find analytical bounds for αN (λ). For N = 2 we can
explicitly solve (Appendix G) α2(λ) = 1 − 4λ2

3+λ4+2
√

2(1−λ2 )
.

Crucially, the Hellinger distances are tractable for any
N : dkk′ (P̃C

α ) = 1 − βkk′ (α) when k �= k′, with βkk′ (α) =
1 − α + uk + uk′ , uk =

√
cN (k)(1 − α)(α + cN (k)(1 − α)) −

cN (k)(1 − α). Each α 	→ βkk′ (α) is decreasing in α; using the
inverse functions [β01]−1, [β00]−1 we set UN (λ) = [β01]−1(λ)
and LN (λ) = [β00]−1(1 − ϑ3( π

2 , λ)), where ϑ3(x, λ) = 1 +
2
∑∞

k=1 λk2
cos(2kx) is the Jacobi theta function [49]. The

following result holds:
Proposition 4. ϑ3( π

2 , λ) � LN (λ) � αN (λ) � UN (λ) for
all N = 1, 2, . . ., and λ ∈ [0, 1].

Proof. We fix λ ∈ [0, 1] (and hence also C̃[λ], UN =
UN (λ), LN = LN (λ), αN = αN (λ)). Now if α is such that
P̃C

α ∈ CC̃ , then λ � β01(α) by Corollary 1, i.e., UN � α, so
UN � αN ; this establishes the upper bound. For the lower
bounds, define B = (bnm) by bnm = 1/βnm for each n, m.

FIG. 2. Incompatibility of the incoherent observables arising as
α-weighted averages of the system Hamiltonian and its depolariza-
tion, in the spin-boson model with coherence parameter λ, for N = 2
(left) and N = 10 (right). The green (red) region has incompatibility
(loss thereof) “certified” by the analytical bound UN (LN ) of Propo-
sition 4. Below the ϑ3( π

2 , λ) bound (black line), incompatibility is
lost for all N . The true boundary αN is given for comparison, by a
semidefinite program (SDP) (blue dots), and analytically for N = 2
(solid blue line).

(Notice that βnn �= 1, as 1 − βnm only coincides with the
corresponding Hellinger distance on the off-diagonal ele-
ments.) Now B � 0, as bnm = ∫ 1

0 xβnm−1dx = ∫ 1
0 x−αxun xum dx.

Now bnm = (1 − d2
nm(P̃C

α ))−1 when n �= m, but bnn = 1/βnn �
1, so C̃ ∗ S(P̃C

α ) = C̃ ∗ B + D with D diagonal, dnn = 1 −
bnn. Since B � 0, we get (C̃ − r1) ∗ B � 0, where r is the
bottom eigenvalue of C̃. By the theory of Toeplitz matrices
(pp. 194 and 211 of [50], and Lemma 1 of [49]),

r � min
x∈[0,2π]

∞∑
k=−∞

c̃k0 eikx = min
x∈[0,2π]

ϑ3

(
x

2
, λ

)
= ϑ3

(
π

2
, λ

)
.

Hence, if ϑ3( π
2 , λ) � 1 − β00(α) then C̃ ∗ S(P̃C

α ) �
r(1 − D) + D � (1 − β00)(1 − D) + D � 0 as 1 − β00 =
maxn(1 − βnn), and so P̃C

α ∈ CC̃ by Corollary 2. Hence
P̃C

α ∈ CC̃ for all α � LN , so αN � LN . Finally, ϑ3( π
2 , λ) � LN

since α � 1 − β00(α) for all α. This completes the proof. �
Figure 2 shows the bounds for N = 2, 10, and the ana-

lytical curve α2(λ) with a numerical consistency check (blue
dots) computed with a generic joint measurability SDP avail-
able in [51] applied to (C̃[λ] ∗ Q0, P̃C

α ) (see Theorem 1). This
SDP is not practical for large N ; to compute α10(λ) we used
the efficient SDP (5) adapted to our setting as described in
the next section (implemented in PYTHON [52]). Proposition
4 says that at any time t , at least the proportion 1 − UN (λ(t ))
of the line {PC

α | α ∈ [0, 1]} has incompatibility due to coher-
ence, while at least the proportion LN (λ(t )) � ϑ3( π

2 , λ(t )) has
lost it. Remarkably, the last bound is independent of N ; i.e., it
holds for any system size. Finally, the bound UN is tight near
the classical limit (small λ):

Proposition 5. For each fixed N , the curves α = αN (λ)
and α = UN (λ) have the same asymptotic form: λ =
1+√

N
2N/2

√
1 − α + O(1 − α) as α → 1 (λ → 0).

We prove this (Appendix H) by explicitly constructing
relevant joint observables in the operational framework of
the next section. Note that the square-root behavior near the
classical limit is distinct from the “middle” regime for λ,
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where UN (λ) decreases towards 1 − λ as N increases. Clearly,
incompatibility is much more intricate than the coherence
which sustains it in this model.

IV. OPERATIONAL FRAMEWORK FOR COHERENCE
AND INCOMPATIBILITY

Having demonstrated our theory in applications, we now
gain further insight by reformulating it in resource-theoretic
terms, in the context of quantum measurement theory.

A. Resource-theoretic aspects

Here we describe how our theory formally integrates into
the resource theory of quantum coherence, and especially
measurement coherence. We stress that our aim is not to
develop a comprehensive joint resource theory for coherence
and incompatibility, but rather to focus on the most relevant
aspects.

The “free resources” are the incoherent observables P(i) =∑
n pP

n (i)|n〉〈n| [6,7] already used above; they are jointly mea-
surable with each other. Their nonclassicality is quantified
by the Hellinger distances: d2

nm(P1) = 1 for all n �= m, while
dnm(P) = 0 for all n, m iff each P( j) is a multiple of the
identity, i.e., P is jointly measurable with every observable.
An observable P is incoherent iff cohnm(P) = 0 for all n �= m.

Any quantum channel, a completely positive (CP) trace-
preserving map �, is a “free operation” for incompati-
bility [5,11,13], acting on observables via preprocessing
�∗(M)(i) = �∗(M(i)), where �∗ is defined by tr[�∗(X )ρ] =
tr[X�(ρ)] for all matrices X , ρ. If �(|n〉〈n|) = |n〉〈n| for all n,
i.e., � leaves each incoherent observable unchanged, then � is
also “free” for coherence, called a genuinely incoherent opera-
tion (GIO) [4,38]. These have already appeared in our setting:
each GIO has the form �∗

C (M)(i) = C ∗ M(i) for some coher-
ence matrix C [4,29]. The entrywise coherence is monotonic
in GIOs, as cohnm(�∗

C (M)) = |cnm|cohnm(M) � cohnm(M).
Observables are measured by instruments I = (Ii )i∈�,

where each Ii is a CP map such that
∑

i Ii is a channel [45].
The observable measured by I is M(i) = I∗i (1). For a state
(density matrix) ρ the postmeasurement state given outcome i
is Ii(ρ). Instruments are needed for sequential implementation
of joint measurements: measuring first M with I, and then
an observable F, we get a joint POVM G(i, j) = I∗i (F( j))
for M and �∗(F). Joint measurements usually do not have
sequential implementations (unless one “cheats” by allowing
a larger output space; see Proposition 2 of [53]). We define a
genuinely incoherent instrument (GII) as one whose channel∑

i Ii is a GIO. It follows (Appendix B) that any GII with
channel �C has the form I∗i (X ) = C(i) ∗ X for some PSD
matrices C(i) with

∑
i C(i) = C; we call C the coherence

matrix of I. GIIs are free operations also for coherence: they
cannot create coherent observables from incoherent ones by
sequential combination. The observable measured by a GII is
incoherent, namely, P(i) := I∗i (1) = ∑

n cnn(i)|n〉〈n|.

B. Sequential measurement setting

Given the above concepts, the operational scheme in Fig. 3
naturally emerges; in this setting, coherence needed for in-
compatibility can now be characterized as follows:

(a)

(b)

FIG. 3. (a) Operational setting for linking incompatibility and
coherence. Here P is an incoherent observable and �C a channel
which imprints a coherence pattern C = (cnm ) into a coherent observ-
able Q by Hadamard multiplication. If C ∗ Q is jointly measurable
with P (via a joint POVM G) for every Q, the coherence C cannot
sustain any (pairwise) incompatibility involving P, and we write
P ∈ CC . (b) Sequential implementation of the joint POVM G in (a),
given a GII I with observable P and channel �C . By Theorems 1 and
2, the existence of I is equivalent to joint measurability in (a) when
Q is a maximally coherent.

Theorem 2. Let C be a coherence matrix and P an incoher-
ent observable. The following are equivalent:

(i) P ∈ CC .
(ii) There exists a GII with coherence matrix C and ob-

servable P, that is, matrices C( j) satisfying

C( j) � 0,
∑

j C( j) = C, cnn( j) = pP
n ( j). (5)

In that case a joint measurement of P and C ∗ Q, for any
observable Q, can be implemented sequentially by first mea-
suring P using the GII in (ii), and subsequently Q.

The crucial part of the proof of this result is the con-
struction of the special joint observable given in the proof
of Theorem 1 (see Appendix C). The result is surprising, as
joint observables with a GII implementation are quite special,
requiring channel-observable compatibility [40–42]. We note
that (5), as a SDP [54], is more efficient than a generic joint
measurability SDP due to lower dimensionality, but still not
analytically solvable except in simple cases (see Appendix F
for a d = 3 example). However, there is a useful class of GIIs:
for each incoherent observable P define CP( j) as in the proof
of Proposition 2; this is a GII with coherence matrix CP given
by the Hellinger distances, cP

nm = ∑
j cP

nm( j) = 1 − d2
nm(P).

Following the proof of Proposition 2 we obtain a GII for the
setting in Corollary 2:

Proposition 6. If C ∗ S(P) � 0 then C( j) = C ∗ S(P) ∗
CP( j) defines a GII with coherence matrix C and observable
P.

Proof. Now
∑

j C( j) = C ∗ S(P) ∗ ∑ j CP( j) = C, and
cnn( j) = cP

nn( j) = pP
n ( j). If C ∗ S(P) � 0 then C( j) � 0 by

the Schur product theorem, so (5) holds for C( j). �
As an example of a GII we consider the qubit case:

C =
(

1 c
c 1

)
, P( j) =

(
p j 0
0 q j

)
, j ∈ N,

with c ∈ C, |c| � 1, and (qj ), (p j ) being probability distri-
butions. The Hellinger distance is d2

01(P) = 1 − γ with γ =∑
j
√

p jq j , and we obtain P ∈ CC iff |c| � γ . Indeed, P ∈ CC

implies |c| � γ by Corollary 1, while |c| � γ implies P ∈ CC
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by Corollary 2, with the GII

C( j) =
(

p j cγ −1√q j p j

cγ −1√q j p j q j

)
.

Revisiting the noisy MUB example (see Proposition 3), we
note that any −(d − 1)−1 � λ � 1 defines a valid coherence
matrix C, and Pα is an incoherent observable for the same
range of α. When λ < 0 the bounds of Corollaries 1 and 2 do
not coincide, but our general method applies (Appendix E),
reproducing the result in [28], and (additionally) yielding
a sequential GII implementation for all jointly measurable
cases, including the “corner” λ = α = −(d − 1)−1 where the
Lüders instrument fails. We consider this interesting excep-
tional case here, and postpone the rest of the proof to the
Appendix. We have Pα ( j) = (d − 1)−1(1 − | j〉〈 j|), and

C = d (d − 1)−1(1 − |φd〉〈φd |),
where φd = d− 1

2
∑

k |k〉. In this case the two corollaries do
not tell us anything: the tradeoff in Corollary 1 is not violated,
and the matrix in Corollary 2 is not positive semidefinite.
However, now Pα ∈ CC directly by Theorem 2, as we can
construct a GII C( j) satisfying (5):

C( j) := (d − 2)−1
(
1 − |φd〉〈φd | − ∣∣ϕ j

d

〉〈
ϕ

j
d

∣∣),
where ϕ

j
d :=

√
d (d − 1)−1(| j〉 − d− 1

2 φd ). Indeed, positivity
follows from the fact that ϕ

j
d is orthogonal to φd for each j

[so each C( j) is a multiple of a projection], and it is easy to
check that

∑
j C( j) = C and cnn( j) = (d − 1)−1(1 − δ jn) =

pPα
n ( j).

In addition to these examples, in Appendix H we explicitly
construct a GII for the spin-boson model: it establishes the
tight bound for the coherence needed for incompatibility near
the classical limit, and proves Proposition 5.

C. Reduction by symmetry

One of the main obstacles in our joint measurability prob-
lem is the difficulty of finding the form of a suitable GII.
Symmetries in the coherence pattern C can be used to simplify
the search, and also single out relevant incoherent observ-
ables. We outline this reduction here; detailed derivations are
given in Appendix D.

First note that the matrix D of a unitary GIO �D(ρ) =
U †ρU has dnm = unum with |un| = 1 for all n; then �D

changes neither incompatibility nor coherence. For coherence
matrices C,C′, we write C  C′ if C = D ∗ C′ for a unitary
GIO �D. Clearly, CC = CC′ .

Second, we call an incoherent P adapted to C if pP
n = pP

m
(P does not distinguish n from m) whenever (n, m) has max-
imal coherence |cnm| = 1. Crucially, each P ∈ CC is adapted
to C, as |cnm| = 1 implies d2

nm(P) = 0 by Corollary 1. So
every P not adapted to C has incompatibility due to coherence.
Now {1, . . . , d} splits into nC � d disjoint equivalence classes
IC
k , k ∈ �C := {1, . . . , nC}, such that IC

k = {m | |cnm| = 1} for
any n ∈ IC

k . Let H̃ be the Hilbert space with incoherent basis
{|k〉}k∈�C and define L : H̃ → H by L|k〉 = ∑

n∈IC
k

|n〉. Then

C  LC̃L† for a “reduced” coherence matrix C̃ acting on H̃.
As an example, consider the spin-boson model: we have

the coherence matrix C = C[λ] with nC = N + 1 equivalence

classes IC
k = {n | ∑l nl = k}, k ∈ �C = {0, 1, . . . , N} of size

|IC
k | = (N

k ), corresponding to the decoherence-free subspaces

span{|n〉 | n ∈ IC
k }. The resulting reduced coherence matrix C̃

is easily seen to be the one given by (4).
Next, let Sd , the group of permutations of {1, . . . , d}, act

on H via Uπ |n〉 = |π (n)〉. We define

GC := {π ∈ Sd | U †
πCUπ  C}.

In Appendix D we show that GC is a permutation group,
i.e., a subgroup of Sd , and we call it the symmetry group
of C. It moves each class IC

k as a whole, and hence gives
rise to a map φ : GC → GC̃ through π (IC

k ) = IC
φ(π )(k). Now let

G be any subgroup of GC . We then say that an incoherent
observable P is G covariant if it has outcome set �C , and
pP

π−1(n)( j) = pP
n (φ(π )( j)) for π ∈ G, j ∈ �C . These observ-

ables have their outcomes directly linked to the equivalence
classes of the basis labels. The joint measurability problem
reduces considerably when restricted to them; we set

CC[G] := {P ∈ CC | P is G covariant}.

The case of the full symmetry group is denoted by Csym
C :=

CC[GC]. In Appendix D we show that for P ∈ Csym
C , the SDP

(5) can be constrained by a corresponding covariance condi-
tion at the GII level without any loss. Furthermore, we also
link the incoherent observables on H̃ and H as L(|k〉〈k|) =∑

n∈IC
k

|n〉〈n|; the reduction by symmetry is then given by

Csym
C = {L(P(·)) | P ∈ CC̃[φ(GC )]}. (6)

We note that φ(GC ) may be different from GC̃ . However,
they coincide when |IC

k | = |IC
π (k)| for each π ∈ GC̃ and k ∈

�C ; i.e., the equivalence classes linked by permutations in
the reduced symmetry group have equal size. In that case
we have the straightforward reduction Csym

C = {L(P(·)) | P ∈
Csym

C̃
}. An example is provided by the spin-boson model,

where the reduced coherence matrix C̃ = C̃[λ] is invariant
under the exchange permutation π0 defined by π0(k) = N − k
for k ∈ �C . In fact, GC̃ = {e, π0} for all λ, and |IC

k | = |IC
π0(k)|

for each k, so φ(GC ) = {e, π0}. Hence, by (6), the set Csym
C is

isomorphic to Csym
C̃

, as stated in Sec. III B.
Finally, we give a simple example involving also complex

phase factors, and demonstrating the case φ(GC ) �= GC̃ . Let
λ ∈ [0, 1), and consider the following:

C :=
⎛
⎝ 1 i λi

−i 1 λ

−λi λ 1

⎞
⎠ 

⎛
⎝1 1 λ

1 1 λ

λ λ 1

⎞
⎠ −→ C̃ =

(
1 λ

λ 1

)
.

Here d = 3, nC = 2, �C = {1, 2}, IC
1 = {1, 2}, IC

2 = {3},
GC = {e, (12)}, GC̃ = S2, and φ(GC ) = {e}. Note that the
symmetry of C is “revealed” after factoring out a unitary GIO
in the first step. As a further subtlety, the exchange symmetry
of C̃ is excluded as |IC

1 | �= |IC
2 |. The point of the reduction

is that we can use the simpler two-dimensional case to solve
the original three-dimensional joint measurability problem.
Indeed, we first characterize CC̃[{e}] as described in the qubit
case after Proposition 6 above, and then use (6): Csym

C consists
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of the binary observables P of the form

P(1) =
⎛
⎝p 0 0

0 p 0
0 0 q

⎞
⎠, P(2) = 1 − P(1),

where p, q ∈ [0, 1] and
√

pq + √
(1 − p)(1 − q) � λ.

V. CONCLUSION

We considered a general operational setting where quan-
tum coherence is tightly linked to measurement incompati-
bility. We derived two explicit conditions for the coherence
needed for incompatibility, and demonstrated that these
are amenable to analytical calculations even in large open
quantum systems. Topics of further study include the infinite-
dimensional case and adaptation to quantum steering.
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APPENDIX A: PROPERTIES OF THE
ENTRYWISE COHERENCE

Recall that an observable is a POVM M on a Hilbert space
H = Cd with (finite) outcome set �M, i.e., M(i) � 0 for each
i ∈ �M, and

∑
i∈�M

M(i) = 1. We assume that the outcome
set is taken minimal, i.e., M(i) �= 0 for each i ∈ �M. We fix
a basis {|n〉 | n = 1, . . . , d} and call it the incoherent basis.
For any observable we denote pM

n (i) := 〈n|M(i)|n〉 for all n ∈
{1, . . . , d}, i ∈ �M.

An observable M is incoherent if each POVM element M(i)
is diagonal, i.e., M(i) = ∑d

n=1 pM(i)|n〉〈n| for all i ∈ �M. It is
mutually unbiased to the incoherent basis if M(i) = |ψi〉〈ψi|
where {ψi | i ∈ �M} is a basis of H such that |〈n|ψi〉|2 = d−1

for each n ∈ {1, . . . , d} and i ∈ �M. Note that incoherent ob-
servables can have arbitrary outcome set �M, while |�M| = d
for any if M is mutually unbiased to the incoherent basis.

In the main text we introduced the entrywise coherence and
Hellinger distances for each n, m ∈ {1, . . . , n}:

cohnm(M) =
∑
i∈�M

|〈n|M(i)|m〉|,

d2
nm(M) = 1 −

∑
i∈�M

√
pM

n (i)pM
m (i).

We are not aware of the entrywise coherence having appeared
in the literature as such, but it has been used recently in
the construction of overall lp-type measures [7]. Hellinger
distance is a known f divergence [44], but (as far as we know)
has not been used in the present context before. It is an actual
metric in the space of probability distributions; in particular, if
d2

nm(M) = 0 for some n, m, then pM
n (i) = pM

m (i) for all i ∈ �M.
Furthermore, 0 � d2

nm(M) � 1 by a simple application of the
classical Schwarz inequality.

We say that M is maximally coherent if cohnm(M) = 1 for
all n, m = 1, . . . , d . The following proposition summarizes
the basic properties of the entrywise coherence:

Proposition 7. Let M be an observable.
(a) Bounds: 0 � cohnm(M) � 1 − d2

nm(M) � 1 for all
n, m.

(b) Zero coherence: cohnm(M) = 0 for all n �= m, if and
only if M is incoherent.

(c) Maximal coherence: The following are equivalent:
(i) M is maximally coherent.
(ii) M has has rank one, and pM

n is the same probability
distribution for each n = 1, . . . , d .

(iii) There is a probability distribution i 	→ p(i) on �M,
and a sequence of unit vectors ψi ∈ H with |〈n|ψi〉|2 =
d−1 for each n = 1, . . . , d , i ∈ �M, such that M(i) =
p(i)d|ψi〉〈ψi| for each i ∈ �M.
If M has exactly d outcomes, then M is maximally coherent

if and only if M is a MUB to the incoherent basis.
Proof. Denote ψn

i = √
M(i)|n〉, for each n = 1, . . . , d ,

i ∈ �M. Then ‖ψn
i ‖2 = pM

n (i), and hence
∑

i∈�M
‖ψn

i ‖2 =∑
i pM

n (i) = 1 for each n by the normalization of the observ-
able M. To prove (a) we use Cauchy-Schwarz inequality:

cohnm(M) =
∑

i

|〈n|M(i)|m〉| =
∑

i

∣∣〈ψn
i

∣∣ψm
i

〉∣∣
�
∑

i

∥∥ψn
i

∥∥∥∥∣∣ψm
i

∥∥ = 1 − d2
nm(M) � 1.

If cohnm(M) = 0 for all n �= m we have 〈n|M(i)|m〉 = 0 for all
n �= m, and hence M is incoherent; this proves (b).

To prove (c), assume (i), so that cohnm(M) = 1 for each
pair (n, m). Then the second inequality in the above cal-
culation is saturated, so d2

nm(M) = 0 for all n �= m, which
implies p(i) := pM

n (i) = pM
m (i) for each pair n, m = 1, . . . , d ,

and all i ∈ �M, so ‖ψn
i ‖2 = p(i) for each n, i (i.e., the norm

only depends on i). Note that p(i) > 0 for each i (since
otherwise M(i) = 0). Also the first inequality is saturated,
that is,

∑
i(‖ψn

i ‖‖|ψm
i ‖ − |〈ψn

i |ψm
i 〉|) = 0, so |〈ψn

i |ψm
i 〉| =

‖ψn
i ‖‖|ψm

i ‖ for all n, m, i, as each term in the sum is non-
negative. Hence the Cauchy-Schwarz inequality is saturated
for each pair ψn

i , ψm
i , so ψn

i = cnm
i ψm

i for some constants
cnm

i ∈ C which must have modulus one as ‖ψn
i ‖2 = ‖ψm

i ‖2 =
p(i). Define ψi := p(i)−

1
2 ψ1

i for each i ∈ �M. Then ‖ψi‖ =
1, and

√
M(i)|n〉 = ψn

i = cn1
i ψ1

i = cn1
i

√
p(i)ψi for all n, i,

showing that
√

M(i) [and hence also M(i)] has rank one with
range spanned by ψi. Hence (ii) holds. Assume now (ii). Since
M has rank one we can write M(i) = p(i)d|ψi〉〈ψi| where
p(i) := tr[M(i)]/d is a probability distribution and ψi is a
unit vector for each i ∈ �M. Since pM

n = pM
m for all n, m,

we must have p(i) = 1
d

∑
m pM

m (i) = pM
n (i) = 〈n|M(i)|n〉 =

p(i)d|〈ψi|n〉|2 for all n, i, which shows that |〈ψi|n〉|2 = d−1

for all n, i. Hence (iii) holds. Finally, assuming (iii) we easily
check that M has maximal coherence, i.e., (i) holds, and we
have established the equivalences in (c). The last claim fol-
lows immediately from (iii) and the well-known fact (which
is easy to prove) that any rank one observable in dimension d
with d outcomes is necessarily a basis observable. �

As noted above, any observable mutually unbiased to the
incoherent basis is incoherent. Moreover, any refinement of
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a such an observable is maximally coherent: if qk (i)i∈�k de-
fines a probability distribution for each k = 1, . . . , d (where
�k are distinct sets), and {ψk | k = 1, . . . , d} is mutually un-
biased to the incoherent basis, let � = ∪k�k , and M(i) :=
qk (i)|ψk〉〈ψk| whenever i ∈ �k . Another class of maximally
coherent observables is given as follows: take any pair of
MUBs {φk | k = 1, . . . N} and {ξk | k = 1, . . . , N} in a larger
Hilbert space M = CN , and define an isometry V : H → M
by V |n〉 = ξn for n = 1, . . . , d . Then M(i) := |V ∗φi〉〈V ∗φi|,
i ∈ �M := {1, . . . , N} is a maximally coherent observable
with the distribution p(i) = 1/N in the above proposition. An
explicit example of this type is obtained by taking �M =
{0, . . . , N}, p(i) = 1/N and |ψi〉 = 1√

d

∑d−1
j=0 ω

ji
N | j〉 for i =

0, . . . , N − 1, where ωN = e2π i/N .

APPENDIX B: DILATION THEORY

We review here briefly some well-known aspects of dila-
tion theory of quantum channels and observables (see, e.g.,
[45]), applied to our framework introduced in the main text.

First recall that the Naimark dilation of an observable M =
(M(i))i∈�M on a Hilbert space H is a projection valued observ-
able A on a larger Hilbert space H⊕ such that M(i) = J†A(i)J
for all i, where J : H → H⊕ is an isometry, i.e., J†J = 1. The
dilation is minimal if H⊕ = span{A(i)Jϕ | ϕ ∈ H, i ∈ �M}.
The following is a basic joint measurability result:

Theorem 3 ([53]). Let F = (F( j)) j∈�F be any observable
jointly measurable with M and (H⊕, A, J ) a minimal Naimark
dilation of M. Then each joint observable G of M and F is of
the form G(i, j) = J†A(i)B( j)J where B is a unique POVM
of H⊕ such that [A(i), B( j)] = 0 for all i ∈ �M, j ∈ �F.

Any quantum channel � of H  Cd has a minimal Stine-
spring dilation, i.e., its Heisenberg picture [a completely
positive unital map on the matrix algebra Md (C)] can be
written in the form �∗(X ) = J†(X ⊗ 1)J , X ∈ Md (C), where
J : H → H ⊗ K is an isometry, K a Hilbert space (an an-
cilla), and the vectors (X ⊗ 1)Jψ , X ∈ Md (C), ψ ∈ H, span
H ⊗ K [46]. It follows from the Radon-Nikodym theorem
of completely positive maps [55] that any instrument (Ii )i∈�

whose channel is � has the form I∗i (X ) = J†(X ⊗ F(i))J
where F = (F(i))i∈� is a (unique) POVM.

We now specialize to our case, with a channel �C given
by a PSD matrix C with unit diagonal, through Hadamard
multiplication �∗

C (X ) = C ∗ X . Since C � 0, we may write
cnm = 〈ηn|ηm〉 where ηn are unit vectors in a Hilbert space K
with dimension equal to the rank of C, that is, K = span{ηn |
n = 1, . . . , d} (see, e.g., [39]). These vectors constitute the
minimal Stinespring dilation �∗

C (X ) = J†(X ⊗ 1)J of �C ,
where the isometry is defined by J|n〉 = |n〉 ⊗ ηn (note that
|m〉 ⊗ ηn = (X ⊗ 1)J|n〉 where X = |m〉〈n|). Then any GII
(I j ) j∈� with channel �C has the form

I∗j (X ) = J†(X ⊗ F( j))J =
∑
n,m

〈n|X |m〉〈ηn|F( j)ηm〉|n〉〈m|,

where F = (F( j)) j∈� is a POVM of K. This gives us the
Hadamard form I∗j (X ) = C( j) ∗ X used in the main text, with
the matrix C( j) given by

cnm( j) = 〈ηn|F( j)ηm〉. (B1)

We stress that every instrument with channel �C has this form.
In particular, if {C( j)} is any collection of PSD matrices with∑

j C( j) = C, then C( j) can be written as (B1) for some
(unique) F.

APPENDIX C: PROOFS OF THEOREMS 1 AND 2

Recall that in Theorem 1 we let Q0 be any fixed maximally
coherent observable, with outcome set �0 (assumed to be
minimal). By Proposition 7, we can write

Q0(i) = p(i)d|ψi〉〈ψi|, (C1)

where i 	→ p(i) is a probability distribution on �0, and ψi are
unit vectors such that |〈ψi|n〉|2 = d−1 for all n, i. Let M be
a copy of C|�0|, and note that 〈n|Q0(i)|n〉 = p(i) for all n =
1, . . . , d .

The proofs are based on the dilation theory described
above; let ηn be vectors such that cnm = 〈ηn|ηm〉 as in
Appendix B.

Proof of Theorem 1. Fix a basis {|i〉 | i ∈ �0} of M, and
define an isometry V : H → M ⊗ K via

V |n〉 =
∑

i∈�Q0

√
p(i)d 〈ψi|n〉 |i〉 ⊗ ηn.

Then C ∗ Q0(i) = V ∗(|i〉〈i| ⊗ 1K)V . Hence, this is
a Naimark dilation of the observable C ∗ Q0. Since
span{(|i〉〈i| ⊗ 1)V |n〉 | n ∈ {1, . . . , d}, i ∈ �0} = span{|i〉 ⊗
ηn | n ∈ {1, . . . , d}, i ∈ �0} = M ⊗ K (= H⊕), the dilation
is minimal.

Now assume that C ∗ Q0 is jointly measurable with an
incoherent observable P. Since the above dilation is minimal,
Theorem 3 applies: P must be of the form P( j) = V †F( j)V ,
j ∈ �P, where [F( j), |i〉〈i| ⊗ 1K] = 0 for all i, j. This im-
plies that for each i there is a POVM Fi = (Fi( j)) j∈�P on K,
such that F( j) = ∑

i |i〉〈i| ⊗ Fi( j). Furthermore, according to
Theorem 3, P and C ∗ Q0 have a joint observable

G̃(i, j) = V †F( j)(|i〉〈i| ⊗ 1)V = V †(|i〉〈i| ⊗ Fi( j))V

=
∑
n,m

〈n|Q0(i)|m〉〈ηn|Fi( j)ηm〉|n〉〈m|

and hence P must have the form

P( j) =
∑

i

G̃(i, j) =
∑
n,m

∑
i

〈ηn|Fi( j)ηm〉〈n|Q0(i)|m〉|n〉〈m|

=
∑

n

∑
i

〈ηn|Fi( j)ηn〉〈n|Q0(i)|n〉|n〉〈n|

=
∑

n

〈ηn|
∑

i

p(i)Fi( j)ηn〉|n〉〈n|. (C2)

In the third step we have used the assumption that P is in-
coherent (so there are no off-diagonal elements), and in the
fourth step the maximal coherence condition 〈n|Q0(i)|n〉 =
p(i). We now define, for each j, a matrix C( j) by cnm( j) :=
〈ηn|A( j)|ηm〉, where A := ∑

i p(i)Fi is a POVM by convex-
ity. Therefore we have C( j) � 0 and

∑
j cnm( j) = 〈ηn|ηm〉 =

cnm; that is, C( j) form a GII whose channel is �C . Finally,
by the computation (C2), P( j) = ∑

n〈ηn|A( j)ηn〉|n〉〈n| =∑
n cnn( j)|n〉〈n|, showing that the observable of this GII is

precisely P. Applying the GII to any observable Q we get
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a joint observable G(i, j) = C( j) ∗ Q(i) for C ∗ Q and P,
as
∑

i G(i, j) = C( j) ∗ 1 = P( j) and
∑

j G(i, j) = C ∗ Q(i).
Hence C ∗ Q and P are jointly measurable. This completes the
proof of Theorem 1.

The crucial point of the proof is the computation (C2); one
can readily see how the two strong assumptions, P incoherent
and Q0 maximally coherent, fit together rather neatly to form
the single dilation POVM A.

Proof of Theorem 2. If (i) holds then C ∗ Q is jointly mea-
surable with P for all Q, so in particular for Q0. By the above
proof we obtain matrices C( j) satisfying (5), so (ii) holds.
Conversely, if such matrices exist [that is, (ii) holds], the
observable G(i, j) = C( j) ∗ Q(i) defined in the above proof
is a joint observable for P and C ∗ Q for any observable Q,
hence P ∈ CC , i.e., (i) holds.

APPENDIX D: REDUCTION BY SYMMETRY

Here we develop in detail the theory of covariance systems
for a d × d coherence matrix C. Recall that the aim is to
characterize the set CC of incoherent observables P for which
there is a GII with GIO �C and observable P. The idea is that
symmetries in the coherence pattern can be used to simplify
the problem and single out relevant incoherent observables.

As above, we make use of the dilation cnm = 〈ηn|ηm〉 (see
Appendix B). For each pair (n, m) we write n ∼C m when
|cnm| = 1. This implies that |〈ηn|ηm〉| = 1 = ‖ηn‖‖ηm‖; i.e.,
the Cauchy-Schwarz inequality is saturated for this pair of
unit vectors, and hence ηn = eiθηm for some θ ∈ R. Now if
|cnm| = 1 and |cmk| = 1 then ηn = eiθηm and ηm = eiθ ′

ηk , so
ηn = ei(θ+θ ′ )ηk , which implies |cnk| = 1. Hence the relation
n ∼C m is transitive, and since |cnm| = |cmn| for each pair
(n, m), it is also symmetric, so an equivalence relation on the
set {1, . . . , d}. Hence the set splits into a union {1, . . . , d} =
∪nC

k=1IC
k of nC equivalence classes IC

k (unique up to ordering).
We let �C = {1, . . . , nC}.

Now we pick from each equivalence class IC
k one fixed rep-

resentative nk ∈ IC
k , and let η̃k := ηnk for each k; then for each

n = 1, . . . , d there is a unique phase factor eiθn so that ηn =
eiθn η̃k where IC

k is the class of n. Now define an nC × nC matrix
C̃ by c̃kk′ := 〈η̃k|η̃k′ 〉. By construction, C̃ is a structure matrix,
and we observe that cnm = 〈ηn|ηm〉 = e−i(θn−θm )c̃kk′ whenever
n ∈ IC

k and m ∈ IC
k′ . Let D be the matrix dnm = e−i(θn−θm ); this

is symmetric rank 1, hence the structure matrix of a unitary
GIO �∗

D(X ) = UDXU †
D where UD is the diagonal unitary with

phases e−iθn on the diagonal. We then let H̃ be the Hilbert
space with incoherent basis {|k〉}k∈�C and define L : H̃ → H
by

L|k〉 =
∑
n∈IC

k

|n〉.

We then obtain the decomposition C = D ∗ (LC̃L†), so
that C  LC̃L†, and see that the (n, m) entry of the structure
matrix LC̃L† is equal to c̃kk′ for all n ∈ IC

k , m ∈ IC
k′ , that is,

it only depends on the classes of n and m. In other words,
after the unitary GIO is factored out, the remaining channel
compresses into the GIO �C̃ on an nC-dimensional system. By
construction, this channel is unique up to diagonal unitaries,
corresponding to different choices of the representatives nk .

Assuming P is adapted, we can compress it into an inco-
herent observable P̃ on the nC-dimensional system, by setting
pP̃

k := pP
n for any n ∈ IC

k , so that P( j) = L(P̃( j)) where
L : span{|k〉〈k| | k ∈ �C} → span{|n〉〈n| | n = 1, . . . , d}
links the two diagonal algebras “incoherently”:

L(|k〉〈k|) =
∑
n∈IC

k

|n〉〈n|.

We can now prove our first reduction result:
Proposition 8. There is a GIO �C̃ acting on H̃ such that

C  LC̃L†. Then CC = {L(P(·)) | P ∈ CC̃}.
Proof. The decomposition C  LC̃L† was constructed

above. To prove the second claim, assume first that P′ ∈ CC ,
and let C( j) form a GII with observable P′ and GIO �C ,
so that cnm( j) = 〈ηn|F( j)|ηm〉 for some POVM F on the di-
lation space K, with 〈ηn|F( j)|ηn〉 = pP′

n ( j) for each n. Now
the nC × nC matrices C̃( j) defined by c̃kk′ ( j) := 〈η̃k|F( j)|η̃k′ 〉
form a GII with channel �C̃ . In order to find the cor-
responding observable we compute c̃kk ( j) = 〈η̃k|F( j)|η̃k〉 =
〈ηn|F( j)|ηn〉 = pP′

n ( j) for any n ∈ IC
k . Hence pP′

n does not
depend on the choice of n ∈ IC

k , so P′ is adapted to C,
and P′ = L(P) where P is defined by pP

k ( j) := c̃kk ( j). This
shows that the observable of this GII is P, so P ∈ CC̃ .
Conversely, if P′ = L(P) with P ∈ CC̃ then there is a GII
C̃( j) with

∑
j c̃kk′ ( j) = c̃kk′ and c̃kk ( j) = pP

k ( j). We then
define cnm( j) := e−i(θn−θm )c̃kk′ ( j) whenever (n, m) ∈ IC

k × IC
k′ .

This is a GII for which
∑

j cnm( j) = e−i(θn−θm )c̃kk′ = cnm, and

cnn( j) = c̃kk ( j) = pP
k ( j) = pP′

n ( j) regardless of the choice of
n ∈ IC

k . Hence P′ ∈ CC . This completes the proof. �
Now let Sd , the group of permutations of {1, . . . , d}, act

on H via Uπ |n〉 = |π (n)〉, and recall from the main text the
symmetry group

GC = {π ∈ Sd | U †
πCUπ  C}.

By the definition of , GC consists of exactly those permuta-
tions π ∈ Sd for which there exists a unitary GIO with matrix
D such that U †

πCUπ = D ∗ C. So π ∈ GC iff there exist phase
factors un(π ), n = 1, . . . , d , such that

cπ (n),π (m) = un(π )cnmum(π ) (D1)

for each n, m. In what follows we assume for simplicity that
cnm �= 0 for all n, m. Then for each π the coefficients un(π )
are uniquely determined up to an overall (π -dependent) phase
factor, which we choose by setting un0 (π ) = 1 for a fixed n0.
We can then construct un(π ) explicitly from the entries of C:

un(π ) = cπ (n),π (n0 )/cnn0 , n = 1, . . . , d. (D2)

We then define, for each π ∈ GC and n = 1, . . . , d , a unitary
operator Wπ on H by

Wπ |n〉 = un(π )|π (n)〉, n = 1, . . . , d,

so that [by (D1)] we may write

GC = {π ∈ Sd | W †
π CWπ = C}.

The following result shows that Wπ appropriately reflects the
symmetries of C on the Hilbert space level:

Proposition 9. GC is a permutation group (i.e., a subgroup
of Sd ), and π 	→ Wπ is a projective unitary representation of
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GC with multiplier (π, π ′) 	→ uπ ′(n0 )(π ). If each entry of C is
real positive, then Wπ = Uπ .

Proof. Let π, π ′ ∈ GC . Then (D1) holds for both, so

cππ ′(n),ππ ′(m) = uπ ′(n)(π )cπ ′(n),π ′(m)uπ ′(m)(π )

= uπ ′(n)(π )un(π ′)cnmum(π ′)uπ ′(m)(π )

for all n, m, showing that (D1) holds also for ππ ′. Hence
ππ ′ ∈ GC , and since GC is finite, this implies that GC is a
subgroup. Taking m = n0 and using (D2) we find

un(ππ ′) = uπ ′(n)(π )un(π ′)uπ ′(n0 )(π ),

which reads WπWπ ′ = uπ ′(n0 )(π )Wππ ′ . Since clearly We = 1,
the second claim follows. Finally, if each entry of C is real
positive, then un(π ) = 1 for all π and n, and we have simply
Wπ = Uπ . �

It is clear that {IC
k } forms a block system for the group GC :

for each π ∈ GC we have |cnm| = 1 iff |cπ (n),π (m)| = 1, so π

moves each class as a whole, π (IC
k ) = IC

φ(π )(k) for a unique
φ(π ) ∈ GC̃ , where C̃ is the reduced nC × nC GIO matrix. The
map φ : GC → GC̃ is a homomorphism with φ(GC ) � GC̃
consisting of permutations between classes of the same size.
This structure is unique up to an irrelevant overall permutation
of {1, . . . , nC}, fixed by the labeling of IC

k .
Next, recall that given any subgroup G � GC , a G-

covariant incoherent observable P is one with outcome set �C

satisfying pP
π−1(n)( j) = pP

n (φ(π )( j)) for each π ∈ G, j ∈ �C

and n ∈ {1, . . . d}. It is convenient to write this condition
equivalently using the representation Wπ as

WπP( j)W †
π = P(φ(π )( j)), π ∈ G, j ∈ �C . (D3)

Note that the reduced matrix C̃ obviously does not reduce
further, i.e., nC̃ = nC (each equivalence class is a singleton).
Hence for any subgroup G̃ � GC̃ � SnC , the G̃-covariant ob-
servables P are given by (D3) with d replaced by nC and
φ = Id.

We recall that CC[G] is the set of all G-covariant incoherent
observables in CC , and Csym

C = CC[GC]. The symmetry con-
straint (D3) can be naturally formulated in the GII level: we
call a GII C( j) G covariant if

WπC( j)W †
π = C(φ(π )( j)), π ∈ G, j ∈ �C . (D4)

Notice that here the matrices C( j) are not diagonal, so we
need to state the condition using the representation Wπ . The
following result shows that the SDP (5) in the main text can
be supplemented by an extra symmetry constraint if P is G
covariant:

Proposition 10. Any P ∈ CC[G] has a G-covariant GII.
Proof. To prove the claim, let P ∈ CC[G]. Then there is a

GII C( j) with
∑

j C( j) = C and cnn( j) = pP
n ( j) for all n. We

define

C′( j) := 1

|G|
∑
π∈G

W †
π C(φ(π )( j))Wπ .

This is essentially the “averaging argument” often used in
the context of symmetry constraints for joint measurability
[27,56,57], except that now we apply it at the level of structure
matrices as opposed to POVM elements. Now C′( j) � 0, so it

defines a GII, which is G covariant, as

Wπ0C
′( j)W †

π0
= 1

|G|
∑
π∈G

W †
ππ−1

0
C(φ(π )( j))Wππ−1

0

= 1

|G|
∑
π∈G

W †
π C(φ(ππ0)( j))Wπ

= 1

|G|
∑
π∈G

W †
π C(φ(π )φ(π0)( j))Wπ

= C′(φ(π0)( j))

for each π0 ∈ G. Here we used the fact that π 	→ Wπ is
a (projective) representation, and φ is a homomorphism.
Furthermore,

∑
j

C′( j) = 1

|G|
∑
π∈G

W †
π

∑
j

C(φ(π )( j))Wπ

= 1

|G|
∑
π∈G

W †
π CWπ = 1

|G|
∑
π∈G

C = C,

as G is a subgroup of GC = {π ∈ Sd | WπCW †
π = C}. Finally,

c′
nn( j) = 1

|G|
∑
π∈G

〈n|W †
π C(φ(π )( j))Wπ |n〉

= 1

|G|
∑
π∈G

cπ (n),π (n)(φ(π )( j))

= 1

|G|
∑
π∈G

pP
π (n)(φ(π )( j))

= 1

|G|
∑
π∈G

pP
n ( j) = pP

n ( j),

because P is G covariant. Therefore, C′( j) satisfies Eq. (5) in
the main text, and is G covariant. �

We also remark that the GII matrices can always be cho-
sen real if C is a real matrix (independently of permutation
symmetry). In fact, if Eq. (5) holds for matrices C( j), we
can define Cre( j) = 1

2 (C( j) + C( j)T ); then Cre( j) � 0 since
transpose preserves positivity, and Cre( j) is a real symmetric
matrix since cre

nm( j) = Re cnm( j) (as C( j) = C( j)∗). Since C
is real we therefore still have

∑
j Cre( j) = C, and since the

diagonal of C( j) is real in any case, it coincides with the
diagonal of Cre( j). Hence the matrices Cre( j) fulfill Eq. (5)
as well.

We now prove the main reduction result, which in the main
text was stated in Eq. (6):

Proposition 11. Csym
C = {L(P(·)) | P ∈ CC̃[φ(GC )]}.

Proof. Let P ∈ CC̃[φ(GC )]. Hence P is φ(GC ) covari-
ant and P ∈ CC̃ . Now define P′ := L(P). Then P′ ∈ CC by
Proposition 8. Note that P′ still has nC outcomes, but lives
in dimension d; explicitly, P′( j) = ∑nC

k=1 pP
k ( j)

∑
n∈IC

k
|n〉〈n|.

The following rearrangement now shows that P′ is GC
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covariant:

WπP′( j)W †
π =

nC∑
k=1

pP
k ( j)

∑
n∈IC

k

|π (n)〉〈π (n)|

=
nC∑

k=1

pP
k ( j)

∑
π−1(n)∈IC

k

|n〉〈n|

=
nC∑

k=1

pP
k ( j)

∑
n∈IC

φ(π )(k)

|n〉〈n|

=
nC∑

k=1

pP
φ(π )−1(k)( j)

∑
n∈IC

k

|n〉〈n|

=
nC∑

k=1

pP
k (φ(π )( j))

∑
n∈IC

k

|n〉〈n| = P′(φ(π )( j)).

Hence P′ ∈ Csym
C . Conversely, if we pick a P′ ∈ Csym

C then by
Proposition 8 we can write it as P′ := L(P) for some P ∈ CC̃ ,
and reverse the rearrangement to show that pP

φ(π )−1(k)( j) =
pP

k (φ(π )( j)), i.e., P is φ(GC ) covariant and hence P ∈
CC̃[φ(GC )]. This completes the proof. �

Finally, we modify the robustness idea described above
to account for symmetry: instead of Eq. (2) we use the
“canonical” GC-covariant observable PC ( j) := L(| j〉〈 j|), j ∈
�C , and the line PC

α = αPC + (1 − α)PC
dep, where PC

dep( j) =
d−1tr[PC ( j)]1 = d−1|IC

j |1. Noting that PC /∈ Csym
C , we use

Proposition 11 to set

αC := max
{
α > 0 | PC

α ∈ CC
}

= max
{
α > 0 | PC

α ∈ Csym
C

}
= max

{
α > 0 | α| j〉〈 j| + (1 − α)d−1|IC

j |1 ∈ Csym
C̃

}
,

(D5)

so αC is the proportion of the line where coherence does
not sustain incompatibility. Note that in the nondegenerate
case (|cnm| < 1 for all n �= m) we have PC

α = Pα , so Eq. (D5)
is (by Theorem 1) consistent with αM defined after Eq. (2)
in the main text, when M = C ∗ Q0 where Q0 is maximally
coherent.

APPENDIX E: UNIFORM COHERENCE WITH
NEGATIVE ENTRIES

Let C be a coherence matrix with full symmetry, i.e.,
GC = Sd . Then cnm = λ for all n �= m, for some λ ∈ R;
i.e., all coherences are equal. From its eigenvalues one sees
that C defines a GIO iff −(d − 1)−1 � λ � 1. Any GC-
covariant P has pP

n ( j) = q for all n, j, j �= n, for a fixed
q; writing q = (1 − α)/d we see that P = PC

α = Pα for
some −(d − 1)−1 � α � 1. Hence these families are nat-
urally motivated by symmetry considerations. Recall from
the main text (Proposition 3) that for λ, α > 0 we have
Pα ∈ Csym

C if and only if gd (α) � λ where gd (α) = 1
d ((d −

2)(1 − α) + 2
√

1 − α
√

1 + (d − 1)α), and we now note that
the same argument clearly applies also for α < 0. If α >

0 we can write this equivalently as α � gd (λ); the func-

tion α 	→ gd (α) is decreasing for α ∈ [0, 1] and is its own
inverse. If α < 0 the result still holds, but the inequality
cannot be inverted using gd , as α 	→ gd (α) is increasing for
α ∈ [−(d − 1)−1, 0] with inverse u 	→ 1

d ((d − 2)(1 − u) −
2
√

1 − u
√

1 + (d − 1)u). To summarize the λ > 0 case:

Csym
C = {

PC
α | gd (α) � λ

}
when λ ∈ [0, 1].

Now if λ < 0, the Corollaries 1 and 2 do not completely deter-
mine Csym

C . Indeed, Corollary 1 gives the necessary condition
λ � −gd (α) for PC

α ∈ Csym
C , and Corollary 2 the sufficient

condition λ � −gd (α)(d − 1)−1, which only coincide in the
qubit case. However, since C ∗ Q0 and Pα have the exact same
form, we can interchange α and λ above to conclude that for
α > 0 and λ ∈ [−(d − 1)−1, 1] we have Pα ∈ Csym

C if and only
if gd (λ) � α. This already gives αC = gd (λ) in Eq. (D5). In
order to fully characterize Csym

C we need to show that PC
α ∈

Csym
C for all (α, λ) ∈ [−(d − 1)−1, 0] × [−(d − 1)−1, 0]; this

then gives

Csym
C = {

PC
α | −(d − 1)−1 � α � gd (λ)

}
,

when λ ∈ [−(d − 1)−1, 0].

To prove the remaining bit it suffices (by convexity) to show
that Pα ∈ Csym

C for the “corner” α = λ = −(d − 1)−1, which
was done in the main text.

APPENDIX F: EXAMPLE: CENTROSYMMETRIC
CASE IN DIMENSION 3

Here we give a nontrivial example of the theory developed
in the main text (and the Appendixes above). This example is
relevant for the N = 2 case of the spin-boson model but we
work it out slightly more generally.

Let C be any 3 × 3 GIO matrix with real positive entries
such that (13) ∈ GC ; that is, the symmetry group contains the
permutation which exchanges 1 and 3 and leaves 2 unchanged.
Then C must be centrosymmetric, i.e., (also) symmetric about
the counterdiagonal, so

C =
⎛
⎝1 λ γ

λ 1 λ

γ λ 1

⎞
⎠,

for some λ, γ ∈ [0, 1] and D := 1
2 (1 + γ ) − λ2 � 0. The

conditions ensure that C � 0. This covers both the uniform
coherence in dimension 3 (γ = λ with GC = S3), and the
reduction C̃ of the spin-boson model for N = 2 (γ = λ4 with
GC = {e, (13)}). In the former case D = (λ + 1

2 )(1 − λ), and
in the latter case D = 1

2 (1 − λ2)2, which are indeed both pos-
itive for all λ ∈ [0, 1].

If GC = S3 (i.e., γ = λ) we know from the main text that
Csym

C = {PC
α | λ � g3(α)}, i.e., has affine dimension one. We

now proceed to characterize Csym
C assuming GC = {e, (13)}

(i.e., γ �= λ). Denote π0 = (13) (as in the main text). We
first note that each {e, (13)}-covariant incoherent observable P
has P(2) = U †

π0
P(0)Uπ0 and P(1) = U †

π0
P(1)Uπ0 . Therefore,

it is of the form P = Pq for some q = (q, p, r) ∈ M := � ×
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[0, 1
2 ] where � := {(q, p) ∈ [0, 1]2 | p + q � 1}, and

Pq(0) =
⎛
⎝p 0 0

0 r 0
0 0 q

⎞
⎠, Pq(1) =

⎛
⎝s 0 0

0 1 − 2r 0
0 0 s

⎞
⎠,

Pq(2) =
⎛
⎝q 0 0

0 r 0
0 0 p

⎞
⎠,

with s = 1 − p − q. Since the map q 	→ Pq is convex, the
convex structure of the set of incoherent observables (includ-
ing the shape of Csym

C inside it) is faithfully represented inside
M. In particular, the incoherent basis observable P0( j) =
| j〉〈 j| and its permutation P0(π0( j)) are represented by the
extremal points (1,0,0) and (0,1,0), while the trivial observ-
ables P( j) = μ( j)1 (where μ is π invariant) form the line
from the origin [with P(1) = 1] to 1

2 (1, 1, 1) [with P(0) =
P(2) = 1

21]. In particular, the centroid 1
4 (1, 1, 1) of M is

the “coin toss” observable P( j) = (2
j)

1
41, while the uniform

trivial observable P( j) = 1
31 is 1

3 (1, 1, 1). The former appears
in the spin-boson model as the depolarization of the spectral
measure of the Hamiltonian (see the main text).

In order to state the result, we define the functions w+ :
� → [0, 2], w− : � → [0, 1], w0 : � → [γ − 1, γ + 1], and
w−

0 : � → [0, 1 + γ ] by

w±(p, q) = (
√

q ± √
p)2, w0(p, q) = γ − 1 + 2(q + p),

w−
0 (p, q) =

{
w−, w+ � 1 − γ

w0, w+ � 1 − γ .

Clearly, w− � w+ (for any p, q). Moreover, w0 � w− when
w+ � 1 − γ , with w0 = w− when w+ = 1 − γ . Correspond-
ingly, w0 � w+ when w− � 1 − γ , with w0 = w+ when
w− = 1 − γ . In particular, 0 � w−

0 � w+, and w−
0 is a con-

tinuous function.
Since D � 0 we have 0 � 2D � 1 + γ and 2λ2 � 1 + γ .

Therefore, we can define the functions

h− :[0, 1 + γ ] → [0, λ2/(1 + γ )],

h−(w) =
{

0, w ∈ [0, 2D](
λ
√

w−√
1+γ−w

√
D

1+γ

)2
, w ∈ [2D, 1 + γ ],

h+ :[0, 1 + γ ] → [
D/(1 + γ ), 1

2

]
,

h+(w) =
{(

λ
√

w+√
1+γ−w

√
D

1+γ

)2
, w ∈ [0, 2λ2]

1
2 , w ∈ [2λ2, 2].

One can readily check that these functions are continuous. The
following result characterizes Csym

C explicitly:
Proposition 12.

Csym
C = {q ∈ M | w− � 1 − γ , r ∈ [h−(w−

0 ), h+(w+)]}.
Before giving a proof, we apply Proposition 12 to a convex

line Pα of the form Pα ( j) = α| j〉〈 j| + (1 − α)μ( j)1, where
μ = (μ(0), μ(1), μ(2)) is a probability distribution, which
must satisfy μ(0) = μ(2) = t ∈ [0, 1

2 ] and μ(1) = 1 − 2t for
Pα to be {e, (13)} covariant. Fixing t we then have Pα repre-
sented by the line

p = α + (1 − α)t, q = r = (1 − α)t,

inside M. The goal is to find to value of α at which it
intersects the boundary of Csym

C . The reason for not restricting
to the canonical line PC

α (i.e., t = 1
3 ) is that we can cover also

the cases where C is obtained as a reduction from some higher
dimension as described in Appendix D. In particular, the case
of the spin-boson model for N = 2 corresponds to t = 1

4 .
Since r decreases as α increases, the intersection point

must lie on the lower boundary surface h−(w−
0 ). We restrict to

the case t � 1
4 (1 − γ ) for simplicity, because then w+(t, t ) =

4t � 1 − γ , and hence w+ � 1 − γ on the whole line. There-
fore w−

0 = w0 = γ + 1 − 2(1 − α)(1 − 2t ) on the line, and
so PC

α ∈ CC iff h−(w0) � (1 − α)t , which reads

λ
√

w0 −
√

1 + γ − w0

√
D � (1 + γ )

√
(1 − α)t .

Rearranging this yields

λ2w0 � (1 − α)(
√

2(1 − 2t )
√

D + (1 + γ )
√

t )2,

from which one can conveniently solve α as

α � 1 − λ2

1 − t (1 − γ ) + 2
√

2t (1 − 2t )D
.

In particular, for t = 1
4 [the centroid of M corresponding to

P( j) = (2
j)4

−11] we get

α � 1 − 4λ2

3 + γ + 4
√

D
, (F1)

while the case t = 1
3 (the uniform trivial observable) gives

instead

α � 1 − 3λ2

2 + γ + 2
√

2D
,

which for uniform decoherence, γ = λ, reduces to

α � 1 − 3λ2

2 + λ + 2
√

(1 + 2λ)(1 − λ)
.

One can easily check that the right-hand side is equal to g3(λ)
appearing in the main text. Since α � g3(λ) is equivalent to
λ � g3(α) (as α, λ > 0), the results are consistent.

Proof of Proposition 12. As per the reduction method in
the main text (proved in Appendix D), Pq ∈ Csym

C if and only
if there exist real matrices C( j) satisfying Eqs. (D4) and (5).
This forces the matrices to have the following form, where
a, b, c ∈ R:

C(0) =
⎛
⎝p a c

a r b
c b q

⎞
⎠,

C(1) =
⎛
⎝ s λ − a − b γ − 2c

λ − a − b 1 − 2r λ − a − b
γ − 2c λ − a − b s

⎞
⎠,

C(2) =
⎛
⎝q b c

b r a
c a p

⎞
⎠.

The problem is, then, whether we can find a, b, c ∈ R so that
the first two of these three matrices are positive semidefinite.
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[Note that C(2) = Uπ0C(0)U †
π0

is then automatically positive
semidefinite.]

In order to further simplify the positivity condition for C(1)
(which is easier of the two), we note that all centrosymmetric
matrices (i.e., ones commuting with Uπ0 ) can be brought to a
block form by a specific orthogonal matrix Q only depending
on Uπ0 [58]; in our case,

Q = 1√
2

⎛
⎝ 1 0 1

0
√

2 0
−1 0 1

⎞
⎠,

and letting x = a + b, y = a − b we obtain

QT C(0)Q =

⎛
⎜⎝

p+q
2 − c y√

2
p−q

2
y√
2

r x√
2

p−q
2

x√
2

p+q
2 + c

⎞
⎟⎠,

QT C(1)Q =
⎛
⎝s − γ + 2c 0 0

0 1 − 2r
√

2(λ − x)
0

√
2(λ − x) s + γ − 2c

⎞
⎠.

Since orthogonal transformations preserve positivity (and de-
terminants), we can extract the conditions for C( j) � 0 from
these matrices. First of all, p+q

2 + c � 0 is clearly necessary
for C(0) � 0. The 2 × 2 principal minors of QT C(0)Q are

d(0) := r

(
p + q

2
+ c

)
− x2

2
,

d(1) :=
(

p + q

2
− c

)(
p + q

2
+ c

)
−
(

p − q

2

)2

= qp − c2,

d(2) := r

(
p + q

2
− c

)
− y2

2
.

Assuming p+q
2 + c > 0, we can write

det C(0) = rd(1) − 1

2

(
p + q

2
− c

)
x2 − 1

2

(
p + q

2
+ c

)
y2

+ xy
p − q

2

= d(0)d(1)/

(
p + q

2
+ c

)
−1

2

(
p + q

2
+c

)
(y − y0)2,

where y0 = 1
2 x(p − q)/( p+q

2 + c). Hence, C(0) � 0 is equiv-
alent to det C(0) � 0 and d(i) � 0 for i = 1, 2, 3. Since
d(0), d(1) do not depend on y and imply d(2) � 0 when y = y0,
it follows that if C(0) � 0 for some choices of x, y, c, it also
holds if we take y = y0 (as the determinant can only increase).
As C(1) does not depend on y, we may therefore always take
y = y0. With this choice, C(0) � 0 if and only if

p+q
2 + c � 0, |x| �

√
2r

(
p + q

2
+ c

)
, c2 � qp. (F2)

[In the special case p+q
2 + c = 0, we have C(0) � 0 only if

p = q and x = 0, so C(0) � 0 iff y2 � 4r p. Hence we can
take y = y0 = 0, and this case is covered by (F2)].

Next we observe that C(1) � 0 if and only if

∣∣∣c − γ

2

∣∣∣ � s

2
, |λ − x| �

√
(1 − 2r)

(
s + γ

2
− c

)
. (F3)

For fixed c, the inequalities (F2) and (F3) force x into an
intersection of two intervals. By the triangle inequality, (F2)
and (F3) hold for some x, if and only if λ � g(c) where

g(c) :=
√

2r

(
p + q

2
+ c

)
+
√

(1 − 2r)

(
s + γ

2
− c

)
,

and the remaining constraints hold for c. These constraints are
given by the following set:

D :=
{

c ∈ R
∣∣∣ ∣∣∣c − γ

2

∣∣∣ � s

2
, |c| � √

pq
}
.

Hence, q ∈ CC if and only if λ � g(c) for some c ∈ D. Clearly,
this is in turn equivalent to the following:

D �= ∅ and λ � max
c∈D

g(c). (F4)

By the triangle inequality, D �= ∅ if and only if

γ − s

2
� √

qp, (F5)

in which case D is the interval

D :=
[

max

{
− √

qp,
γ − s

2

}
, min

{√
qp,

γ + s

2

}]
(F6)

(where the left boundary does not exceed the right). Hence,
(F5) is a necessary (but not sufficient) condition for q ∈ CC . In
fact, it is one of the two Hellinger distance conditions given
by Corollary 1 of the main text. We note that (F5) does not
depend on r, and let R denote the set of those (p, q) ∈ � for
which it holds. Then

R = {(p, q) ∈ � | w− � 1 − γ },
where the function w− = w−(p, q) was defined above. Next
we note that the maximal domain of g (where the square roots
are defined) is

Dmax := [ − 1
2 (p + q), 1

2 (s + γ )
]
,

which clearly contains D because
√

qp � 1
2 (q + p). We read-

ily find the global maximum point of g within Dmax:

2
dg

dc
=
√

2r

c + (p + q)/2
−
√

1 − 2r

(s + γ )/2 − c
,

and hence dg
dc � 0 iff c � c0 where c0 = r(1 + γ ) − 1

2 (p +
q). Note that indeed c0 ∈ Dmax, as

c0 + p + q

2
= r(1 + γ ) � 0,

s + γ

2
− c0 =

(
1

2
− r

)
(1 + γ ) � 0.

It follows that g(c0) =
√

1
2 (1 + γ ), so that g(c0) � λ automat-

ically by the positivity of C, and hence c0 ∈ D is a sufficient
condition for q ∈ CC . However, it is not a necessary condition,
as c0 may fall on either side of D; in those cases, the maximum
is attained at the boundary, and we obtain a constraint in terms
of λ. In order to find it we consider the three possible cases

012205-13



KIUKAS, MCNULTY, AND PELLONPÄÄ PHYSICAL REVIEW A 105, 012205 (2022)

for D:
(1) D1 = [−√

qp,
√

qp].
(2) D2 = [ γ−s

2 ,
√

qp].
(3) D3 = [ γ−s

2 ,
γ+s

2 ].
(The case D = [−√

qp, γ+s
2 ] cannot occur as γ � 0.)

Since D does not depend on r, these cases set up a unique
partition of R; we have R = R1 ∪ R2 ∪ R3 where Ri :=
{(p, q) ∈ R | D = Di}. It is then easy to check that

R1 = {(p, q) ∈ � | w+ < 1 − γ },
R2 = {(p, q) ∈ � | 1 − γ � w+ < 1 + γ } ∩ R,

R3 = {(p, q) ∈ � | w+ � 1 + γ },
where we have used the function w+ = w+(p, q) defined
above. Each of these cases then has three subcases (a)–(c)
according to whether c0 � minD, c0 ∈ D, or c0 � maxD,
respectively. In order to describe them we also need the func-
tions w0 = w0(p, q), and l (w) := 1

2w/(1 + γ ). We observe
that q ∈ CC if and only if (q, p) falls into one of the following
eight categories:

(1) (p, q) ∈ R1 [implying 0 � l (w−) � l (w+) � 1
2 ], and

(a) 0 � r � l (w−) and λ � g(−√
qp), or

(b) l (w−) � r � l (w+), or
(c) l (w+) � r � 1

2 and λ � g(
√

qp).
(2) (p, q) ∈ R2 [implying 0 � l (w0) � l (w+) � 1

2 ] and
(a) 0 � r � l (w0) and λ � g( γ−s

2 ), or
(b) l (w0) � r � l (w+) or
(c) l (w+) � r � 1

2 and λ � g(
√

qp).
(3) (p, q) ∈ R3 [implying 0 � l (w0) � 1

2 ], and
(a) 0 � r � l (w0) and λ � g( γ−s

2 ), or
(b) l (w0) � r � 1

2 .
(In this case (c) does not occur.)
We then notice that

g(±√
qp) = √

rw± +
√(

1
2 − r

)
(1 + γ − w±),

g
(

1
2 (γ − s)

) = √
rw0 +

√(
1
2 − r

)
(1 + γ − w0); (F7)

hence in each case the condition involving λ is of the form

λ �
√

rw +
√(

1
2 − r

)
(1 + γ − w), (F8)

for (r,w) ∈ [0, 1
2 ] × [0, 1 + γ ]. Equivalently,

h−(w) � r � h+(w), (F9)
where h± were introduced above. We observe that

h−(w) � l (w) � h+(w) (F10)

for all (r,w) ∈ [0, 1
2 ] × [0, 1 + γ ]. (In fact, the region defined

by (F8) is symmetric about the line r = l (w).) Using (F7),
(F9), and (F10) we can put together subcases (a)–(c) in the
above three cases: q ∈ CC if and only if one of the following
conditions hold:

(1) (p, q) ∈ R1 and h−(w−) � r � h+(w+).
(2) (p, q) ∈ R2 and h−(w0) � r � h+(w+).
(3) (p, q) ∈ R3 and h−(w0) � r � 1

2 .
Noting that w+ � 1 + γ � 2λ2 when (p, q) ∈ R3, we

have h+(w+) = 1
2 when (p, q) ∈ R3, and hence the upper

bound for r is always h+(w+). By the definition of w−
0 , the

lower bound is h−(w−
0 ), and the proof of the proposition is

complete.

APPENDIX G: SPIN-BOSON MODEL WITH N = 2

Here we present in detail the analytical solution of Csym
C

for N = 2 in the spin-boson model. We order the two-qubit
incoherent basis in the usual way as {|00〉, |01〉, |10〉, |11〉},
with respective label set {1, 2, 3, 4}, on which the symmetric
group S4 acts. In this basis our matrix C[λ] of the dynamical
GIO reads

C[λ] =

⎛
⎜⎜⎝

1 λ λ λ4

λ 1 1 λ

λ 1 1 λ

λ4 λ λ 1

⎞
⎟⎟⎠.

The equivalence classes of maximal coherence are given
by IC

0 = {1}, IC
1 = {2, 3}, IC

2 = {4}, so nC = 3. These corre-
spond to the eigenspaces of Sz given by S0 = span{|00〉},
S1 = span{|01〉, |10〉}, and S2 = span{|11〉}. Note that S1 is
a nontrivial two-dimensional decoherence-free subspace, as
we can see from the matrix. Now the canonical incoherent
observable PC has three outcomes {0, 1, 2}, and is given
by PC (0) = |00〉〈00|, PC (1) = |10〉〈01| + |10〉〈01|, PC (2) =
|11〉〈11|, which is just the spectral decomposition of Sz

as mentioned in the main text. The line PC
α used to de-

fine the quantity αC is given by PC
α ( j) = αPC ( j) + (1 −

α)tr[PC ( j)] 1
41 = αPC ( j) + (1 − α)(2

j)
1
41. Finally, the sym-

metry group GC leaving C unchanged is the subgroup of
S4 generated by the within-class permutation (23) (exchang-
ing 2 and 3), and the order reversal (14)(23), that is, GC =
{e, (23), (14)(23), (14)}. The task is to characterize the set
Csym

C .
We now carry out the reduction to dimension nC = 3. First,

we have

C̃[λ] =
⎛
⎝ 1 λ λ4

λ 1 λ

λ4 λ 1

⎞
⎠,

with GC̃ = {e, (13)}. The homomorphism φ : GC → GC̃
defined by π (IC

k ) = IC
φ(π )(k) maps as follows: φ((23)) =

φ(e) = e, φ((14)) = φ((14)(23)) = (13), so that φ(GC ) =
{e, (13)} = GC̃ , i.e., the within-class permutation is mapped
to the identity, and the reversal carries over to the reduction.
In this way we end up with the case considered above in
Appendix F with γ = λ4, so Proposition 12 gives the three-
dimensional convex set CC[φ(GC )] = Csym

C . Hence every P ∈
Csym

C is of the form

P(0) =

⎛
⎜⎝

p 0 0 0
0 r 0 0
0 0 r 0
0 0 0 q

⎞
⎟⎠,

P(1) =

⎛
⎜⎝

s 0 0 0
0 1 − 2r 0 0
0 0 1 − 2r 0
0 0 0 s

⎞
⎟⎠,

P(2) =

⎛
⎜⎝

q 0 0 0
0 r 0 0
0 0 r 0
0 0 0 p

⎞
⎟⎠,
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where (p, q, r) ∈ [0, 1], r ∈ [0, 1
2 ] are such that w−(p, q) �

1 − λ4, r ∈ [h−(w−
0 (p, q)), h+(w+(p, q))] (see Appendix F).

As noted in the main text, Csym
C is therefore a convex set of

affine dimension 3 only depending on λ, and can conveniently
be plotted in the parametrization (p, q, r), as shown in Fig. 1
in the main text. Furthermore, by substituting γ = λ4 into
Eq. (F1) in Appendix F we immediately deduce that

α2(λ) = 1 − 4λ2

3 + λ4 + 2
√

2(1 − λ2)
,

as claimed in the main text.

APPENDIX H: SMALL COHERENCE LIMIT IN THE
SPIN-BOSON MODEL

Here we prove the asymptotic behavior of the curve α =
αN (λ) stated in Proposition 5. We first consider the up-
per bound α = UN (λ), or, equivalently, λ = β01(α), which is
an explicit algebraic curve given by the Hellinger distance
d2

01(PC̃
α ) corresponding to the dominant coherence λ in C[λ],

as explained in the main text. Hence the asymptotic form
is easily obtained: β01(α) = kN

√
1 − α + O(1 − α), where

kN = 2−N/2(1 + √
N ). Here we have used the customary nota-

tion where g(α) = O((1 − α)k ) means that the function α 	→
|g(α)|/(1 − α)k is bounded on some neighborhood of α = 1.
Note that this does not require a convergent series expansion
for g at α = 1. Indeed, while such an expansion exists for
β01(α), the same is not clear for the exact curve α = αN (λ),
which nevertheless turns out to have the same behavior. In or-
der to see this we find a lower bound with the same asymptotic
behavior. We denote qk (α) = (N

k ) 1−α
2N , for each k = 0, . . . , N ,

and uk (α) = √
qk (α)(α + qk (α)) for k = 0, 1. Then the upper

bound reads β01(α) = u0(α) + u1(α) + (1 − α)(1 − 1
2N (1 +

N )). It turns out that the first two terms form a lower bound:
Lemma 1. u0(α) + u1(α) � α−1

N (α) for all α ∈ [0, 1],
where α−1

N : [0, 1] → [0, 1] is the inverse of the monotone
function αN .

As a consequence, we obtain the following result, the first
part of which is Proposition 5 in the main text:

Proposition 13. For any fixed N ,

α−1
N (α) = kN

√
1 − α + O(1 − α) as α → 1.

For each α ∈ [0, 1] and N , we have the error bound

|α−1
N (α) − kN

√
1 − α| � 1 − α + 3

2
kN

(
1 − α

α

) 3
2

.

Proof. Using the bijection α 	→ v = √
1 − α we define

f (v) := u0(α) + u1(α)

= v
√

1 − r
√

1 − rv2 + v
√

1 − s
√

1 − sv2,

where r = 1 − 2−N and s = 1 − N2−N . Now β01(α) =
f (v) + v2(1 − 1

2N (1 + N )) � f (v) + v2. Combined with
Lemma 1, this gives f (v) � α−1

N (α) � f (v) + v2,
that is, |α−1

N (α) − f (v)| � v2 for all v ∈ [0, 1]. Since
f (0) = 0, Taylor’s theorem gives f (v) = kNv + z(v), where

|z(v)| � 1
2v2 max0�ṽ�v | d2 f

dv2 (ṽ)|. Now

∣∣∣∣d2 f

dv2
(ṽ)

∣∣∣∣ = r
√

1 − r(3 − 2rṽ2)ṽ

(1 − rṽ2)
3
2

+ s
√

1 − s(3 − 2sṽ2)ṽ

(1 − sṽ2)
3
2

� 3vr
√

1 − r

(1 − rv2)
3
2

+ 3vs
√

1 − s

(1 − sv2)
3
2

� 3(1 + √
N )v

2N/2(1 − v2)
3
2

,

and hence |z(v)| � 3
2 kNv3(1 − v2)−

3
2 . Therefore,

|α−1
N (α) − kNv| = |α−1

N (α) − f (v) + z(v)|
� |α−1

N (α) − f (v)| + |z(v)|
� v2 + 3

2 kNv3(1 − v2)−
3
2 .

Substituting v = √
1 − α yields the claim. �

Since α−1
N (1) = 0, the validity of the approximation can be

quantified by the relative error ε = |α−1
N (α) − kNv|/α−1

N (α).
Assuming that the second term in the error bound of the
proposition is negligible for this consideration, we get the
maximum relative error εmax ≈ (kN/

√
1 − α − 1)−1. This

suggests that the asymptotic form becomes valid around α ≈
1 − ck2

N where c is a constant. For instance, α ≈ 1 − (kN/24)2

corresponds to a maximum error of 4–5 %.
We now prove Lemma 1 by constructing explicitly a GII

satisfying Eqs. (D4) and (5), for λ = u0(α) + u1(α) and all
α ∈ [0, 1]. [This then shows that PC

α ∈ CC whenever α satis-
fies λ � u0(α) + u1(α), and therefore the transition point α =
αN (λ) must satisfy λ � u0(α) + u1(α), giving the claimed in-
equality.] For simplicity, we show the construction for N � 5
(for smaller N it needs a few modifications).

First define

C(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α + q0 u0 0
u0 q0 0
0 0 q0

0 0

0
q0

. . .

q0

0

0 0
q0 0 0
0 q0 0
0 0 q0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

C(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1 u1 q1

u1 α + q1 u1

q1 u1 q1

0 0

0
q1

. . .

q1

0

0 0
q1 0 −q1

0 q1 0
−q1 0 q1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These matrices are clearly positive semidefinite. (If N = 5 the central block is empty.) We then set C(N ) := U †
π0

C(0)Uπ0 , C(N −
1) := U †

π0
C(1)Uπ0 , where Uπ0 is the permutation matrix for the order reversal π0. Recalling that A 	→ U †

π0
AUπ0 transposes the

matrix along the counterdiagonal, we can easily check that C(0) + C(1) + C(N − 1) + C(N ) reads⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α + r1 λ 0
λ α + r1 u1

0 u1 r1

0 0

0
r1

. . .

r1

0

0 0
r1 u1 0
u1 α + r1 λ

0 λ α + r1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where rk = 2
∑k

j=0 q j . Note that −q1 on the lower right block
of C(1) cancels out the q1 on the upper left block, and the
overlap between C(0) and C(1) produces λ on both ends of
the diagonal (n, n + 1).

Next, let j0 = N/2 if N is even, and j0 = (N − 1)/2 if N
is odd, and define

Mj (w) =
⎛
⎝q j w 0

w α + q j w

0 w q j

⎞
⎠

for j = 2, . . . , j0 and w ∈ [0, 1]. Now Mj (w) � 0 if and only
if 2w2 � q j (q j + α), which is clearly the case for w = u0

when j � 2, and for w = u1 when j � 3, because q j is in-
creasing in j (up to j0), and q2 � 2q0, q3 � 2q1. [Note that
the same is not true for j = 0, 1, which is why we defined
C(0) and C(1) differently above.] Then let

Vj (w) =
⎛
⎝qk1 j−1 0 0

0 Mj (w) 0
0 0 qk1N− j−1

⎞
⎠

for each j = 2, . . . , j0.
We now consider even and odd N separately.
If N is even, j0 is the “middle” point of {0, . . . , N}, and

we can set up C(2), . . . ,C( j0 − 1) as follows: C( j) := Vj (u1)
if j is odd, and C( j) := Vj (u0) if j is even. Notice that the
block Mj (w) moves down the diagonal as j increases, with
w alternating between u1 and u0. These blocks only over-
lap between neighboring matrices C( j), C( j + 1), and hence
the sum

∑
j C( j) has λ = u0 + u1 on each (k, k − 1) entry

for k = 0, . . . , j0 − 1. We then set C( j0 + j) := U †
π0

C( j0 −
j)Uπ0 for j = 1, . . . , j0 − 2, to satisfy the symmetry. Finally,
we define the middle element by C( j0) := D + G where D

follows the above pattern, that is, D := Vj0 (u1) (Vj0 (u0)) if j0
is odd (even), G := C[λ] − C̃, and C̃ denotes the truncation of
C[λ] to second order in λ, so that C̃ is a tridiagonal matrix.
Now

∑
j �= j0

C( j) + D = C̃, and the remainder G is included
in C( j0) so that

∑
j C( j) = C[λ]. Note also that C( j0) satisfies

U †
π0

C( j0)Uπ0 = C( j0) as D has the block Mj0 (w) exactly at the
center. We are left to prove that C( j0) � 0. To do this we write

C( j0) = D + G = (D − ε1) + (ε1 + G),

where we pick ε > 0 small enough so that D − ε1 � 0, but
large enough to make ε1 + G � 0. We can take, for instance,
ε = 2

3 q1. In fact, first note that λ = u0 + u1 � kN
√

1 − α, and
λ � 0.305 for all α ∈ [0, 1], N � 5. Also, k2

N � 2.1N/2N for
N � 5 so

1

2

∑
j �=i

Gi j �
∞∑

k=2

λk2 � λ4
∞∑

k=0

λk = λ4

1 − λ
� 0.14λ2

� 0.14k2
N (1 − α) � 0.14 ∗ 2.1q1 � 1

3
q1,

and hence ε1 + G � 0 when N � 5 by diagonal dominance.
Moreover, Mj0 (w) − ε1 � 0 since for N � 6,

(q j0 − ε)(α + q j0 − ε) − 2w2

� (q3 − ε)(α + q3 − ε) − 2q1(α + q1)

� (q3 − 2q1 − ε)(α + q3) + 2q1(q3 − q1) − q3ε

= (q3 − 8

3
q1)(α + q3) + 4

3
q1(q3 − 3

2
q1) � 0,

where q3 − 8
3 q1 = N

6 ((N − 1)(N − 2) − 16) 1−α
2N � 0 as N �

6. [Note that the 2 × 2 principal minors of Mj0 (w) are then
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automatically positive.] Hence D − ε1 � 0. This completes
the construction for even N .

If N is odd, we have two middle points j0 and j0 + 1.
We now define C(2), . . . ,C( j0 − 1) as above, and again
set C( j0 + 1 + j) := U †

π0
C( j0 − j)Uπ0 , for j = 1, . . . , j0 −

2. The sum of these matrices coincides with C̃ everywhere
except in the 4 × 4 block at the center of the matrix, and on
the main diagonal. The two remaining matrices have to be set
up separately. Let w = u1 if j0 is odd, and w = u0 if it is even.
We first define D as the (N + 1) × (N + 1) matrix having qj0
on the main diagonal outside the central 4 × 4 block,⎛

⎜⎜⎝
q j0 w 0 0
w α + q j0

λ
2 0

0 λ
2 q j0 0

0 0 0 q j0

⎞
⎟⎟⎠, (H1)

and the remaining elements zero. Now D � 0 due to qj0 �
q2 � 2q1, which holds as N � 5. Clearly, the sum D +
U †

π0
DUπ0 has 2q j0 = q j0 + q j0+1 on the main diagonal outside

the central block, which reads⎛
⎜⎝

2q j0 w 0 0
w α + 2q j0 λ 0
0 λ α + 2q j0 w

0 0 w 2q j0

⎞
⎟⎠.

Added to the previously constructed C( j), this produces C̃.
Now define C( j0) := D + 1

2 G and C( j0 + 1) = U †
π0

DUπ0 +
1
2 G, where G is as before. Then C( j0 + 1) = U †

π0
C( j0)Uπ0

and
∑N

j=0 C( j) = C[λ]. As in the even case, we establish that
C( j0) � 0; we write

C( j0) =
(

D − ε

2
1

)
+ 1

2
(ε1 + G),

with the same ε as before, so the second term is positive for
N � 5. Using 1

4λ2 � 1
2 (u2

0 + u2
1) we get(

q j0 − ε

2

)(
α + q j0 − ε

2

)
− (λ/2)2 − w2

�
(

q2 − ε

2

)(
α + q2 − ε

2

)
− 1

2

(
u2

0 + u2
1

) − q1(α + q1)

=
(

q2 − 1

3
q1

)(
α + q2 − 1

3
q1

)

− 1

2
q0(α + q0) − 3

2
q1(α + q1)

=
(

q2 − 11

6
q1 − 1

2
q0

)
α +

(
q2 − 1

3
q1

)2

− 1

2
q2

0 − 3

2
q2

1

=
(

N2 − 1

2
− 11N

6

)
α(1 − α)

2N

+
((

N2

2
− 5N

6

)2

− 1 + 3N2

2

)
(1 − α)2

22N

� 0 for N � 5,

which implies that D − ε
21 � 0. This completes the proof for

the odd case, and the proof of Lemma 1 is complete.
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