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Trajectory tracking for non-Markovian quantum systems
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We propose a systematic scheme to engineer quantum states of a quantum system governed by a time-
convolutionless non-Markovian master equation. According to the idea of reverse engineering, the general
algebraic equation to determine the control parameters, such as coherent and incoherent control fields, is
presented. Without artificially engineering the time-dependent decay rates and retaining the environment-induced
Lamb shifts, the quantum state can still be transferred into the target state in a finite period of time along
an arbitrary designed trajectory strictly in Hilbert space. As an application, we apply our scheme to a driven
two-level non-Markovian system and realize instantaneous-steady-state tracking and a complete population
inversion with control parameters which are available in experimental settings.
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I. INTRODUCTION

Driving quantum systems, especially open quantum sys-
tems, to desired target states with very high fidelity is a
central goal in quantum sciences and technologies to real-
ize efficient and scalable devices beyond the current state
of proof-of-principle demonstrations [1–3]. To control open
quantum systems with Markovian dynamics, many innovative
schemes have been proposed, such as the adiabatic steady-
state scheme [4], the shortcut-to-equilibration scheme [5],
the dissipative steady-state-preparation scheme [6,7], and the
mixed-state inverse-engineering scheme [8]. These schemes
transfer the quantum state into the target steady state with a
satisfactory fidelity.

But engineering a quantum state of the non-Markovian
quantum system is a different matter. Due to the memory
effects of the environment, the next state of a non-Markovian
quantum system is determined by each of its previous states
[9]. The decay rates are time dependent and may temporarily
acquire negative values [10]. This negative decay rate pushes
the information (coherence and/or energy) to flow back into
the open quantum system after the information dissipates into
the environment [11]. Therefore, driving the non-Markovian
quantum systems into a desired target state along an exact and
designable trajectory definitely is a nontrivial task.

In this paper, we focus on this issue and propose a con-
trol scheme for non-Markovian quantum systems, which are
governed by the time-convolutionless master equation [12].
By parametrizing the trajectory of the quantum state from
the initial state to the target state, the control parameters
can be determined by reverse engineering time-dependent
control Liouvillians. In this way, the quantum state of the non-
Markovian quantum system is transferred into the target state
strictly along the parameterized trajectory. It should be em-
phasized that, since the spectrum density of the environment is
difficult to engineer in the experiments [13], we do not select

*mawei@dlnu.edu.cn

the decay rates as a means of incoherent control. Although
the time-dependent decay rates draw the quantum state out
of the trajectory, our scheme can eliminate this effect and keep
the quantum state on the designed trajectory. We examine
our scheme by applying it to quantum state engineering tasks
of a driven two-level non-Markovian system. Instantaneous
steady-state tracking and complete population inversion are
realized. In this scenario, two-level non-Markovian systems
are not only kinematically controllable but also dynamically
controllable, which is impracticable for the Markovian case.

This paper is organized as follows. In Sec. II, we present
the exact trajectory-control scheme for non-Markovian quan-
tum systems governed by the time-convolutionless master
equation. Taking a non-Markovian two-level system as an
example, instantaneous-steady-state tracking and population
inversion are considered in Sec. III. We show that, attributed
to information backflows, the population can be completely
transferred into the excited state of the two-level system with
the available control parameters in experiments. Finally, we
give conclusions and a discussion in Sec. IV.

II. METHOD

In this work, we consider open quantum systems, where
the coupling to a reservoir leads to a non-Markovian dy-
namics for the system density matrix ρ(t ), described by a
time-convolutionless master equation in the Lindblad form,

∂tρ(t ) = L̂[ρ]

= −i[H (t ), ρ] +
∑

α

γα (t )D[Lα](ρ), (1)

where H (t ) is the Hamiltonian containing the coherent con-
trols on the system and the Lamb shifts induced by the
coupling to the reservoir and D[Lα] is the Lindbladian with
a Lindblad operator Lα ,

D[Lα](ρ) = 2 Lα (t )ρL†
α (t ) − {L†

α (t )Lα (t ), ρ}. (2)

Each Lindblad operator Lα (t ) is associated with a dissipa-
tion channel occurring at the time-dependent rate γα (t ). We
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consider the case where H (t ), γα (t ), and Lα (t ) are time de-
pendent. This kind of master equation can be applied, for
example, to photonic quantum systems [14] and mesoscopic
electron-phonon systems [15].

Since the time-convolutionless master equation is linear in
ρ(t ), it is convenient to describe this master equation as a su-
peroperator formalism in Hilbert-Schmidt space [16], wherein
the density matrix is represented by an N2-dimensional vector,

|ρ(t )〉〉 = (ρ0(t ), ρ1(t ), . . . , ρN2−1(t ))†, (3)

where ρi(t ) is the ith component of |ρ(t )〉〉 with a time-
independent basis Bi of the Hilbert-Schmidt space satisfying
ρi(t ) = Tr[ρ(t )Bi]. On the other hand, the Liouvillian super-
operator becomes an N2 × N2 time-dependent supermatrix
L(t ) whose elements are given by Li j (t ) = Tr{B†

i (L̂[Bj])}.
Then the master equation as shown in Eq. (1) reads

∂t |ρ(t )〉〉 = L(t )|ρ(t )〉〉, (4)

with the Liouvillian supermatrix

L(t ) = −i[H ⊗ I − I ⊗ HT]

+
∑

α

γα

(
2Lα ⊗ L∗

α − L†
αLα ⊗ I − I ⊗ LT

αL∗
α

)
, (5)

where AT denotes the transposition of the operator A and I is
the identity operator.

The aim of the control scheme is to transfer the quan-
tum system from a known and arbitrary initial state ρ(0)
to a desired target state ρ(t f ) along a preset trajectory. The
choice of the bases of the Hilbert-Schmidt is not unique,
and the principle of this choice is determined by how we
simplify complexity to obtain feasible control parameters in
the Liouvillian superoperator. Without the loss of generality,
the basis set of the Hilbert-Schmidt space can be chosen to
be the SU(N) Hermitian generators {Ti}N2−1

i=1 and the identify
operator T0 ≡ I . Thus, the density matrix can be expanded by
these bases and yields

|�(t )〉〉 = 1

N

(
|I〉〉 +

√
N (N − 1)

2

N2−1∑
i=1

ri|Ti〉〉
)

, (6)

where �r = (r1, r2, . . . , rN2−1) is the generalized Bloch vector
with

∑
i |ri|2 < 1. Within this notation, the density matrix can

be parameterized by N2 − 1 independent coefficients.
On the other hand, the Liouvillian superoperator contains

all of the control parameters which can be applied in a
real-world experimental setting. The control on the quantum
system comes from two types, i.e., the coherent control and
the incoherent control. The coherent controls on the quantum
system applied in the experiment are contained in the Hamil-
tonian of the Liouvillian superoperator. By using the SU(N)
Hermitian generators {Ti}N2−1

i=0 (T0 ≡ I is the identify operator),
the Hamiltonian can be expressed as

H (t ) =
N2−1∑
i=0

ci(t ) Ti, (7)

where ci(t ) denotes the control parameter for the coherent
operation Ti on the system. The incoherent controls come from
the couplings to the environment, which are reflected in the

master equation by the Lindbladian. Generally, the Lindblad
operators can be written as superpositions of the SU(N) Her-
mitian generators, such as

Lα (t ) =
N2−1∑

j=1

l (α)
j (t ) Tj, (8)

with complex expansion coefficients l (α)
j (t ). Here we assume

that these complex coefficients {l (α)
j (t )} include incoherent

control parameters which are tunable in experiment and influ-
ence the system in incoherent ways. These incoherent control
parameters include, but are not limited to, the main excitation
numbers of the environment [17,18], the correlation of the
environment [19], and even extra noise [20]. As a restriction
on our scheme, the correlation functions of the environment
are invariant. Thus, the decay rates and the Lamb shifts caused
by the interaction between the open quantum systems and
the environments cannot be changed artificially, which distin-
guishes our scheme from previous schemes on this topic [21].

Here we are in the position to determine all of the control
parameters (coherent and incoherent) in reverse. In fact, the
density-operator vector is the solution of Eq. (4). Our scheme
is to preset the density operator ρ(t ) and then to determine
the control parameters {ci(t ), l (α)

j (t )} using Eq. (4). At the
beginning, we parametrize the density operator by the gen-
eralized Bloch vector as shown in Eq. (6). The initial and final
Bloch vectors have to correspond to the initial and target states
of the control task. Thus, the time-dependent Bloch vector
corresponds to a trajectory of the quantum state in the Hilbert
space, which connects the initial state and target state. Then
we deal with the Liouvillian supermatrix. The elements of
the Liouvillian supermatrix can be determined by Li j (t ) =
Tr{T †

i (L̂[Tj])}. In order to distinguish the coherent and inco-
herent control types, we divide the Liouvillian supermatrix
into three parts. Thus, we rewrite the time-convolutionless
master equation in components of the generalized Bloch
vector,

∂t ri(t ) =
N2−1∑

j=1

(Ci j + Ii j ) r j (t ) + L0
i . (9)

The coherent part reads

Ci j =
N2−1∑
k=1

ck (t )
fk ji

2
, (10)

and the incoherent part takes the form

Ii j =
N2−1∑
m,n=0

(∑
α

γαl (α)
m (t )l (α)∗

n (t )

)
smn, ji, (11)

with

smn, ji = 1

2N
(δim δ jn − δmn δi j )

+ 1

4

N2−1∑
k=1

[(i f jnk + d jnk )(i fimk + dimk )

− (i fmnk + dmnk ) dk ji], (12)
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where fi jk and di jk are the structure constants and the d coef-
ficients of the SU(N) Lie algebra, respectively. Moreover, the
last terms in Eq. (9) can be written as

L0
k =

∑
α

γα (t )

(
N2−1∑
i, j=1

l (α)
i (t )l (α)∗

j (t )gi jk

)
,

with gi jk = [(i f jik + d jik ) − (i fi jk + di jk )]. The derivation of
the coherent and incoherent parts of the Liouvillian superma-
trix can be found in Appendix A.

In fact, Eq. (9) is not only linear to the components
of the Bloch vector but also linear to the control param-
eters {ci(t ),

∑
α γαl (α)

i (t )l (α)∗
j (t )}. Here, we further assume

that there is only one tunable incoherent control param-
eter in every Lindbladian D[Lα], i.e., l (α)

i (t ) = √
c̃α (t )l̃ (α)

i ,
where c̃α (t ) is a real incoherent control parameter and {l̃ (α)

i }
are time-independent expansion coefficients. Thus, we have∑

α γαl (α)
i (t )l (α)∗

j (t ) = ∑
α γα c̃α (t )l̃ (α)

i l̃ (α)∗
j . In this notation,

the equations of the control parameters are given by

∑
j

�c
i jc j +

∑
α

γα

(
�i

α i + �0
α i

)
c̃α − ∂t ri(t ) = 0 ∀ i, (13)

where the coefficient matrices for the coherent control and
incoherent parameters are

�c
i j =

N2−1∑
k=1

rk (t )
f jki

2
,

�i
α i =

N2−1∑
j,m,n=0

r j (t )
[
l̃ (α)
m (t )l̃ (α)∗

n (t )
]
smn, ji,

�0
α i =

N2−1∑
j,k=1

l̃ (α)
j (t )l̃ (α)∗

k (t )g jki. (14)

In order to obtain the control parameters {ci(t ), c̃(α)(t )}, we
need to solve above equations.

As we see, Eq. (13) cannot provide a single unique solution
for the control parameters in general. In practice, not all of the
control parameters can be applied to the system. For instance,
a 	-type coherence control can be realized in an artificial
structure but not in real atoms via dipole-dipole coupling due
to the selection rule [22]. Also, the decoherence channels
used in the scheme are restricted by the real-world setting.
In other words, open quantum systems must be dynamically
controllable [23,24]. Therefore, for the selection of control pa-
rameters in our scheme, two principles have to be met: (i) The
number of control parameters is equal to number of equations
in Eq. (13), which ensures a single unique control parameter in
the control scheme. (ii) All of the control technologies corre-
sponding to the control parameters have to be available in the
real-experiment setting. To meet the above requirements, the
control technologies with corresponding control parameters
have to be selected for not only the experimental conditions in
the laboratory but also the symmetry of open quantum systems
[25,26].

III. APPLICATIONS: A TWO-LEVEL
NON-MARKOVIAN SYSTEM

We consider a two-level system with transition frequency
ω0 driven by an external laser of frequency ωL [27,28]. There
is a detuning 	 = ω0 − ωL between the two-level system
and the external laser. The two-level atom is embedded in a
bosonic reservoir at a finite temperature T . In a rotating frame,
the Hamiltonian can be written as

H = Hs + He + Hi, (15)

with

Hs = 	σ+σ− + �(t )σ+ + �∗(t )σ−,

He =
∑

k

�ka†
kak,

Hi =
∑

k

gkσ+ak + H.c., (16)

where 	 = ω0 − ωL �k = ωk − ωL, σ+ = |e〉〈g|, �(t ) =
�x(t ) + i�y(t ) is the time-dependent control field, H.c. stands
for the Hermitian conjugation, and ak and gk stand for the
annihilation operator and coupling constant, respectively.

Using the atomic coherent-state path-integral method [27],
an exact non-Markovian master equation can be obtained to
describe the dynamics of the open two-level system,

∂tρ(t ) = L̂0(t )ρ(t )

= −i
[
HR

s (t ), ρ(t )
] + 
0(N + 1)D̂[σ−][ρ(t )]

+
0ND̂[σ+][ρ(t )], (17)

with the effective Hamiltonian

HR
s (t ) = s0(t )σ+σ− + �R(t )σ+ + �R∗(t )σ−. (18)

s0(t ) and �R(t ) are the Lamb shift and the renormalized
driving field, respectively, which are results of the memory ef-
fects of the bosonic reservoir. The time-dependent decay rate

0(t ) describes the dissipative non-Markovian dynamics due
to the interaction between the system and environment. N =
[exp(h̄ω0/kT0) − 1]−1 stands for the mean excitation number.
The decay rate 
0 and the main excitation number N are both
associated with the spectral density and the temperature T0

of the reservoir. These time-dependent coefficients are given
explicitly as follows:

s0(t ) = −Im

[
∂t u(t )

u(t )

]
, 
0(t ) = −Re

[
∂t u(t )

u(t )

]
, (19)

�R(t ) = i

[
∂t h(t ) − h(t )

∂t u(t )

u(t )

]
, (20)

where Re[·] and Im[·] represent the real and imaginary parts of
the argument, respectively. u(t ) and h(t ) satisfy the following
equations:

∂t u(t ) + i	u(t ) +
∫ t

0
f (t − t ′)u(t ′)dt ′ = 0, (21)

∂t h(t ) + i	h(t ) +
∫ t

0
f (t − t ′)h(t ′)dt ′ = −i�, (22)

with

f (t − t ′) =
∫

dω J (ω) exp[−i(ω − ωL )(t − t ′)], (23)
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and the boundary conditions u(0) = 1 and h(0) = 0. We as-
sume that the spectral density of the bosonic reservoir has a
Lorentzian form [27,29,30]:

J (ω) = γ0

2π

λ2

(ω − ω0 + δ)2 + λ2
, (24)

where δ = ω0 − ωc is the detuning of ωc to ω0, ωc is the
center frequency of the cavity, and λ is the spectral width of
the reservoir. The parameter γ0 is the decoherence strength
of the system in the Markovian limit with a flat spectrum.
Substituting Eq. (24) into Eq. (23), we obtain the two-time
correlation functions:

f (t − t ′) = 1
2λ
 exp[−(λ + i	 − iδ)(t − t ′)]. (25)

Thus, the solutions of Eqs. (21) and (22) take the forms

u(t ) = k(t )

[
cosh

(
dt

2

)
+ λ + iδ

d
sinh

(
dt

2

)]
, (26)

h(t ) = −i
∫ t

0
�(t ′)u(t − t ′) dt ′, (27)

where k(t ) = exp[−(λ + 2i	 − iδ)t/2] and d =√
(λ − iδ)2 − 2γ0λ.
To reverse engineer the non-Markovian two-level system,

we parametrize the quantum state by a Bloch vector, which
can be written as

|�(t )〉〉 = 1

2

(
|I〉〉 +

∑
i=x,y,z

ri|σi〉〉
)

, (28)

where ri is the ith component of the Bloch vectors and σi is the
ith component of the Pauli operators. Thus, the quantum state
of the two-level system has three independent parameters. The
effective Hamiltonian can be rewritten as

HR
s (t ) = s0(t )σ+σ− + �R

x (t )σx + �R
y (t )σy. (29)

We have assumed that the spectrum density is untunable
in experimental settings, so the decay rate 
0(t ) cannot be
a candidate for the incoherent control parameters. There-
fore, the coherent control parameters are chosen to be �R

x (t )
and �R

y (t ), while the main excited number N (t ) acts as the
incoherent control parameter. Inserting the control parame-
ters and the components of the Bloch vector into Eq. (9)
yields

ṙx = 2 �R
y rz − s0 ry − (2 N + 1) 
0 rx,

ṙy = s0 rx − 2 �R
x rz − (2 N + 1) 
0 ry,

ṙz = 2 �R
x ry − 2 �R

y rx − 2 
0[(2 N + 1) rz + 1], (30)

where ṙi denotes the time derivative of the ith component of
the Bloch vector. For the sake of brevity, we also ignored
“(t ).” The goal of the reverse-engineering scheme is to find
the control parameters which drive the two-level system to
evolve as users prescribe. To achieve this goal, we reverse

solve Eq. (30) and obtain

�R
x =

(
r2 + rz

2
)

(rx s0 − ṙy) + (�r · �̇r + 2 
0 rz ) ry

2 rz
(
r2 + rz

2
) ,

�R
y =

(
r2 + rz

2
)

(ry s0 + ṙx ) − (�r · �̇r + 2 
0 rz ) rx

2 rz
(
rx

2 + ry
2 + 2 rz

2
) ,

N = −2 
0 rz + �r · �̇r + 
0
(
r2 + rz

2
)

2 
0
(
r2 + rz

2
) , (31)

with r2 = r2
x + r2

y + r2
z and �r · �̇r = rxṙx + ryṙy + rzṙz.

In the case of Markovian dynamics, the Lamb shift van-
ishes (s0 = 0), and the decay rate is time independent (
0 =
γ0). �R

x,y are the control fields acting on the two-level system.
Therefore, the set of control parameters proposed in Eq. (31)
is a control protocol for two-level systems in a Markovian
environment. In other words, our scheme is also an avail-
able option for controlling Markovian quantum systems. We
can rewrite the last equation in Eq. (31) as 2 
0rz + �r · �̇r =
−(2N + 1) (r2 + rz

2)
0. By substituting this equation into the
expression for �R

x,y, we obtain the same control field as that
used in Ref. [31]. Moreover, we may set the main excitation
number N as invariant in the control process, which is the very
constraint condition mentioned in Ref. [31].

Here we want to emphasize that the control parameters
presented in Eq. (31) is not the only choice to reverse engineer
the non-Markovian two-level system. For instance, while we
keep the incoherent control protocol invariant, the detuning
	 can also be selected as a coherent control parameter, which
will provide another control protocol without using the control
parameter �R

y (see Appendix B). In fact, whether coherent
or incoherent, as long as the solutions of Eq. (13) exist,
these control parameters can be candidates for control proto-
cols. This means that the two-level system is kinematically
controllable for our control scheme [23,32]. If the control
protocol is totally coherent, it can be verified that Eq. (13) has
no solution, which indicates that open two-level systems are
kinematically incompletely controllable in the pure coherent
control protocol [23,33]. On the other hand, there are always
restrictions on controls, such as the finite pulse strength and
detuning and non-negative main excitation numbers. Thus,
although the system is kinematically controllable with the
proper control protocol, it still cannot be realized in the real
experimental setting. In other words, an open quantum system
which is kinematically controllable is not always dynamically
controllable using the available set of controls [33]. As shown
in Eq. (31), the control parameters are related to the trajectory
of the quantum state in the Hilbert space (components of
the Bloch vector). Therefore, our scheme can enhance the
dynamical controllability by designing proper trajectories of
the quantum states in the Hilbert space.

A. Steady-state tracking

In this section, we drive the two-level non-Markovian sys-
tem to track the instantaneous steady state of a particular
reference Liouvillian L0(t ) [34], which is often used in quan-
tum thermodynamics [35,36] and the quantum many-body
theory [4]. In particular, transferring the quantum state of open
quantum systems strictly along the instantaneous steady state
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is critical for optimizing the performance of the quantum heat
engine [37,38].

Let the reference Liouvillian L̂0(t ) take the same form as
the non-Markovian master equation presented in Eq. (17) with
the reference Hamiltonian

H0(t ) = s0(t )σ+σ− + �R
0 (t )σx

and a constant main excitation number N0. Thus, the reference
Liouvillian supermatrix reads

L0(t )

= 
0

⎛
⎜⎜⎜⎜⎜⎜⎝

−(N ′ + 1) i �R
0


0
−i �R

0

0

N ′ − 1

i �R
0


0
−N ′ − i s0


0
0 −i �R

0

0

−i �R
0


0
0 −N ′ + i s0


0
i �R

0

0

(N ′ + 1) −i �R
0


0
i �R

0

0

−N ′ + 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with N ′ = 2N0 + 1. The instantaneous steady state of the
two-level system is given by the condition L0(t )|ρ0(t )〉〉 = 0,
which yields

|ρ0〉〉 = 1

z

⎛
⎜⎜⎜⎜⎝

N0 (N ′2
2
0 + s2

0) + N ′�R
0

2

(iN ′
0 − s0)�R
0

−(iN ′
0 + s0)�R
0

(N0 + 1)(N ′2
2
0 + s2

0) + N ′�R
0

2

⎞
⎟⎟⎟⎟⎠, (32)

with the factor z = N ′(
2
0N ′2 + s2

0 + 2�R
x

2).
We impose that the initial and final Bloch vectors are the

very Bloch vectors for the instantaneous steady state |ρ0(t )〉〉
[Eq. (32)] at t = 0 and t = t f . Since there is not an adiabatic
theorem for the non-Markovian case, the reference Liouvillian
L̂0(t ) cannot drive the quantum system into the final steady
state along the instantaneous steady state, even if �̇R

0 → 0.
Hence, it is not necessary to compel �R

x (t ) = �R
0 (t ) at the

initial and final moments. What we need to be concerned with
is finding a set of proper control parameters which ensures that
the quantum state strictly tracks the instantaneous-steady-state
trajectory. The instantaneous steady state (32) can be rewritten
in the form of the Bloch vector as

rx(t ) = −2

z
�R

0 (t )s0(t ),

ry(t ) = −2

z
N ′�R

0 (t )
0(t ),

rz(t ) = −1

z
[s0(t )2 + N ′2
0(t )2]. (33)

We suppose that the reference control field �R
0 (t ) tunes up

from zero to a finite strength �c, and the time derivative of
�R

0 (t ) is zero at the initial and final instants. Therefore, we
assume the following time-dependent profile of �R

0 (t ):

�R
0 (t ) = 6�c

t2

t2
f

(
1

2
− t

3t f

)
. (34)

Substituting Eqs. (19) and (34) into Eq. (31), we can obtain all
the analytical expressions for the control parameters, which
can drive the quantum state into the target steady state strictly
along the instantaneous steady state.
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FIG. 1. (a) The fidelity of the reverse-engineering protocol (blue
solid line) and the adiabatic-engineering protocol (red dashed line)
vs the dimensionless time t/t f . The control parameters [(b) the main
excitation number N , (c) the coherent control field �R

x , and (d) the co-
herent control field �R

y ] as a function of the dimensionless time t/t f .
Parameters are λ = 0.5γ0, 	 = 0.1γ0, δ = 0.5γ0, �c = 10γ0, t f =
10/γ0, and N0 = 10−5. We set γ0 = 1 as the units of �R

x and �R
y .

Figure 1(a) shows the evolutions of the fidelities between
the quantum state governed by the master equation (17)
and the instantaneous steady state given by Eq. (32) plot-
ted for the inverse-engineering protocol (blue solid line) and
the adiabatic-engineering protocol (red dashed line). For the
reverse-engineering scheme, the quantum state of the open
two-level system strictly follows the instantaneous steady
state. When the adiabatic-engineering protocol is used, i.e.,
�R

x = �R
0 and �R

y = 0, the fidelity obviously decreases. Even
if the performance of the adiabatic-engineering protocol is
satisfactory in the long time limit, the quantum state deviates
from the steady-state trajectory at the intermediate time due
to the rapid oscillation of the decay rate 
0(t ) and the Lamb
shift s0(t ).

The main excitation number N (t ) and the control field
�R

x,y(t ) are plotted in Figs. 1(b)–1(d). On the one hand, all of
the control parameters oscillate with time, which is essential
to offset the effect of the rapid oscillation of the decay rate

0(t ) and the Lamb shift s0(t ). In this way, the quantum
state is suppressed in the instantaneous steady state. On the
other hand, due to the nonzero Lamb shift s0(t ), the coher-
ent control field �R

y (t ) is needed in the reverse-engineering
protocol, which does not appear in the reference Hamiltonian
(or Liouvillian). If s0(t ) = 0, the xth component of the Bloch
vector will be zero, which will result in the absence of the
coherent control field �R

y (t ) [see Eqs. (31) and (33)]. This is
the significant difference from the Markovian counterpart of
the reverse-engineering protocol.

B. Population inversion

Similar ideas can be applied to the population inversion
of the two-level open quantum state. For convenience, we
express the Bloch vector �r by means of spherical polar
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coordinates, i.e.,

rx = r sin θ sin φ, ry = r cos θ sin φ, rz = r cos φ. (35)

Our aim is to transfer the quantum state from the ground
state |0〉 to the excited state |1〉. Here |0〉 and |1〉 are the
eigenvectors of σz. Hence, we set the boundary conditions
of the quantum state as φ(0) = π , r(0) = 1, φ(t f ) = 0, and
r(t f ) = 1. It is free to choose the values of θ (0) and θ (t f ).
According to Eq. (31), when φ → π/2, the coherent control
fields �R

x and �R
y tend to be infinite. In order to eliminate this

singularity, we require s0 = 0, ṙ = 0, and θ̇ = 0 for φ = π/2.
Here we should mention that the requirement s0(ti ) = 0 for
some intermediate moment ti can be realized by picking a
proper detuning 	. In addition, for the non-Markovian dy-
namics of open quantum systems, the decay rates are negative
for some intermediate duration. Thus, the main excitation
N (t ) will be infinite at the moment for 
0 = 0. Yet if we
require �r · �̇r = 0 at this point, a reasonable main excitation
number can be obtained [see Eq. (31)].

First, we show that the population inversion with a
pure-state trajectory is kinematically controllable but not dy-
namically controllable. To interpolate at intermediate times,
we consider a polynomial ansatz of θ and φ as a function of
time t ,

r(t ) = 1, φ(t ) = π
t2

t2
f

(
3 − 2

t

t f

)
,

θ (t ) = θ

(
t f

2

)
t2

t2
f

(
1 − t

t f

)2

, (36)

with θ (0) = θ ( f f ) = 0 and an arbitrary θ ( t f

2 ) at t = t f /2.
Under this ansatz, for t = t f /2, we have φ(t f /2) = π/2 and
θ̇ (t f /2) = 0, which result in reasonable coherent control fields
in the control period. Figure 2(a) shows the fidelities between
the quantum state ρ(t ) and the preset trajectory given by
Eq. (35) for the reverse-engineering protocol (the blue solid
line) and the inverse-engineering protocol of closed quantum
systems. The control parameters are plotted in Figs. 2(b)–2(d).
As we see, the reverse-engineering protocol definitely trans-
fers the quantum state from |0〉 to |1〉, while the control
parameters evolve smoothly. Therefore, the pure-state proto-
col is kinematically controllable. But as shown in Fig. 2(b),
the main excitation number N (t ) is negative, which is not
feasible in an experimental setting, so the reverse-engineering
protocol is not dynamically controllable for the pure-state
trajectory.

Second, we show that the population inversion is dynami-
cally controllable if a mixed-state trajectory of the two-level
non-Markovian system is carefully selected. As we see, the
dynamical uncontrollability comes from the negative main
excitation number. We can rewrite the main excitation number
as

N (t ) = −
(

1

2
+ rz

r2 + rz
2

+ ∂t r2

4
0
(
r2 + rz

2
))

, (37)

with the length of the Bloch vector r =
√

r2
x + r2

y + r2
z . If

the quantum state is pure, then ∂t r2 = 0 and r = 1, which
results in a negative main excitation number. The population
inversion corresponds to the Bloch vector from rz(t ) = −1 to
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FIG. 2. (a) The evolution of the fidelity of the reverse-
engineering protocol (blue solid line) and the adiabatic-engineering
protocol (red dashed line). The control parameters [(b) the main
excitation number N , (c) the coherent control field �R

x , and (d) the co-
herent control field �R

x ] as a function of the dimensionless time t/t f .
Parameters are λ = 0.5γ0, 	 = 0.1γ0, δ = 0.5γ0, �c = 10γ0, t f =
10/γ0, and N0 = 10−5. We set γ0 = 1 as the units of �R

x and �R
y .

rz(t f ) = 1. When rz varies from −1 to 0, the second term in
Eq. (37) is negative. Moreover, if r shortens with evolution,
the third term in Eq. (37) is also negative. Thus, we can
ensure that the main excitation number is always positive in
the lower hemisphere of the Bloch sphere. However, in the
upper hemisphere of the Bloch sphere, i.e., rz > 0, the second
term in Eq. (37) is positive, and r needs to increase with time,
so the main excitation number cannot always be positive in the
evolution. However, the decay rate 
0(t ) is negative at some
intermediate moment. Therefore, we propose the following
to realize a dynamically controllable population inversion:
(i) We set t f as the moment where 
0 reaches the negative
maximum for the first time and label ti as the moment when

0(ti ) = 0 for ti ∈ (0, t f ), which is illustrated in Fig. 3(a).
(ii) Since 
0(t ) > 0 for t ∈ (0, ti ), we impose that rz(ti ) = 0
and rz(t ) < 0 for t < ti. In this way, it is easy to present
a positive main excitation number for t < ti by selecting a
mixed trajectory. (iii) Since 
0(t ) < 0 for t ∈ (ti, t f ), the third
term in Eq. (37) will be negative if r2 keeps increasing. Thus,
it is possible to present a positive main excitation number if
�r(t ) · �̇r(t ) increases fast enough.

As an example, we impose the boundary conditions of the
components of the Bloch vector as follows:

ry(0) = 0, ry(ti ) = 0.12, ry(t f ) = 0,

ṙy(0) = 0, ṙy(ti ) = 0, ṙy(t f ) = 0,

rz(0) = −1, rz(ti ) = 0, rz(t f ) = 1,

ṙz(0) = 0, ṙz(ti) = 0.4, ṙz(t f ) = 1, (38)

and rx(t ) = 0 for all t . The reason why we selected the bound-
ary conditions in Eq. (38) is to eliminate singular points in
the control parameters and obtain a positive main excitation
number. As shown in Eq. (31), �R

x and �R
y have singular
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FIG. 3. (a) The decay rate 
0 and (b) the Lamb shift vs the
dimensionless time t/t f , where t f is the control pulse length and
ti is the moment where rz = 0. Parameters are λ = 0.1γ0, 	 =
−0.6792γ0, δ = 0.1γ0, �c = 1γ0, and t f = 9.1201/γ0. We set γ0 =
1 as the units of 
0 and s0.

points at t = ti because rz(ti ) = 0. Thus, we require ṙx(ti ) =
ṙy(ti ) = 0 and further impose s0(ti ) = 0, which is illustrated
in Fig. 3(b). On the other hand, if �r · �̇r > −
0rz(rz + 1),
N will be positive. For t = ti, the positive main excitation
number requires ṙz(ti ) > −
0(ti ). Thus, the time derivative of
rz(ti ) must be a nonzero and finite positive number. Due to
rz(ti ) = ṙy(ti ) = 0, it is not difficult to verify that �r · �̇r = 0, so
that the singular point in Eq. (37) is also eliminated. Finally,
the time derivative of rz(t f ) must be a nonzero and finite
positive number, which results in N (t f ) > 0 [see Eq. (37)].
To interpolate at intermediate times, we assume a polyno-
mial ansatz and consider a piecewise interpolation with a
time break ti. Figure 4(a) shows the numerical results of the
quantum state trajectory in the Bloch sphere, which illustrates
that the population is transferred from |0〉 into |1〉 completely.
The main excitation number N and the coherent control fields
�R

x and �R
y are plotted in Figs. 4(b)–4(d), respectively. As

shown, the control parameters with the boundary conditions
of the trajectory in (38) are reasonable and can be realized in
experimental settings. Therefore, the population inversion for
the two-level non-Markovian system is definitely dynamically
controllable.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, based on the idea of reverse engineering,
we have proposed a scheme to transfer the quantum state
of non-Markovian systems strictly along a designable trajec-
tory in the Hilbert space. For quantum systems governed by
a time-convolutionless master equation, we have presented
analytical expressions for the control parameters, which are
the solution of algebraic equations with quantum state trajec-
tories. Even though the open quantum system suffers from
the memory effects of the non-Markovian reservoir (infor-
mation backflow and/or the Lamb shift), the quantum state
can still transfer to the target state strictly along the designed
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FIG. 4. (a) The evolution of the quantum state trajectory in the
Bloch sphere as a function of the dimensionless time t/t f . (b) The
main excitation number N , (c) the coherent control field �R

x , and
(d) the coherent control field �R

y as a function of the dimen-
sionless time t/t f . Parameters are λ = 0.1γ0, 	 = −0.6792γ0, δ =
0.1γ0, �c = 1γ0, and t f = 9.1201/γ0. We set γ0 = 1 as the units of
�R

x and �R
y .

trajectory. Taking the driven non-Markovian two-level system
as an example, we presented a concrete control protocol for
both instantaneous-steady-state tracking and population inver-
sion. By elaborately designing the trajectory of the quantum
state, we showed that the non-Markovian two-level system
is not only kinematically controllable but also dynamically
controllable. Since the scheme allows us to maintain system
coherence and populations in the presence of noise, it may nat-
urally find applications in quantum computing and quantum
memory [39,40]. Our scheme can also be applied to numerous
quantum control problems, such as quantum state preparation
[41], quantum measurement [42], and quantum metrology.

It is meaningful to compare our scheme with the reverse-
engineering scheme of Markovian quantum systems [31,43].
For the Markovian dynamics, the quantum system is not
dynamically controllable [23,33]. For instance, the complete
population inversion of two-level systems cannot be realized
in the experimental setting. The population of the excited
state is only asymptotically getting closer to 1, which was
discussed for the example of the population inversion [31].
Due to the information which can flow back into the open
two-level system [44,45], the complete population inversion
for the non-Markovian dynamics can be realized by carefully
designing the trajectory of the quantum state sweeping in
the Hilbert space. In other words, the non-Markovianity will
benefit the quantum control process.
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APPENDIX A: DERIVATION OF EQUATION (9)

We begin with the time-convolutionless master equation
in the superoperator form (4). Inserting the density-operator
vector (6) into Eq. (4) [46] yields

∂t ri(t ) =
N2−1∑

j=1

Li j r j + L0
i , (A1)

where the Liouvillian superoperator can be written in the
supermatrix form,

L̂ =
N2−1∑
i j=1

Li, j |Ti〉〉〈〈Tj | +
N2−1∑
i=1

L0
i |Ti〉〉〈〈T0|, (A2)

with Li j (t ) = Tr{T †
i (L̂[Tj])} and L0

i (t ) = Tr{T †
i (L̂[T0])}.

Here the relation L̂†(t )|T0〉〉 = 〈〈T0|L̂(t ) = 0 has been used.
We divide the Liouvillian supermatrix into two parts, Li j =
Ci j + Ii j , where Ii j (Ci j) denotes the incoherent (coherent)
part of the Liouvillian supermatrix element Li j .

The coherent part comes from the Hamiltonian part in the
master equation,

Ci j = −i Tr{T †
i [H (t ), Tj]}. (A3)

By substituting Eq. (7) into above equation, we have

Ci j = −i
N2−1∑
k=0

ck (t ) Tr{Ti [Tk, Tj]}. (A4)

Considering the commutator and anticommutator of the
SU(N) generators,

[Tk, Tj] = i
N2−1∑
m=1

fk jmTm, (A5)

{Tk, Tj} = δk j

N
I +

N2−1∑
m=1

dk jm Tm, (A6)

we obtain the coherent part in the Liouvillian supermatrix,

Ci j =
N2−1∑
k=1

N2−1∑
m=1

fk jmck (t ) Tr[TiTm] =
N2−1∑
k=1

fk ji

2
ck (t ), (A7)

where fi jk and di jk are the structure constants and the d coef-
ficients of the SU(N) Lie algebra, respectively.

The incoherent part can be expressed as

Ii j = Tr

[
T †

i

∑
α

γα (2LαTjL
†
α − {L†

αLα, Tj})

]
. (A8)

The Lindblad operators can also be expanded by the SU(N)
Hermitian generators {Ti}N2−1

i=1 , i.e.,

Lα (t ) =
N2−1∑

j=1

l (α)
j (t ) Tj, (A9)

with complex coefficients l (α)
j (t ), and

L†
α (t ) =

N2−1∑
j=1

l (α)∗
j (t ) Tj,

L†
α (t )Lα (t ) =

N2−1∑
i=0

e(α)
k (t ) Tk, (A10)

with e(α)
n = 1

2

∑N2−1
i, j=0 l (α)

i (t )l (α)∗
j (t ) (i fi jn + di jn) for n 
= 0

and e(α)
0 = ∑N2−1

i=0
|l (α)

i (t )|2
2N . Thus, it is easy to obtain

Tr[T †
i {L†

αLα, Tj}] = e(α)
0 δi j +

N2−1∑
k=1

dk ji

2
e(α)

k ,

Tr[T †
i LαTjL

†
α] = l (α)

i l (α)∗
j

4N
+ h(α)

ji , (A11)

with

h(α)
ji = 1

8

N2−1∑
p=1

N2−1∑
m,n=0

l (α)
m l (α)∗

n (i f jnp + d jnp)(i fimp + dimp).

Rearranging the equations, we finally obtain the incoherent
part of the Liouvillian supermatrix,

Ii j =
N2−1∑
m,n=0

(∑
α

γαl (α)
m (t )l (α)∗

n (t )

)
smn, ji, (A12)

with

smn, ji = 1

2N
(δim δ jn − δmn δi j )

+ 1

4

N2−1∑
k=1

((i f jnk + d jnk )(i fimk + dimk )

− (i fmnk + dmnk ) dk ji ), (A13)

where |l (α)
m (t )|2 = ∑

n l (α)
m (t )l (α)∗

n (t )δmn has been used.
The last term in Eq. (A1) originates from the expansion of

L with the basis |Ti〉〉〈〈T0|. For j = 0, this term can be written
as

L0
k (t ) = 2Tr

{
T †

k

∑
α

γα (t )[Lα (t )L†
α (t ) − L†

α (t )Lα (t )]

}

=
∑

α

γα (t )

{
N2−1∑
i, j=1

l (α)
i (t )l (α)∗

j (t )

× [(i f jik + d jik ) − (i fi jk + di jk )]

}
. (A14)

APPENDIX B: CONTROL PROTOCOL WITHOUT �R
y

We also consider the two-level system used in Sec. III,
whose dynamics is governed by the non-Markovian master
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equation (17). Here we consider the renormalized control
field to be real, and there is a detuning 	R to the two-level
system. Thus, the Hamiltonian in Eq. (17) can be written
as

HR
s (t ) = s0(t )σ+σ− + 	R(t )σz + �R

x (t )σx. (B1)

We still assume that the spectrum density is untunable in
experimental settings. At this time, the coherent control pa-
rameters are �R

x (t ) and 	R(t ), while the main excited number
N (t ) acts as the incoherent control parameter. Inserting the
control parameters and the components of the Bloch vector
into Eq. (13) yields

ṙx = −(s0 + 	R) ry − (2 N + 1) 
0 rx,

ṙy = (s0 + 	R) rx − (2 N + 1) 
0 ry,

ṙz = 2 �R
x ry − 2 
0[(2 N + 1) rz + 1]. (B2)

We can reverse solve Eq. (B2) and obtain

�R
x = (2 
0 + ∂t rz )

(
r2

x + r2
y

) − ∂t
(
r2

x + r2
y

)
rz

2 ry
(
r2 + rz

2
) ,

	R = −s0 + rx (ryṙy + rzṙz ) + 2 
0 rxrz − ṙx
(
r2

y + 2 r2
z

)
ry

(
rx

2 + ry
2 + 2 rz

2
) ,

N = −2 
0 rz + �r · �̇r + 
0
(
r2 + rz

2
)

2 
0
(
r2 + rz

2
) . (B3)

Thus, we obtain a control protocol without �R
y . This proto-

col has advantages in the population-reversion task because
the singular points of the control parameters appear only at
ry = 0. We may design the trajectory of the quantum state
away from points with ry = 0. For the complete population
reversion, the initial and final states require ry = 0. However,
we can set proper boundary conditions for ri and ṙi to elimi-
nate those singular points.
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