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We derive inequalities sufficient to detect the genuine N-partite steering of N distinct systems. Here, we are
careful to distinguish between the concepts of full N-partite steering inseparability (where steering is confirmed
individually for all bipartitions of the N systems, thus negating the bilocal hidden state model for each bipartition)
and genuine N-partite steering (which excludes all convex combinations of the bilocal hidden state models).
Other definitions of multipartite steering are possible and we also derive inequalities to detect a stricter genuine
N-partite steering where only one site needs to be trusted. The inequalities are expressed as variances of
quadrature phase amplitudes and thus apply to continuous-variable systems. We show how genuine N-partite
steerable states can be created and detected for the nodes of a network formed from a single-mode squeezed
state passed through a sequence of N − 1 beam splitters. A stronger genuine N-partite steering is created, if one
uses two squeezed inputs or N squeezed inputs. We are able to confirm that genuine tripartite steering (by the
above definition and by the stricter definition) has been realized experimentally. Finally, we analyze how bipartite
steering and entanglement are distributed among the systems in the tripartite case, illustrating with monogamy
inequalities. While we use Gaussian states to benchmark the criteria, the inequalities derived in this paper are not
based on the assumption of Gaussian states, which gives an advantage for quantum communication protocols.
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I. INTRODUCTION

From the perspective of both fundamental and applied
physics, understanding whether N distinct systems can
be genuinely entangled is considered important [1–10].
Svetlichny first showed that a genuine tripartite nonlocal-
ity can be shared among three systems [11]. Greenberger,
Horne, and Zeilinger (GHZ) [12] and Mermin [13] inves-
tigated the nonlocal properties of N genuinely entangled
systems created in an extreme quantum superposition state.
Multipartite entangled systems have applications in the field
of quantum information. The tripartite-entangled GHZ states
were proposed for quantum secret sharing, where two parties
must collaborate to uncover a cryptographic key [6]. Usually,
the certification of entanglement required to ensure security
against eavesdropping involves assumptions about the instru-
ments at the given sites. When entanglement is confirmed
by way of violation of a Bell inequality, however, fewer
assumptions are needed, resulting in device-independent se-
curity [5,14–18]. A quantum network consisting of mutually
entangled systems may form the basis for a quantum com-
munication network. Recent papers motivate the use of
multipartite Bell nonlocality for device-independent security
on a network [19–21].

Einstein-Podolsky-Rosen (EPR) steering is a type of entan-
glement associated with the nonlocality of the EPR paradox
[22]. The concept of EPR steering was motivated by the
arguments put forward by Schrödinger in response to the
EPR-paradox paper [23–26]. Based on the negation of asym-
metric local hidden state (LHS) models, steering is useful for
one-sided device-independent quantum security, where one
has control over some, but not all, of the devices on the nodes
of the network [27–29]. Implementing steering, as opposed
to entanglement, thus increases the potential for ultrasecure
communication [27,30–32]. Steering has also been proposed
as a resource for other applications, including secure quantum
teleportation [33], quantum metrology [34], and secret sharing
[35]. However, the set of steerable states is a strict subset of
the set of entangled states [23]. The detection of N-partite
steering is therefore more challenging and standard witnesses
for entanglement will not suffice. An early criterion for steer-
ing was an inequality applied to the EPR paradox [24,25,36].
Numerous steering criteria have since been derived, but most
refer to the bipartite case [26]. This highlights the need for
criteria to confirm steering shared among N systems, derived
with minimal assumptions about the states being measured.

The concept of multipartite steering was introduced by He
and Reid [28] and developed for Gaussian states by Kogias
et al. [37]. Experiments followed [38–43], which motivated
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studies of the monogamy of steering [37,43–45]. Marian and
Marian have recently derived criteria involving EPR variances
that are sufficient to certify multimode steering, and have
linked these results to Gaussian states [46]. However, as for
multipartite entanglement and nonlocality [10,47–53], differ-
ent definitions of multipartite steering are possible. This is
particularly true for steering, where subtleties enter into the
definitions, because different nodes on a network can have
different levels of trust in devices.

In this paper, we further address gaps in the literature,
by deriving criteria sufficient to detect N-partite steering. We
follow [48,49,54] to provide a treatment where classes of mul-
tipartite steering are clearly distinguished. In particular, we
consider full N-partite steering inseparability (where there is
steering across each of the bipartitions of the N systems), and
distinguish this from the stricter definition, genuine N-partite
steering (which excludes convex mixtures of hidden states
allowing for bilocality along different bipartitions). Similar
to the earlier results of van Loock and Furusawa for the
N-partite entanglement of continuous-variable (CV) systems
[10,38,48,49], we envisage that local measurements can be
performed on each system and derive inequalities that are only
violated if the systems are mutually steerable. The inequalities
are in terms of the variances of the local-field quadrature phase
amplitudes. We follow the bilocal approach of Svetlichny [11]
and Collins et al. [55], noting that other approaches might also
be considered [50,51,56].

As we show in this paper, the variance criteria are useful
to detect genuine multipartite steering for N-partite Gaus-
sian systems, where one creates Gaussian states for N field
modes from squeezed states and beam splitters. This is rele-
vant given recent CV multipartite entanglement experiments
[38,57–62] and Gaussian boson sampling experiments [63],
some of which realized networks for very large N . Three types
of N-partite Gaussian states are considered in this paper: the
CV GHZ (and cluster, for N = 3), CV EPR, and CV split-
squeezed (SS) states. Although we use the N-partite Gaussian
states to benchmark our criteria, the inequalities are valid in
principle to detect steering in non-Gaussian systems. This
is recognized in the bipartite case where it has been shown
that variance inequalities can detect steering for NOON states
[64] and for cat states [65,66]. Our paper, in contrast to some
previous work [37], is not based on the underlying assumption
that the systems are prepared in Gaussian states. This is an
important and necessary requirement for one-sided device-
independent protocols [27,30–32]. Using values reported in
the literature, we apply the inequalities to confirm that genuine
tripartite steering has been realized experimentally for optical
fields. We also derive inequalities which allow for N − 1
untrusted sites, and deduce that the genuine tripartite steering
has been confirmed for N = 3, with the requirement that only
one site needs to be trusted.

We also examine monogamy relations for tripartite sys-
tems, where N = 3. These relations give constraints on the
amount of bipartite steering and entanglement between any
two of the nodes of the triparty network. We derive a relation
that constrains the amount of bipartite entanglement, showing
that for the CV GHZ, CV EPR, and CV SS states, although
a limited amount of bipartite entanglement is possible, no bi-
partite steering can be observed as measured by the two-mode
Gaussian steering parameter.

The continuous-variable criteria of this paper will apply
to systems of large collective spin, in certain limits [67–71].
Furthermore, since the inequalities of this paper are de-
rived from uncertainty relations, the methods presented may
be generalized for multipartite spin systems, as done for
Bohm’s EPR paradox [72]. Although multiparticle and mul-
timode entanglement and steering can be inferred from spin
squeezing [73–78], Fisher information [34,79–81], or (using
superselection rules) interference [42,82,83], to demonstrate
nonlocality in a strict way requires spatial separation and
local measurements [84–89]. Two-particle entanglement and
Bell correlations have been studied and reported for separated
atoms [90–93], and bipartite EPR steering and genuine N-
partite entanglement have been observed for separated atomic
clouds containing several hundred atoms [40,41]. Yet, it re-
mains a challenge to demonstrate N-partite steering (N > 2)
for spatially separated atomic systems. The results of this
paper may be useful for this purpose.

Summary of paper

In Sec. II, we summarize the definitions of N-partite
steering, distinguishing between full N-partite steering in-
separability and the more strict definition given by genuine
N-partite steering. In this section, we derive steering in-
equalities that if violated will reveal the presence of genuine
N-partite steering. These inequalities involve a single set of
gain parameters optimized to detect the EPR steering of a
single preferred party, and are similar to those considered
recently by Marian and Marian in independent work [46].

Continuing, in Sec. III, we focus on tripartite systems. We
expand the set of criteria, also deriving inequalities closely
related to those of van Loock and Furusawa that have been
widely used to study multipartite entanglement [58,60,94].
These inequalities include those with a broader set of gain
parameters, which allow certification of genuine tripartite
steering once the EPR steering of each party is sufficiently
strong (as measured by vanishing conditional inference vari-
ances). The work presented in Secs. II and III extends the
work of He and Reid [28], who derived inequalities based
on a weaker form of genuine N-partite steering. We confirm
that those earlier inequalities (derived in [28,49]) will also
certify the stricter form of genuine tripartite steering defined
in the present paper. In addition, we derive inequalities that if
violated will certify an even stricter form of genuine tripartite
steering, giving a method to detect genuine tripartite entangle-
ment and steering where only one node needs to be trusted.

In Sec. IV, we show how the criteria derived in Secs. II and
III with suitably optimized gains are useful to detect the gen-
uine N-partite steering of four types of CV Gaussian states.
These are the CV split-squeezed states, the CV EPR states,
and the CV GHZ (and cluster) states, created using one, two,
and N squeezed-vacuum states incident on beam splitters.
We examine details for N = 3 in Sec. V. Using the criteria,
we infer full tripartite steering inseparability and strict gen-
uine tripartite steering from experimental results reported in
the literature. Full tripartite steering inseparability has been
detected in at least two experiments [38,60], for the corre-
lations generated from CV EPR and cluster states. For CV
GHZ and cluster states, the stricter form of genuine tripartite
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steering (including where two sites can be untrusted) is also
detectable using the inequalities, and we are able to confirm
the experimental realization for tripartite CV cluster states
in one experiment [60] where values for the van Loock–
Furusawa variances were measured. Finally, in Sec. VI, we
give an analysis of the monogamy properties of the CV tripar-
tite steerable states. A conclusion is given in Sec. VII.

II. DEFINITIONS AND CRITERIA
FOR N-PARTITE STEERING

A. Preliminaries

Consider an N-partite system consisting of N modes,
where each mode labeled i = 1, . . . , N is described by
bosonic annihilation operators ai satisfying canonical com-
mutation relations. We introduce the generalized quadrature
operators with phase ϕ as

qi(ϕ) = eiϕai + e−iϕa†
i , (1)

noting we will later define xi = ai + a†
i and pi = (ai − a†

i )/i
which implies �xi�pi � 1.

We use � = A − B to denote a bipartition of the N subsys-
tems into two groups, A and B. Proving entanglement for such
a bipartition would require us to falsify any separable model
of the form [95]

ρA-B =
∑

R

PRρ
(R)
A ρ

(R)
B (2)

where
∑

R PR = 1 (PR > 0), ρA-B represents a density operator
for the combined systems, ρ (R)

A is an arbitrary density operator
for the subsystem A, and ρR

B is an arbitrary density operator
for the subsystem B. Here, no assumption of separability is
assumed between any subsystems of either A or B. However,
to confirm steering of system A (by B), the falsification is to be
achieved without the explicit assumption that ρ

(R)
B would nec-

essarily correspond to a quantum state described by a quantum
density operator [24]. To make this distinction symbolically,
we denote the density operator ρ

(R)
A by ρ

(R)
AQ , but omit the

subscript for ρ
(R)
B . Thus, we demonstrate the steering of A by

system B if we falsify the biseparable local hidden state model
symbolized as

ρB→A =
∑

R

PRρ
(R)
AQ ρ

(R)
B . (3)

Where more convenient, we will also symbolize as ρAQ−B.
As rigorously formalized in [23–25], the definition of steer-

ing concerns certain probabilistic models, called LHS models,
rather than density operators defined within quantum theory.
Such LHS models are local hidden variable models, where
extra constraints are given for the local hidden variable states
describing the local system at some of the sites. Thus, to
determine steering of A by B, we negate all models giving
the probability distribution for joint measurements at sites A
and B as

P(xA, xB|θ, φ) =
∫

ρ(λ)dλPQ(xA|λ, θ )P(xB|λ, φ) , (4)

where xA and xB are the results of measurements on each sys-
tem. Here, λ are hidden variables, ρ(λ) is the corresponding

probability density, and θ and φ are local measurement set-
tings at the sites of systems A and B, respectively. P(xA|λ, θ ) is
the probability of an outcome xA, given the parameters λ and
the settings θ . For steering of A, it is required to negate the
model where PQ(xA|λ, θ ) is consistent with a local quantum
density operator ρA for system A, as denoted by the subscript
Q. There is thus a constraint on the distributions for A, so that
quantum uncertainty relations are satisfied. If the criteria to
negate the LHS models are to be valid, one must be sure to use
valid quantum devices and measurements at that site. Hence
the quantum sites are referred to as trusted sites. Otherwise,
the sites are said to be untrusted.

In this paper, for notational convenience we use Eq. (3), the
meaning of Eqs. (3) and (4) being equivalent. We will denote
the bipartition A − B where the system A is to be trusted
as AQ − B. Similarly, the bipartition A − BQ denotes that B
is trusted. If the systems A and B comprise more than one
subsystem, or mode, then more options of trust are available.
Suppose system A is just one mode labeled k and system B is
two modes labeled l and m. If both subsystems l and m are
trusted, but system k is not, then the bipartition is denoted
k − (lmQ). The bipartition k − lm where only the site l is
trusted will be denoted k − (lQ)m.

B. Steering in one partition

We follow van Loock and Furusawa [10] and introduce
the following linear combinations of the operators for the N
systems:

u =
N∑

i=1

giqi(ϕi ) , v =
N∑

i=1

hiqi(χi ) . (5)

Here, gi and hi are real numbers that will be optimized to
reduce the variances in u and v, as we will later see.

Let us first focus on the factorized description ρ
(R)
AQ ρ

(R)
B .

In this case the variance for the state denoted by R in the
expansion Eq. (3) reads

(�u)2
R = (�uA)2

AQ + (�uB)2
B

� (�uA)2
AQ , (6)

where

uI =
∑
i∈I

giqi(ϕi) . (7)

Here we use the notation that (�uA)2
AQ is the variance with

respect to the operators of system A, evaluated assuming the
system is described as a quantum state ρ

(R)
A . The variance

associated with a system B in a hidden variable state is con-
strained only by the condition (�uB)2

B � 0. Generally, we use
the notation (�x)2 to denote the variance of x, and �x to
denote the standard deviation.

Moreover, the LHS model symbolized by ρAQρB as defined
by Eq. (3) must satisfy the uncertainty relation

(�uA)AQ(�vA)AQ � CA , (8)

where we define

CI =
∣∣∣∣∣∑

i∈I

gihi sin(ϕi − χi )

∣∣∣∣∣ (9)

012202-3



TEH, GESSNER, REID, AND FADEL PHYSICAL REVIEW A 105, 012202 (2022)

and we use

[uI, vI] = 2i
∑
i∈I

gihi sin(ϕi − χi ) . (10)

This arises from the Heisenberg uncertainty relation
[x j, p j] = 2i.

Now we assume a LHS description of the form of Eq. (3).
For a system in a mixture, the overall variance of u is [96]

(�u)2 �
∑

R

PR(�u)2
R . (11)

The Cauchy-Schwarz inequality implies

(�u)2(�v)2 �
[∑

R

PR(�u)2
R

][∑
R

PR(�v)2
R

]

�
{∑

R

PR(�u)R(�v)R

}2

. (12)

Thus, using the concavity of the variance, the Cauchy-
Schwarz inequality, and the above results, we find for the
system described by the LHS model ρAQρB that it is always
true that

(�u)(�v) �
∑

R

PR(�u)R(�v)R

�
∑

R

PR(�u)AQ(�v)AQ

� CA . (13)

If this condition is violated, then one observes falsification of
the LHS model ρAQρB, and therefore steering of A by B.

Analogously, the model ρAρBQ always implies

(�u)(�v) � CB . (14)

If this condition is violated, then one observes falsification of
the LHS model ρAρBQ, and therefore steering of B by A.

To summarize our results so far, we detect one-way steering
in a particular direction of a partition � by one of the criteria
above. If either one of the two conditions holds, i.e., if

(�u)(�v) � max{CA,CB} (15)

is not satisfied, we have observed one-way steering in the
partition �. If, however, we see that both conditions do not
hold, i.e., if

(�u)(�v) � min{CA,CB} (16)

is false, we have detected two-way steering in the partition �.

C. Full steering inseparability

To demonstrate the full N-partite inseparability of N sys-
tems, it is necessary to prove the failure of each separable
model ρA-B, for all the bipartitions � of the N systems [10].
Full N-partite steering inseparability is to be defined in a sim-
ilar way. However, we see that because of the asymmetry in
the definition of steering, there is the possibility that steering
across a bipartition is in one direction only (“one-way steer-
ing”) [97,98]. This would imply that one of the LHS models

ρA→B or ρB→A is valid, while the other can be negated. A con-
sequence is that different definitions of multipartite steering
are possible, as formalized in the following.

1. Definition

We conclude that a system displays full N-partite steering
inseparability if one may demonstrate steering for all bipar-
titions � = A − B of the N systems. Specifically, this means
demonstrating, for each bipartition, that there is steering at
least in one direction; i.e., for each �, either all models de-
noted by ρA→B, or all models denoted by ρB→A, or both, can
be negated.

We say that we demonstrate full N-partite steering two-way
inseparability if, for each bipartition, all LHS models ρA�→B�

and ρB�→A�
are negated.

2. Criteria

A criterion sufficient to confirm full N-partite steering in-
separability reads as the violation of

(�u)(�v) � min
�

max{CA,CB} , (17)

where the minimum includes all bipartitions � = A − B of
the system (we make sure that A − B and B − A are con-
sidered as the same partition). Similarly, a violation of the
condition

(�u)(�v) � min
�

min{CA,CB} (18)

implies full two-way steering inseparability. The proof fol-
lows straightforwardly from the definitions. �

D. Genuine multipartite steering

1. Definitions

An even stronger condition is given if instead of excluding
each bipartition separately, we can exclude also more general
LHS models that are constructed from convex combinations
of LHS models across all the different bipartitions. Formally,
this is described in the notation of Sec. II A by a distribution

ρ =
∑
ρ�

P�ρ� . (19)

Here,
∑

� P� = 1, P� > 0, and each ρ� describes an LHS
model for at least one (both) direction(s) of the partition � in
order to exclude genuine multipartite (two-way) steering. We
conclude that we demonstrate genuine N-partite steering if the
above model is negated.

Here, we already have two definitions, and as we discuss in
Sec. II E and below, other definitions are also possible. In this
paper, we will adopt the stricter of the above definitions, and
refer to this as Definition 1 for genuine tripartite steering. This
definition is based on the concept to ensure steering across all
bipartitions, in both directions.

Definition 1. We say that a system displays genuine N-
partite steering if the above model, Eq. (19), can be negated,
where ρ� denotes the LHS model in both directions (A → B
and B → A). Specifically, we negate that the correlations can
be modeled by a theory that expresses the joint probability for
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a set of outcomes xI = (x1, . . . , xN ) as

P(xI|a) =
∑

λ

PλP(xI|λ, a) . (20)

Here, xi is an outcome of a measurement performed on the
subsystem i, and a is a set of numbers that denotes the mea-
surement settings for each subsystem. The λ indexes all the
LHS models symbolized by AQ − B and BQ − A for each
bipartition � = A − B. Here, P(xI|λ, a) is the probability for
outcomes xI = (x1, . . . , xN ), given the system is in the LHS
state denoted by λ and with measurement settings a. Pλ � 0
is the probability for the LHS state λ, and

∑
λ Pλ = 1.

Definition 2. Genuine N-partite one-way steering is con-
firmed if the above model is negated, where for each
bipartition �, we consider only one of the directions for
steering, i.e., only one of AQ − B and BQ − A is included in
the convex combination.

Definition 3 (one trusted site). We may propose as a very
strict yet convincing definition of genuine N-partite steering
that one negates all LHS models (and their convex combina-
tions) where we consider that only one site can be trusted.
In the tripartite case, we would seek to negate kQ − lm, and
also the models k − (lQ)m and k − l (mQ) (and all convex
combinations). This definition is stricter than the Definition
1, which only requires negation of kQ − lm, k − (lmQ). The
negation of kQ − lm, k − (lQ)m and k − l (mQ) implies nega-
tion of kQ − lm, k − (lmQ), and hence genuine N-partite
steering by Definition 3 implies genuine N-partite steering
according to Definition 1. Definition 1, that requires negation
of k − (lmQ), does not exclude that there is steering between
the system l and m. This is because in this case the LHS model
has two trusted sites l and m. By contrast, Definition 3 requires
negation of k − l (mQ) and k − (lQ)m, which excludes steer-
ing for the combined systems lm.

2. Criteria

Let us first consider genuine multipartite steering (Defini-
tion 2) and use methods as above, together with Eq. (15), to
obtain the condition

(�u)(�v) �
∑
ρ�

P� max{C(�)
A ,C(�)

B }

� min
�

max{C(�)
A ,C(�)

B } (21)

where C(�)
A and C(�)

B are the values of CA and CB for the bi-
partition �. Analogously, we obtain the condition for genuine
multipartite two-way steering (Definition 1) from Eq. (16) as

(�u)(�v) � min
�

min{C(�)
A ,C(�)

B } . (22)

The definition used in Eq. (4) with respect to the untrusted
sites l and m is along the lines introduced by Svetlichny
[11] and Collins et al. [55], in relation to genuine tripartite
nonlocality. There is no assumption of locality made between
the two systems, l and m, and indeed the combined bipartite
system denoted lm may be nonlocal. The Svetlichny model
corresponds to Eq. (4) but without the assumption of a trusted
quantum state for k, and is referred to as a bilocal model.

E. Discussion of definitions

Recent analyses indicate that for consistency with opera-
tional definitions of genuine multipartite nonlocality, a weaker
definition of genuine tripartite nonlocality corresponding to
a stricter subset of models is preferable [50,51,56]. This
definition takes into account no-signaling and time ordering
between measurements made by the untrusted parties. While
this is an important issue that may lead to more sensitive
criteria, we do not address this in this paper. We derive cri-
teria sufficient to negate the Svetlichny-type models [Eq. (4)],
noting that such criteria will also be sufficient to rule out the
stricter subset.

Other definitions may also become applicable, where we
anticipate that for future applications, there is a strategy for
trust that means not all LHS models will be relevant. A
question relevant to secret sharing applications is whether
the steering of at least one of the single systems requires all
of the remaining N − 1 parties. Following [54], this value
N − 1 is called the depth of steering parties. It can be shown
that genuine N-partite steering as given by Definition 1 is a
necessary condition for N systems to have a depth of steering
parties of N − 1.

If we anticipate application of the steerable states to scenar-
ios with N = 3 where there will always be at least two trusted
sites among three, then the relevant LHS models that describe
separability for the system are (kQ) − (lQ)m, (kQ) − l (mQ),
and k − (lmQ) (k = 1, 2, 3). Since negation of (kQ) − lm
implies negation of (kQ) − (mQ)l and (kQ) − m(lQ), we see
that the negation of Eq. (20) will imply negation of all these
LHS models, based on two trusted sites. Hence, the criteria
derived in this paper according to Definition 1 will negate this
type of genuine tripartite steering. This is useful, for example,
if there are two fixed trusted sites on a network. Definitions
based on sites with fixed trust have been given in [39].

More generally, Definition 1 for genuine N-partite steering
will negate all LHS models (and convex combinations), where
N − 1 of the subsystems are trusted. However, if we restrict to
just one trusted site on a network, we would wish to negate the
LHS models kQ − lm, k − (lQ)m, and k − l (mQ). This then
requires Definition 3. The criteria derived in this paper accord-
ing to Definition 1 do not detect this type of genuine tripartite
steering.

It is also possible to consider negation of the LHS models
(and convex mixtures of them) relevant to secret sharing:
kQ − lm. This is where one does not trust the two collabo-
rating (steering) parties l and m, which gives the alternative
definition (Definition 2) of genuine tripartite steering, referred
to in [28]. The criteria derived in this paper will negate
all such models, and therefore confirm genuine tripartite
steering according to this earlier definition, which we call
Definition 2.

Definition 3 gives a strict definition of genuine N-partite
steering. In the tripartite case, this implies to negate the model
k − (lQ)m, since the bipartite system composed of systems l
and m (where only l is trusted) can show steering. Definition 1
of genuine N-partite steering does not negate this model, and
hence may not exclude that there is steering among N − 1 sub-
systems. Criteria for genuine tripartite steering with Definition
3 will also be presented in this paper, in Sec. III D.
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F. Steering, security against an eavesdropper, and the
EPR paradox

One may demonstrate the EPR paradox [22] if we are able
to select two observables ÔX

B and ÔP
B of B, such that [36]

SA|B < 1 . (23)

Here SA|B = �(xA − OX
B )�(pA − OP

B ) and xA and pA are ob-
servables for system A, such that the uncertainty relation
gives �xA�pA � 1. The observables OX

B and OP
B are general,

although in this paper, we will use linear combinations of
quadrature phase amplitudes. The condition is also sufficient
to demonstrate steering of system A, by the steering parties of
a distinct system B [24,25].

Consider u and v as defined in Eq. (5), where we have three
systems identified as k, l , and m, so that i = 1, 2, 3 corre-
sponds to i = k, l, m. Let hk = gk = 1. Denoting the values
of u and v in this case by uk and vk , so that

uk = xk + hlxl + hmxm,
(24)

vk = pk + gl pl + gm pm,

then an inference variance product is defined

Sk|lm = �uk�vk . (25)

Here we use the notation S instead of S , to make clear we
have specified the observables OX

B and OP
B to be used by the

steering parties. The violation of the inequality

Sk|lm � 1 (26)

then implies an EPR paradox, where the “elements of reality”
referred to in the EPR argument relate to the system k. This
constitutes a steering of system k by the systems l and m,
because the local hidden state model of Eq. (4) is falsified.
This condition is readily generalized to N systems.

In the setup to measure Sk|lm < 1, the observers at the
combined systems l and m are in some way (either alone or
together) making measurements at their sites, in order to pre-
dict or infer the results of measurements made by an observer
of system k. An EPR steering paradox is obtained when the
errors in the inference, given by �uk and �vk , have a product
that goes below the value of the Heisenberg uncertainty bound
for system k, because a local state with these variances in xk

and pk is not possible according to quantum mechanics.
Full tripartite steering inseparability is a necessary con-

dition for genuine tripartite steering and is the key to some
important applications. We consider a quantum secret sharing
scenario, where two observers 2 and 3 collaborate to infer
the result of a measurement of the spin of a third party, 1,
for the purpose of sharing a secret key [6,35,99–101]. The
observers later collaborate via public channels, to confirm
entanglement between the groups, thus determining if there
has been intervention by an eavesdropper. Extra security is
possible, if steering of the third system by the two parties 2
and 3 is confirmed [28]. This is because then there are minimal
assumptions made about the steering parties, while the station
of the third party 1 is kept secure [27,30].

Thus, if one is able to demonstrate that for certain states
there is steering across all bipartitions, we have a system
that can be used for this purpose in a symmetrical fashion
among the different observers and sites. Tripartite steering

inseparability does not necessarily ensure however that the
steering cannot be generated by mixing states where there is
steering between just two parties (refer to [48,49] for similar
discussions in relation to entanglement). The desirable fea-
ture to ensure that two observers are required to observe the
steering, as opposed to one, can be confirmed for a particular
bipartition, in principle, by negating steering of the third party
1 by 2 (or 3) [102].

G. Sum inequalities

Previous papers on multipartite entanglement have con-
sidered inequalities involving the sum of the variances,
(�u)2 + (�v)2, where u and v are defined by Eq. (5) [10].
Such sum criteria can be derived from the above criteria 1 and
2, using that x2 + y2 � 2xy for all real x and y. Specifically, if
the criterion involving the products is of the form �u�v � I
where I is an expression involving gi and hi, then we obtain
the criterion

(�u)2 + (�v)2

2
� �u�v � I (27)

for the sum of the variances. We see however from this rela-
tion that the violation of sum criterion Eq. (27) will always
imply violation of the product inequality �u�v � I .

III. CRITERIA FOR CONTINUOUS-VARIABLE
TRIPARTITE STEERING

A. Single inference inequalities

For concreteness, we consider three systems and use the
results of the previous section to obtain product inequalities
for the certification of genuine tripartite steering. One may
define the linear combination [10]

u = h1x1 + h2x2 + h3x3,

v = g1 p1 + g2 p2 + g3 p3 (28)

where h j and g j ( j = 1, 2, 3) are real numbers. We note that
the phase of the quadratures x j and p j can be adjusted inde-
pendently at each site and we may also define, for example,

u′ = h1x1 − h2 p2 + h3x3,

v′ = g1 p1 + g2x2 + g3 p3 . (29)

Assuming the Heisenberg uncertainty relation �x j�p j � 1
for each j = 1, 2, 3, the separability assumption of Eq. (2)
written as (k, l, m ∈ {1, 2, 3} and k �= l �= m)

ρlm,k =
∑

R

PRρR
lm,QρR

k,Q (30)

implies [49]

�u�v � |hkgk| + |hlgl + hmgm| . (31)

Similarly, based on the uncertainty relation �(−h2 p2 +
hmxm)�(g2x2 + gm pm) � |g2h2 + gmhm|, the separability as-
sumption implies [49]

�u′�v′ � |hkgk| + |hlgl + hmgm| . (32)

This brings us to inequalities for steering.
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Lemma 1. Violation of

�u�v � |gkhk| (33)

implies EPR steering of system k by the systems l and m. The
violation of

�u�v � |glhl + gmhm| (34)

implies EPR steering of systems l and m, by system k. The
violation of the inequality

�u�v � min{|gkhk|, |glhl + gmhm|} (35)

thus implies two-way EPR steering across the bipartition A|B
where A = {k} and B = {l, m}. Here, l �= k �= m and l, k, m ∈
{1, 2, 3}. In the steering of system k, the observers of the
combined systems l and m infer values for the xk and pk of
system k, in order to violate the inequality Eq. (33). In the
steering of combined systems l and m, the observer at k infers
values for the hlxl + hmxm and gl pl + gm pm of the combined
systems l and m, in order to violate the inequality Eq. (34).
The two-way steering can be established by selecting different
values of gi and hi for each direction of steering. However,
here, we are interested to rule out all bipartitions with a single
inequality. In this way, one can immediately also rule out
the mixtures associated with different bipartitions and LHS
models, and hence deduce genuine tripartite steering. We note
the same result will apply to u′ and v′ defined by Eq. (29).

Proof. The proof of the lemma follows from Eq. (18) taking
CA = |gkhk| and CB = |glhl + gmhm|. �

Now we arrive at conditions sufficient for genuine tripartite
steering, using Definition 1 of Sec. II D.

Criterion 1. Violation of the inequality

S3 ≡ �u�v� min{|g1h1|, |g2h2 + g3h3|,
× |g2h2|, |g1h1 + g3h3|,
× |g3h3|, |g1h1 + g2h2|} (36)

is sufficient to confirm full two-way tripartite steering insep-
arability and also to confirm genuine tripartite steering. An
identical result holds for �u′�v′. The proof follows from
Lemma 1 and Eq. (22). �

Letting g1 = h1 = 1, g2 = −h2 = 1/
√

2, and g3 = −h3 =
1/

√
2, Criterion 1 implies that observation of

S3 = �

[
x1 − (x2 + x3)√

2

]
�

[
p1 + (p2 + p3)√

2

]
< 0.5 (37)

is sufficient to confirm genuine tripartite steering. This in-
equality has been used previously to certify genuine tripartite
steering, in the work of [28,38,49]. The definition of genuine
tripartite steering in those works however was based on Def-
inition 2 (refer to Sec. II D). The results of this paper show
that the inequality Eq. (37) [and the associated criterion for
the sum of the variances, see Eq. (27)] also implies stronger
genuine tripartite steering, defined according to Definition 1
(Sec. II D). Generally, where |glhl + gmhm| � |gkhk|, Crite-
rion 1 reduces to �u�v � min{|g1h1|, |g2h2|, |g3h3|}, which
equates to that derived using Definition 2.

Criterion 2. Violation of the inequality

S3 ≡ �u�v� min{max{|g1h1|, |g2h2 + g3h3|},
× max{|g2h2|, |g1h1 + g3h3|},
× max{|g3h3|, |g1h1 + g2h2|}} (38)

is sufficient to confirm full tripartite steering inseparability.
The proof is given as for Eq. (21). �

B. Average-variance inequalities

The above approach uses a single inequality to confirm N-
partite steering, and hence there is no optimization of the gains
gi and hi for each bipartition. Another approach introduced
in [28] is to take averages over the variances associated with
each bipartition, thus allowing one to individually optimize
gains for each bipartition. The approach also allows one to see
that if it is possible to show sufficient steering of each system
k = 1, 2, 3, so that each of the EPR variances Sk|lm becomes
sufficiently small, then genuine tripartite steering must follow.

This brings us to the following criterion to certify genuine
tripartite steering.

Criterion 3. We define

Sk|lm ≡ �(xk + hk,l xl + hk,mxm)�(pk + gk,l pl + gk,m pm)

(39)

where hk,l , hk,m, gk,l , and gk,m are real constants. Here,
l �= k �= m and l, k, m ∈ {1, 2, 3}. Violation of the following
inequality will certify genuine tripartite steering among the
three systems:

S1|23 + S2|13 + S3|12 � min(1, |g2,1h2,1 + g2,3h2,3|,
× |g3,2h3,2 + g3,1h3,1|,
× |g1,2h1,2 + g1,3h1,3|) . (40)

Provided |gk,l hk,l + gk,mhk,m| � 1, for each k where k �= l �=
m, this simplifies to the inequality

S1|23 + S2|13 + S3|12 � 1 . (41)

Proof. We consider that the system is described by mixtures
of the type

ρmix = P′
1ρ1Q−23 + P′′

1 ρ1−(23Q)

+ P′
2ρ2Q−13 + P′′

2 ρ2−(13Q)

+ P′
3ρ3Q−12 + P′′

3 ρ3−(12Q) , (42)

where we use the abbreviated notation for LHS mixtures,
given in Sec. II. Here, P′

k , P′′
k , and Pk are probabilities, such

that Pk = P′
k + P′′

k and P1 + P2 + P3 = 1. Using Definition 1
of Sec. II D for genuine tripartite steering, we wish to negate
all such models ρmix. First, we note that if Sk|lm < 1, we
certify steering of system k (Lemma 1). If Sk|lm < |gk,l hk,l +
gk,mhk,m|, then we certify steering of the combined sys-
tems lm. This is because the LHS models (denoted ρk−(lmQ)

and ρkQ−lm) associated with that bipartition k − lm imply
Sk|lm � 1 and Slm|k � |glhl + gmhm|, respectively. More gen-
erally, each LHS model associated with the bipartition k − lm
implies

Sk|lm � min {1, |gk,l hk,l + gk,mhk,m|} . (43)

This is also true if for any particular k we define

Sk|lm ≡ �(xk − hk,l pl + hk,mxm)�(pk + gk,l xl + gk,m pm)

(44)
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or as

Sk|lm ≡ �(xk − gk,l pl + gk,m pm)�(−pk + hk,l xl + hk,mxm)

(45)

as we see from the results of Eqs. (29) and (32). Abbreviating
the notation to define Sk ≡ Sk|lm, we assume the system is
described by (42) and we use Eq. (12). We see that the value
of S1 would be taken as the average over the three different
bipartitions k − lm, and similarly for S2 and S3, which leads
to the inequality

S1 + S2 + S3 � P1S1,1 + P2S1,2 + P3S1,3

+ P1S2,1 + P2S2,2 + P3S2,3

+ P1S3,1 + P2S3,2 + P3S3,3 . (46)

Here, we denote Sk′,k as the value of Sk′ for the bipartition
k − lm. The system will be in a given bipartition with a fixed
probability, Pi. Recognizing each Sk′,k to be positive, we can
therefore write

S1 + S2 + S3 � P1S1,1 + P2S2,2 + P3S3,3 . (47)

If the system is in the bipartition labeled 1, i.e., bipartition
1 − 23, then S1,1 � min(1, |g1,2h1,2 + g1,3h1,3|). Applying the
conditions on the Sk,k from Lemma 1, this becomes

S1 + S2 + S3 � P1 min(1, |g1,2h1,2 + g1,3h1,3|)
+ P2 min(1, |g2,1h2,1 + g2,3h2,3|)
+ P3 min(1, |g3,2h3,2 + g3,1h3,1|) , (48)

which leads to

S1 + S2 + S3 � min(1, |g2,1h2,1 + g2,3h2,3|,
|g3,2h3,2 + g3,1h3,1|, |g1,2h1,2 + g1,3h1,3|).

(49)

We note that provided |gk,l hk,l + gk,mhk,m| � 1, the LHS bi-
partition k − lm implies Sk � 1. Here we use that for the
bipartition k − lm, for both LHS models Sk,k � 1, provided
|gk,l hk,l + gk,mhk,m| � 1. �

Criterion 3 justifies the use of

S1 + S2 + S3 � 1 (50)

where we take |gk,l hk,l + gk,mhk,m| � 1 for each k. The con-
dition S1 + S2 + S3 < 1 was stated as sufficient to detect
genuine tripartite steering in [28], based on Definition 2 of
genuine tripartite steering. We now see that this condition also
holds as a criterion, according to the stricter Definition 1 used
in this paper.

We note that the phases of u and v can be adjusted accord-
ing to Eq. (29) and Eq. (44) or Eq. (45). To be explicit, in
Sec. V A 4 we will define S1|23 and S3|12 according to Eq. (44)
and S2|13 according to Eq. (45). Criterion 3 also applies for
this choice of phase. It is also possible to extend Criterion 3,
by deriving an inequality that keeps more terms at the step
Eq. (46) in the derivation. However, this gave no advantage
for the states examined in this paper (refer to Supplemental
Material [103]).

C. Van Loock–Furusawa-type steering criteria

The work of van Loock and Furusawa motivated exper-
imental measurements of sums of variances, which enabled
detection of genuine multipartite entanglement. The applica-
tion to steering of these inequalities was considered by Teh
and Reid [49], using Definition 2 for genuine multipartite
steering. We are thus motivated to examine these criteria using
the stricter Definition 1.

In their paper [10], van Loock and Furusawa consider
quantities

BI ≡ [�(x1 − x2)]2 + [�(p1 + p2 + g3 p3)]2,

BII ≡ [�(x2 − x3)]2 + [�(g1 p1 + p2 + p3)]2,

BIII ≡ [�(x1 − x3)]2 + [�(p1 + g2 p2 + p3)]2 (51)

defined for arbitrary real parameters g1, g2, and g3. They
consider the biseparable bipartitions denoted ρkQ−(lmQ) in our
notation, for which the following uncertainty relation holds:

�u�v � |hkgk| + |hlgl + hmgm| . (52)

They then use Eq. (52), to show that inequality BI � 4 is
implied by both the biseparable states ρ(13)Q,2Q and ρ(23Q),1Q,
which assume separability between systems 1 and 2. Simi-
larly, a second inequality BII � 4 is implied by the biseparable
states ρ(13Q),2Q and ρ(12Q),3Q, while a third inequality BIII � 4
follows from biseparable states ρ(12Q),3Q and ρ(23Q),1Q. Van
Loock and Furusawa derived a condition for full tripartite
inseparability, based on the violation of two of the above
inequalities.

Here, we will prove a similar result for steering. We follow
[49] and define the product inequalities that were used for
multipartite entanglement:

SI ≡ �(x1 − x2)�(p1 + p2 + g3 p3),

SII ≡ �(x2 − x3)�(g1 p1 + p2 + p3),

SIII ≡ �(x1 − x3)�(p1 + g2 p2 + p3) . (53)

First, following the proofs of [10,49], we note that the in-
equality SI � 2 is implied by the biseparable states associated
with bipartitions 13 − 2 and 23 − 1. Similarly, the second in-
equality SII � 2 is implied by the biseparable states associated
with bipartitions 13 − 2 and 12 − 3, and the third inequality
SIII � 2 is implied by separable states over bipartitions 12 − 3
and 23 − 1. This means that the violation of any two of the
inequalities SI � 2, SII � 2, and SIII � 2 is sufficient to prove
full tripartite inseparability.

We now extend the result for tripartite steering.
Criterion 4. The violation of any two of the inequalities

SI � 1 , SII � 1 , SIII � 1 (54)

implies full tripartite two-way steering inseparability.
Proof. Here, we use the results with h3 = 0, h1 = g1 =

g2 = 1, and h2 = −1 to show that the LHS models ρ1Qρ23 and
ρ1ρ23Q imply SI � 1, and similarly the LHS models ρ2Qρ13

and ρ2ρ13,Q imply

SI � 1 . (55)

This follows from Lemma 1: Considering bipartition {k − lm}
where k = 1, l = 2, and m = 3, we find that violation of the
inequality �u�v � 1 implies two-way steering across the
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bipartition {1 − 23}, and similarly across bipartition {2 − 13}.
Similarly, we see that LHS models ρ3Qρ12 and ρ3ρ12,Q (and
the LHS models ρ2Qρ13 and ρ2ρ13,Q) imply

SII � 1 . (56)

The LHS models ρ3Qρ12 and ρ3ρ12,Q (and the LHS models
ρ1Qρ23 and ρ1ρ23,Q) imply

SIII � 1 . (57)

Hence, if two inequalities are violated, all three bipartitions
show two-way steering, and the result follows. �

Criterion 5. We confirm genuine tripartite steering, if the
inequality

SI + SII + SIII � 2 (58)

is violated.
Proof. For N = 3 parties, there are three bipartitions, and

three corresponding biseparable states ρ1,23, ρ2,13, and ρ3,12

that we index by k = 1, 2, 3, respectively. Consider any mix-
ture of the form Eq. (42). We consider the three types of
bipartitions, grouping the two associated LHS models to-
gether. We use that for mixtures ρmix = ∑

PRρ (R), the result
Eq. (12) follows, where here the subscript denotes that the
averages are over the state ρ (R). We can then write

SI � P1SI,1 + P2SI,2 + P3SI,3

� P1SI,1 + P2SI,2 � P1 + P2 (59)

where here we define SI,k as the expected value of SI for
the bipartition ρk,lm with probability Pk . This uses that we
know from the proof of Criterion 4 that both of the LHS
models ρ1Qρ23 and ρ1ρ23Q with bipartition k = 1 will satisfy
SI � 1, and also SIII � 1. Similarly, both LHS models ρ2Qρ13

and ρ2ρ13,Q satisfy SI � 1 and SII � 1, and both LHS models
ρ3Qρ12 and ρ3ρ12,Q satisfy SII � 1 and SIII � 1. Hence, for
any mixture SI � P1 + P2. Similarly, SII � P2 + P3 and SIII �
P1 + P3. Then we see that since

∑3
k=1 Pk = 1, for any mixture

it must be true that SI + SII + SIII � 2. �
Immediately, from the result Eq. (27), one arrives at the

corresponding criteria for the original van Loock–Furusawa
inequalities, involving summations. We choose to write these
explicitly, in the event this may be useful, because the quanti-
ties have been experimentally reported.

Criterion 4b. The violation of any two of the inequalities

BI � 2, BII � 2, BIII � 2 (60)

implies full tripartite two-way steering. The proof follows
from Criterion 4 and the result Eq. (27).

Criterion 5b. We confirm genuine tripartite steering, if the
inequality

BI + BII + BIII � 4 (61)

is violated, where BI � 2, BII � 2 and BIII � 2 are the van
Loock–Furusawa steering inequalities, Eq. (60). The proof
follows from Criterion 5 and the result Eq. (27).

This result confirms the validity of the criteria given as (35)
and Result (4) stated in [49] and [28], respectively (based on
Definition 2), for Definition 1, used in this paper.

We also note criteria involving just two of the van Loock–
Furusawa inequalities. These inequalities are an adaption of
the similar criterion derived for entanglement in [48,49].

Criterion 5c.We can confirm genuine tripartite steering, if
with g1 = g2 = g3 = 1 the inequality

SI + SII < 1 (62)

is satisfied (or SI + SIII < 1, or SII + SIII < 1).
Proof. This follows from the proof of Criterion 5.
Criterion 6c. We can confirm genuine tripartite steering, if

with g1 = g2 = g3 = 1 the inequality

BI + BII < 2 (63)

is satisfied (or BI + BIII < 2, or BII + BIII < 2).
Proof. This follows from Criterion 5c.

D. Strict genuine tripartite steering: Definition 3

We now give criteria for the stricter definition of genuine
tripartite steering, discussed in Sec. II E. This definition al-
lows the inference of genuine tripartite steering with only one
trusted site, and negates all LHS models that allow steering
among two parties.

Criterion 7. We confirm genuine tripartite steering by Def-
inition 3, if either of the following inequalities is violated with
gi = 1 (i = 1, 2, 3):

SI + SII + SIII � 2 (64)

or BI + BII + BIII � 4. Similarly, we conclude genuine tri-
partite steering by Definition 3 if any one of SI + SII � 1,
SII + SIII � 1, and SI + SIII � 1 (or BI + BII � 2, BII + BIII �
2, and BI + BIII � 2) is violated, with gi = 1 (i = 1, 2, 3).

Proof. For N = 3 parties, there are three bipartitions,
and three corresponding biseparable states ρ1,23, ρ2,13, and
ρ3,12 that we index by k = 1, 2, 3, respectively. For Def-
inition 3, the relevant LHS models for ρ1,23 (k = 1) are
ρ1Qρ23, ρ1ρ2(3Q) and ρ1ρ(2Q)3, and similarly for each k =
2 and 3. As for the proof of Criterion 5, we consider
any convex mixture of these LHS states ρmix = ∑

k Pkρ
(k)

where Pkρ
(k) = Pk,kρkQρlm + Pk,lρkρ(lQ)m + Pk,mρkρl (mQ) and

Pk,k + Pk,l + Pk,m = Pk ,
∑

k Pk = 1, with each Pk,i � 0. From
Eq. (31), the uncertainty relation for ρkQρ(lm)Q is

�u�v � |hkgk| + |hlgl + hmgm| . (65)

For ρ1Qρ23, using h1 = 1, h2 = −1, h3 = 0, and g1 = g2 =
g3 = 1, the relation becomes

�(x1 − x2)�(p1 + p2 + p3) � |h1g1| = 1 , (66)

implying SI � 1. For ρ1ρ(2Q)3, using h1 = 1, h2 = −1, h3 =
0, and g1 = g2 = g3 = 1, we see that

�(x1 − x2)�(p1 + p2 + p3) � |h2g2| = 1, (67)

i.e., SI � 1. However, for ρ1ρ2(3Q), using h1 = 1, h2 = 1, h3 =
0, and g1 = g2 = g3 = 1,

�(x1 − x2)�(p1 + p2 + p3) � |h3g3| = 0, (68)

i.e., SI � 0. Proceeding similarly, for ρ1Qρ23, using h1 = 1,
h3 = −1, h2 = 0, and g1 = g2 = g3 = 1,

�(x1 − x3)�(p1 + p2 + p3) � |h1g1|, (69)
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i.e., SIII � 1. Continuing, we find for ρ1ρ(2Q)3 that SIII �
0, and for ρ1ρ2(3Q) that SIII � 1. Proceeding similarly, for
ρ1Qρ23, using h2 = 1, h3 = −1, h1 = 0, and g1 = g2 = g3 =
1, we see from

�(x2 − x3)�(p1 + p2 + p3) � |h1g1| (70)

that SII � 0. For ρ1ρ(2Q)3, we find SII � 1, and for ρ1ρ2(3Q), we
see that SIII � 1. In summary, for ρ1Qρ23 and ρ1ρ(2Q)3, SI � 1;
for ρ1Qρ23 and ρ1ρ2(3Q), SIII � 1; for ρ1ρ(2Q)3 and ρ1ρ2(3Q),
SII � 1.

Similarly, for ρ2Qρ13 and ρ2ρ(1Q)3, SI � 1; for ρ2Qρ13

and ρ2ρ1(3Q), SII � 1; for ρ2ρ(1Q)3 and ρ2ρ1(3Q), SIII � 1. For
ρ3Qρ21 and ρ3ρ(2Q)1, SII � 1; for ρ3Qρ21 and ρ3ρ2(1Q), SIII �
1; for ρ3ρ(2Q)1 and ρ3ρ2(1Q), SI � 1. Hence, for ρmix, using
that for mixtures the variance is given according to Eq. (11),
we find

SI � P1,1 + P1,2 + P2,1 + P2,2 + P3,2 + P3,1,

SII � P1,2 + P1,3 + P2,3 + P2,2 + P3,3 + P3,2,

SIII � P1,1 + P1,3 + P2,3 + P2,1 + P3,3 + P3,1 . (71)

Hence,

SI + SII + SIII � 2P1,1 + 2P1,2 + 2P1,3

+ 2P2,2 + 2P2,1 + 2P2,3

+ 2P3,3 + 2P3,2 + 2P3,1 � 2 . (72)

The proof of the second inequality follows from Eq. (27). We
also see that

SI + SII � P1,1 + 2P1,2 + P1,3 + 2P2,2 + P2,1 + P2,3

+ P3,3 + 2P3,2 + P3,1 � 1 , (73)

and similarly, SI + SIII � 1 and SII + SIII � 1. The results for
the sum inequalities BI, BII, and BIII follow from Eq. (27). �

IV. GENUINE N-PARTITE STEERABLE STATES

We now give an analysis of how to generate and detect
genuine N-partite steering. We consider three types of states
that we refer to as the CV EPR, CV split-squeezed, and CV
GHZ states. These are generated by a network of N − 1 beam
splitters, using two, one, and N squeezed-vacuum input states,
respectively.

A. CV EPR state

We begin with the CV EPR state. This state has been used
to generate genuine tripartite entanglement [60], and can be
generated following the schemes suggested in [10,49]. The
setup for N = 3 is illustrated in Fig. 1. We will show that
the schemes also produce a genuinely N-partite steerable state
that can be detected using Criterion 1, derived in the previous
section.

Two orthogonally squeezed inputs are placed through a
50 : 50 beam splitter BS1, to produce EPR entangled fields
with boson operators a1 and a′

2 at the two outputs. We show
this by writing the output fields as

a1 = √
R1a(in)

1 + √
T1a(in)

2 ,

a′
2 = √

T1a(in)
1 − √

R1a(in)
2 (74)

FIG. 1. Generation of the tripartite-entangled CV EPR state. The
configuration uses two squeezed-vacuum inputs a(in)

1 and a(in)
2 , and

two beam splitters (BS) with reflectivities R1 = R2 = 1/2. The xi

and pi are the two orthogonal quadrature-phase amplitudes of the
spatially separated optical modes, denoted by ai (i = 1, 2, 3).

where R1 + T1 = 1, R1 being the reflectivity of the beam
splitter, and a(in)

1 and a(in)
2 are the inputs to the beam split-

ter (Fig. 1). This gives a(in)
1 = √

R1a1 + √
T1a′

2 and a(in)
2 =√

T1a1 + √
R1a′

2. Thus,
√

T1x1 − √
R1x′

2 = x(in)
2 and

√
R1 p1 +√

T1 p′
2 = p(in)

1 , where x j , x′
j and p j , p′

j are the quadratures

of the fields a j and a′
j respectively, and x(in)

j and p(in)
j are the

quadratures of the field a(in)
j . If the input a(in)

2 is a squeezed

input with �2x(in)
2 = e−2r , then

�2(
√

T1x1 − √
R1x′

2) = �2x(in)
2 = e−2r (75)

where we use the notation �2x ≡ (�x)2 to simplify the use of
brackets. If the input a(in)

1 is squeezed in p, so that �2 p(in)
1 =

e−2r , then

�2(
√

R1 p1 + √
T1 p′

2) = e−2r . (76)

Choosing R1 = 1
2 , these fields satisfy

�2(x1 − x′
2) = 2e−2r,

�2(p1 + p′
2) = 2e−2r (77)

where xi and pi are the quadratures associated with each mode
ai. Entanglement is detected when [104]

�(x1 − x′
1)�(p1 + p′

1) < 2 , (78)

implying the fields to be entangled for all r > 0.
More generally, to investigate the EPR steering correlations

as in [36], we find

�2(x1 − gx,sx
′
2) = g2

x,s(T1e2r + R1e−2r ) + R1e2r + T1e−2r

−2
√

R1T1gx,s(e
2r − e−2r )

which is minimum for

gx,s =
√

R1T1(e2r − e−2r )

(T1e2r + R1e−2r )
. (79)

Similarly,

�2(p1 + gp,s p′
2) = g2

p,s(T1e−2r + R1e2r ) + R1e−2r + T1e2r
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FIG. 2. Genuine N-partite steering for the CV EPR state: The
plots shows the optimal steering parameter SN defined in Eqs. (82)
and (92) as a function of the squeezing parameter r and for differ-
ent reflectivities R1. Steering of system 1 is obtained when SN ≡
S1|{2,...,N} < 1. It is evident that genuine N-partite steering is obtained
for sufficiently large r, implying mutual steering between all subsys-
tems, as given by Criterion 1b and Eq. (95).

− 2
√

R1T1gp,s(e
2r − e−2r )

which is minimum for

gp,s =
√

R1T1(e2r − e−2r )

(R1e2r + T1e−2r )
. (80)

This gives

�2(x1 − gx,sx
′
2) = 1

(1 − R1)e2r + R1e−2r
,

�2(p1 + gp,s p′
2) = 1

R1e2r + (1 − R1)e−2r
. (81)

For all values of beam splitter reflectivity R1, there is EPR
steering whenever r > 0, and perfect EPR correlation as the
variances become zero, as r → ∞. The optimal EPR steering
product as defined by Eq. (25) for the two output modes is

S2 ≡ S1|2 = �u1�v1 = �(x1 − gx,sx
′
2)�(p1 + gp,s p′

2) (82)

where here for Eq. (25) we identify h2 = −gx,s and g2 = gp,s.
We plot S2 in Fig. 2 for the optimal choice of gains gx,s and
gp,s, for various values of reflectivity R1. One may prove by
differentiation that the optimal choice to minimize S2 is R1 =
1/2. The optimal steering product then becomes

S2 ≡ S1|2 = �u1�v1 = 1

cosh 2r
(83)

for optimal gains given by

gx,s = gp,s = tanh 2r. (84)

In Fig. 3, we plot the optimal gains versus r.
As shown in [10,49], to produce tripartite entangled fields,

the field 2 is then split using a beam splitter labeled BS2, with
a vacuum input a(in)

3 , to give two new outputs a2 = (
√

R2a′
2 +√

T2a(in)
3 ) and a3 = (

√
T2a′

2 − √
R2a(in)

3 ), where R2 + T2 = 1.

FIG. 3. Optimal gains: The gains gx,s required for the steering in
Fig. 2 as given by Eq. (79), as a function of the squeezing parameter
r for different reflectivities R1. The plots for gp,s as in Eq. (80) are
obtained on replacing R1 with T1.

The setup for N = 3 is shown in Fig. 1. We see that a′
2 =√

R2a2 + √
T2a3. Thus

x′
2 = √

R2x2 + √
T2x3,

p′
2 = √

R2 p2 + √
T2 p3 (85)

where x j and p j are the quadratures of the field a j . Taking
R1 = 1

2 , from Eq. (77) we see that �2[x1 − 1√
2
(x2 + x3)] =

2e−2r and �2[p1 + 1√
2
(p2 + p3)] = 2e−2r , implying that the

variances are zero for large r. The output fields satisfy the
condition

�

[
x1 − 1√

2
(x2 + x3)

]
�

[
p1 + 1√

2
(p2 + p3)

]
< 1 (86)

for genuine tripartite entanglement given by Eq. (17) of [49],
with equal gains for the second and third modes. The product
becomes zero, indicating maximum EPR entanglement, in the
limit of large r.

However, we are interested to examine the tripartite EPR
steering. On taking R2 = 1

2 , from Eq. (81) we see on substi-
tuting Eq. (85) that

�2

[
x1 − gx,s√

2
(x2 + x3)

]
= 1

cosh 2r
,

�2

[
p1 + gp,s√

2
(p2 + p3)

]
= 1

cosh 2r
. (87)

Hence the steering product defined by Eq. (25) for the three
output modes becomes

S3 ≡ S1|23 = �u1�v1 = 1

cosh 2r
(88)

where here for Eq. (25) we identify h2 = h3 = −gx,s/
√

2
and g2 = g3 = gp,s/

√
2. There is steering of system 1 for all

values of r, as we see by examining the steering condition
Eq. (26). We will also see that Criterion 1 for genuine tripartite
steering is satisfied for r > 0.76.
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Continuing, it is possible to select the reflectivities of the
string of beam splitters so that x′

2 = 1√
N

(
∑N−1

i xi ) and p′
2 =

1√
N

(
∑N−1

i pi ). In this case, on substituting in Eq. (77), we
obtain

�2

[
x1 − 1√

N − 1
(x2 + x3 + . . . xN )

]
= 2e−2r,

�2

[
p1 + 1√

N − 1
(p2 + p3 + . . . pN )

]
= 2e−2r . (89)

The criterion

SN = �u�v <
1

N − 1
, (90)

defined for u and v with g1 = h1 = 1 and gi = g and hi = h
for i > 1, is sufficient to confirm genuine N-partite entangle-
ment, as shown in [10,49]. This criterion is clearly satisfied
for large r.

To analyze genuine N-partite steering, we use Eq. (81) to
obtain

�2

[
x1 − gx,s√

N − 1
(x2 + x3 + . . . xN )

]
= 1

cosh 2r
,

�2

[
p1 + gp,s√

N − 1
(p2 + p3 + . . . pN )

]
= 1

cosh 2r
. (91)

Hence the steering product as defined by Eq. (25) for the N
output modes becomes

SN ≡ S1|{2,...,N} = �u1�v1 = 1

cosh 2r
(92)

where here for Eq. (25) we identify for i > 1 that hi =
−gx,s/

√
N − 1 and gi = gp,s/

√
N − 1. There is steering of

system 1 for all values of r, as we see by examining the
steering condition Eq. (26). We also see that Criterion 1 as
extended for genuine N-partite steering below is satisfied for
large r. We consider the state created by selecting for the beam
splitters, RN−1 = 1/2, RN−2 = 1

3 , RN−r = 1
r+1 for r < N − 1,

as explained in [10,49], with R1 = 1/2. The state produced
shows genuine N-partite steering.

Criterion 1 can be generalized to N parties, to give the
following criterion.

Criterion 1b. Selecting u1 = x1 + h(x2 + x3 + . . . xN ) and
v1 = p1 + g(p2 + p3 + . . . pN ), we see that the corresponding
gains for Criterion 1 are g1 = h1 = 1 and gi = g and hi = h
(i > 1). Since 0 � g,−h � 1, one simultaneously confirms
two-way steering along all bipartitions if with this choice of u
and v, one can confirm

SN ≡ �u1�v1

< min{1, |(N − 1)gh|; |gh|, |1 + (N − 2)gh|;
× |2gh|, |1 + (N − 3)gh|; |3gh|, |1 + (N − 4)gh|; ...;
× |1 + gh|, |(N − 2)gh|; |1 + 2gh|, |(N − 3)gh|; ...}

< min{|gh|, |1 − (N − 2)|gh||}. (93)

Where the gains are gi = gp,s√
N−1

and hi = − gx,s√
N−1

, so

that u1 = x1 − gx,s√
N−1

(x2 + x3 + . . . xN ) and v1 = p1 +

FIG. 4. Genuine N-partite steering for the CV EPR state: The
value of SN divided by the bound |gx,sgp,s|/(N − 1) as provided in
Criterion 1b, for the CV EPR state. The analytical expression for SN

and the optimal gains gx,s and gp,s are given by Eq. (84). When the
value is less than 1, there is genuine N-partite steering according to
Criterion 1b, given by Eq. (94).

gp,s√
N−1

(p2 + p3 + . . . pN ), this reduces to

SN ≡ �u1�v1 < min

{
gx,sgp,s

N − 1
, 1 − N − 2

N − 1
gx,sgp,s

}
. (94)

This inequality therefore gives a criterion for genuine N-
partite steering. With the optimal choice of gains, the
inequality becomes SN < tanh2 2r

N−1 , since the second term is
greater.

For the choice of gains gx,s and gp,s given by Eqs. (79) and
(80) that optimize for steering of system 1, the value of SN is
plotted in Fig. 2. The criterion SN < 1 is clearly satisfied for
all r > 0, and as r → ∞, SN → 0, implying maximal EPR
steering of system 1. Using the expressions in Eq. (89) and
the inequality Eq. (94), the corresponding condition on r for
genuine N-partite steering according to Criterion 1b with this
choice of gains is given by

SN ≡ S1|{2,...,N} = �u1�v1 = 1

cosh 2r
<

tanh2 2r

N − 1
, (95)

which is satisfied for r > 0.76 for N = 3. The normalized
value given by SN divided by the bound |gx,sgp,s|/(N − 1)
is plotted in Fig. 4. The minimum squeezing parameter re-
quired to show genuine steering according to Eq. (95) satisfies

cosh 2r >
(N−1)+

√
(N−1)2+4

2 . We note that it is likely genuine
N-partite steering can be detected for smaller r values if the
gains are chosen to optimize the inequality, rather than to
optimize for the steering of system 1.

B. CV split-squeezed state

Genuine N-partite entanglement and steering can also be
generated from a network with just one single squeezed-state
vacuum input (Fig. 5). This is possible because the two out-
puts of a beam splitter with a single squeezed-vacuum input
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FIG. 5. Generation of the tripartite-entangled CV split-squeezed
state. The configuration uses a single squeezed-vacuum input a(in)

1

and two beam splitters (BS) with reflectivities R1 = 1/2 and R2 =
1/2. The xi and pi are the two orthogonal quadrature-phase ampli-
tudes of the spatially separated optical modes i (i = 1, 2, 3).

are EPR correlated [36]. A high degree of squeezing r is
required for the input, however, in order to generate a feasible
amount of multipartite entanglement.

We calculate the steering correlations explicitly. We first
consider the bipartite steering created where one squeezed
input is placed through a beam splitter BS1 with inputs a(in)

1
and a2

(in). This produces EPR entangled fields with boson
operators a1 and a′

2 at the two outputs. Using the procedure
from Sec. IV A, if a(in)

2 is a vacuum then �2x(in)
2 = 1, implying

�2(
√

T1x1 − √
R1x′

2) = �2x(in)
2 = 1 . (96)

If a(in)
1 is squeezed in p, so that �2 p(in)

1 = e−2r , we have

�2(
√

R1 p1 + √
T1 p′

2) = e−2r . (97)

Choosing R1 = 1
2 , these fields satisfy

�2(x1 − x′
2) = 2,

�2(p1 + p′
2) = 2e−2r (98)

where xi and pi are the quadratures associated with each mode
ai. Entanglement is detected when �(x1 − x′

1)�(p1 + p′
1) <

2 [104] so that the fields are entangled for all r > 0.
We next examine the EPR steering between the two modes.

For arbitrary R1, we obtain

�2(x1 − gx,sx
′
2) = g2

x,s(T1e2r + R1) + R1e2r + T1

− 2
√

R1T1gx,s(e
2r − 1) (99)

which is minimum for

gx,s =
√

R1T1(e2r − 1)

(T1e2r + R1)
. (100)

Similarly,

�2(p1 + gp,s p′
2) = g2

p,s(T1e−2r + R1) + R1e−2r + T1

− 2
√

R1T1gp,s(1 − e−2r ) (101)

FIG. 6. Genuine N-partite steering for the CV SS state: The plots
shows the optimal steering parameter SN defined in Eqs. (105) and
(111) as a function of the squeezing parameter r and for differ-
ent reflectivities R1. Steering of system 1 is obtained when SN ≡
S1|{2,...,N} < 1. It is evident that genuine N-partite steering is obtained
for sufficiently large r, implying mutual steering between all subsys-
tems, as given by Criterion 1b. The blue solid line is the result given
by Eq. (111).

which is minimum for

gp,s =
√

R1T1(1 − e−2r )

(R1 + T1e−2r )
. (102)

This gives

�2(x1 − gx,sx
′
2) = e2r

(1 − R1)e2r + R1
, (103)

which implies that for r = 0, �2(x1 − gx,sx′
2) = 1. Similarly,

�2(p1 + gp,s p′
2) = e−2r

R1 + (1 − R1)e−2r
, (104)

which is 1 for r = 0 and for large r becomes zero. This
is true for all values of reflectivity R1. Hence, the optimal
steering product S2 = �(x1 − gx,sx′

2)�(p1 − gp,s p′
2) defined

by Eq. (25) for the two output modes is given by

S2
2 ≡ (S1|2)2 = 1

1 + 4R1(1 − R1) sinh2 r
. (105)

As long as R1 �= 0, S2 → 0 for large r.
We plot the bipartite steering product S2 in Figs. 6 and 7,

versus r. One may prove by differentiation for each fixed r that
the optimal choice to minimize S2 is R1 = 1/2, which gives

gx,s = gp,s = 1 − e−2r

1 + e−2r
(106)

and

�2(x1 − gx,sx
′
2) = 2

1 + e−2r
,

�2(p1 + gp,s p′
2) = 2e−2r

1 + e−2r
. (107)
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FIG. 7. Optimal gains: The gains gx,s required for the steering in
Fig. 6 as given in Eq. (79), as a function of the squeezing parameter
r, for different reflectivities R1. The plots for gp,s are obtained on
replacing R1 with T1.

This leads to S2 = 1
cosh r , indicating steering of system 1 for

all r, as given by the steering condition Eq. (26). We note
that although S2 vanishes for significantly large r, the value
of S2 remains close to 1 for the experimental achievable set of
squeezing parameters, r < 2. This is particularly true where
the reflectivity deviates from the ideal value of R1 = 1/2.

To produce tripartite entangled fields, the field a′
2 is then

split using a beam splitter labeled BS2, with a vacuum input
a(in)

3 , to give two new outputs a2 = (
√

R2a′
2 + √

T2a(in)
3 )

and a3 = (
√

T2a′
2 − √

R2a(in)
3 ), where R2

2 + T 2
2 = 1, as

above. This gives a′
2 = √

R2a2 + √
T2a3. Taking R2 = 1

2 , we
see that

�2

[
x1 −

√
R1√
2T1

(x2 + x3)

]
= 1/T1,

�2

[
p1 +

√
T1√

2R1
(p2 + p3)

]
= e−2r/R1 . (108)

The product is e−2r/R1T1 which for a given r minimizes for
R1 = T1, i.e., for R1 = 1

2 . The output fields a1, a2, and a3

satisfy the condition Eq. (86) for genuine tripartite entangle-
ment, with equal gains for the second and third modes.

Continuing, it is possible to select the reflectivities of the
string of beam splitters so that we obtain

�2

[
x1 − 1√

N − 1
(x2 + x3 + . . . xN )

]
= 2,

�2

[
p1 + 1√

N − 1
(p2 + p3 + . . . pN )

]
= 2e−2r . (109)

This is done by selecting for the beam splitters, RN−1 =
1/2, RN−2 = 1

3 , RN−r = 1
r+1 for r < N − 1, as explained in

[10,49], with R1 = 1/2. The outputs satisfy the condition for
genuine N-partite entanglement given by Eq. (90).

FIG. 8. Generation of the tripartite-entangled CV GHZ state. The
standard configuration uses three squeezed-vacuum inputs and two
beam splitters (BS) with reflectivities R1 = 1/3 and R2 = 1/2. The
xi and pi are the two orthogonal quadrature-phase amplitudes of the
spatially separated optical modes i (i = 1, 2, 3).

Similarly, for the same string of beam splitters, we obtain

�2

[
x1 − gx,s√

N − 1
(x2 + x3 + . . . xN )

]
= 2

(1 + e−2r )
,

�2

[
p1 + gp,s√

N − 1
(p2 + p3 + . . . pN )

]
= 2e−2r

(1 + e−2r )
.

(110)

The value of the steering product defined by Eq. (25) for the
N output modes becomes

SN ≡ S1|{2,...,N} = �u1�v1 = 1

cosh r
. (111)

There is steering of system 1 for all values of r, as we see
by examining the steering condition Eq. (26). A criterion to
reveal genuine N-partite steering is given by Criterion 1b, as
above. The product SN is plotted for the choice of gains given
by Eqs. (100) and (102) in Fig. 6. These gains are optimized
to detect the steering of system 1, i.e., to minimize the value
of SN rather than to optimize violation of the inequality of
Criterion 1b. We see that genuine N-partite steering is possible
for sufficiently large r, despite that only one squeezed-vacuum
state has been used to generate the output fields. In order to
achieve the condition given by Criterion 1b, we require

�u�v = 2e−r

(1 + e−2r )
<

|gx,sgp,s|
2

.

This leads to the inequality cosh2 r − (N − 1) cosh r − 1 < 0.
For N = 3, this reduces to r > 1.53.

C. CV GHZ states

The CV GHZ state is generated by combining N squeezed-
vacuum states at the inputs of the N − 1 beam splitters
[10,105]. The first mode is squeezed in the direction p or-
thogonal to the direction of squeezing x of the remaining
modes. The variances are given as �2X = e−2r , where X is
the squeezed quadrature (Fig. 8).
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The final output variances are such that [10]

�2(xi − x j ) = 2e−2r (112)

for any i �= j and

�2(p1 + p2 + p3 + . . . pN ) = Ne−2r (113)

which is the special case given by Eq. (35) of [10] with g(N ) =
1. Steering of system i is detected on selecting u = xi − x j

and v = p1 + p2 + p3 + . . . pN and observing �u�v < 1, as
we see by examining the steering condition Eq. (26). Clearly,
this is obtained for the expressions of u and v, for large r.
For smaller r, a different choice of gain is optimal, to allow
steering for all r.

We now give a more detailed analysis. For just two modes,
the correlations are identical to those given in Sec. IV A, for
the CV EPR state. Explicitly, from Eqs. (75) and (76), we
get �2(x1 − 1√

2
x′

2) = 3
2 e−2r and �2(p1 + √

2p′
2) = 3e−2r for

R1 = 1/3 and T1 = 2/3. Following the same procedure, using
Eq. (85), the moments in the tripartite case are

�2
[
x1 − 1

2 (x2 + x3)
] = 3

2 e−2r,

�2(p1 + p2 + p3) = 3e−2r . (114)

More generally, we allow different gains, and consider
�2[x1 + h(x2 + x3)] and �2[p1 + g(p2 + p3)]. Generaliz-
ing to the N-partite CV GHZ state, there will be N − 1
beam splitters with reflectivities R1 = 1/N , R2 = 1/(N −
1), . . . , RN−1 = 1/2. The variances are

�2

[
x1 + h

(
N∑

j=2

x j

)]
= 1

N
[h(N − 1) + 1]2�2x(in)

1

+ (N − 1)

N
(h − 1)2�2x(in)

2 ,

�2

[
p1 + g

(
N∑

j=2

p j

)]
= 1

N
[g(N − 1) + 1]2�2 p(in)

1

+ (N − 1)

N
(g − 1)2�2 p(in)

2 (115)

where �2x(in)
1 = �2 p(in)

2 = e2r and �2x(in)
2 = �2 p(in)

1 = e−2r ,
as provided in Eq. (A5) of [49]. The optimal gains g and h, on
differentiation, are

h = − �2x(in)
1 − �2x(in)

2

�2x(in)
2 + (N − 1)�2x(in)

1

,

g = − �2 p(in)
1 − �2 p(in)

2

�2 p(in)
2 + (N − 1)�2 p(in)

1

. (116)

For large r, the optimal values become g → 1 and h →
−1/(N − 1). These optimal gains for different N are plotted
in Figs. 9 and 10 versus r.

The expressions in Eqs. (115) and (116) give

�2[x1 + h(x2 + . . . + xN )] = N

e−2r + (N − 1)e2r
,

�2[p1 + g(p2 + . . . + pN )] = N

e2r + (N − 1)e−2r
. (117)

FIG. 9. Optimal gains: The optimal gains h that minimize �u�v

in Eq. (115) for CV GHZ states. The analytical expressions for these
gains are given by Eq. (116).

Immediately, we see that the criterion SN = �u�v < 1
N−1 as

given by Eq. (90) and proved in [10,49] for N-partite entan-
glement is satisfied for large r.

To examine the steering, we find that

SN ≡ S1|{2,..N}

= N√
N2 + 4(N − 1) sinh2 2r

. (118)

The analytical expression for SN is plotted in Fig. 11. We
see using the condition SN < 1 of Eq. (26) that steering of
system 1 is possible for all values of r. As N becomes large,
SN → √

N/(2 sinh 2r), indicating genuine N-partite steering
for sufficiently large r, by Criterion 1b. The following condi-

FIG. 10. Optimal gains: The optimal gains g that minimize
�u�v in (115) for CV GHZ states. The analytical expressions for
these gains are given by Eq. (116).
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FIG. 11. Genuine N-partite steering for the CV GHZ state: The
value of SN as a function of the squeezing parameter r, for CV
GHZ states. The analytical expression for SN is given by Eq. (118).
Steering of system 1 is obtained when SN ≡ S1|{2,...,N} < 1. It is
evident that genuine N-partite steering is obtained for sufficiently
large r, implying mutual steering between all subsystems, as given
by Criterion 1b.

tion is sufficient to reveal genuine N-partite steering:

SN ≡ �u1�v1 < min{|gh|, |1 − (N − 2)|gh||} . (119)

In the limit of large r, this reduces to SN < 1
N−1 , which is

clearly satisfied for large r.
More generally, using the analytical expression for SN

and the optimal gains g and h given by Eqs. (118) and
(116), we plot the value of SN divided by the bound pro-
vided in Criterion 1b, given by Eq. (119). As shown in
Fig. 12, we see that genuine N-partite steering is possible
for large N . The minimum squeezing parameter required to
show this steering satisfies the inequality sinh2 2r � (N2(N −
1) + N2

√
(N − 1)2 + 4)1/2)/8 in agreement with the results

in Fig. 12. Here, the CV GHZ state does not for a fixed r
give a smaller value SN than that obtained with the CV EPR
state, which has only two squeezed inputs. However, SN is an
asymmetric parameter measuring steering of one mode only.
The advantage is that, unlike the CV EPR state, the GHZ state
has symmetry with respect to all modes.

On the other hand, the work of van Loock and Furusawa
[10] reveals that asymmetric squeezing strengths can give
stronger quantum correlations for the CV GHZ state. The
different squeezing strengths are related by the expression [see
Eq. (34) in [10]]

e±2r1 = (N − 1) sinh 2r2

(√
1 + 1

(N − 1)2 sinh2 2r2
± 1

)
(120)

where r1 is the input squeeze parameter for mode 1 and
r j = r2 for j �= 1. We confirm this leads to a steering value
S3 improved over the CV EPR case, for the same average
squeezing value, and relative to the squeezing parameter r2

of the second and third modes. For general N , following as

FIG. 12. Genuine N-partite steering for the CV GHZ state: The
value of SN divided by the bound |gh| as provided in Criterion 1b,
for CV GHZ states. The analytical expression for SN and the optimal
gains g and h are given by Eqs. (118) and (116), respectively. When
the value is less than 1, there is genuine N-partite steering according
to Criterion 1b given by Eq. (119).

above, we use

�2[x1 + h(x2 + . . . + xN )] = N

e−2r2 + (N − 1)e2r1
,

�2[p1 + g(p2 + . . . + pN )] = N

e2r2 + (N − 1)e−2r1
(121)

where the g and h are given by Eq. (116). This leads to

SN = N√
(N − 1)2 sinh2 2r2 + 1 + (N − 1) cosh 2r2

. (122)

For large N , the limit becomes SN → e−2r2 , which is im-
proved on the CV EPR and CV SS states. The CV GHZ states
require a single very strong squeezing at the first input r1, but
for less squeezing in the N − 1 inputs, a much higher steering
as measured by SN is possible.

In Fig. 13, SN is plotted for the CV GHZ state with two
squeezing strengths, for N = 3, 10, and 100. Also, plotted are
S3 for CV EPR and CV SS states.

V. GENUINE TRIPARTITE STEERABLE STATES

We now consider in more detail the steering for the three
types of states considered in the last section, where N = 3.
Examples for N = 4 are given in the Supplemental Mate-
rial [103]. It is useful to first summarize criteria that detect
steering across particular bipartitions. Here, we consider
u = h1x1 + h2x2 + h3x3 and v = g1 p1 + g2 p2 + g3 p3. Using
Lemma 1, we detect steering of mode k by lm if (k �= l �= m)
Sk|lm < 1 where

Sk|lm = �(hkxk + hlxl + hmxm)�(gk pk + gl pl + gm pm)

|gkhk| .

(123)
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FIG. 13. Genuine N-partite steering for the CV GHZ state with
asymmetric squeezing strengths. The steering product S3 is also
shown for CV EPR and CV SS states. The value of SN is plotted
for the CV GHZ state with two squeezing strengths, for N = 3, 10,
and 100. The two squeezing strengths for the GHZ state are related
by Eq. (120). In that case, r as plotted corresponds to r2 = r3. The
values of SN ≡ S1|{2,...,N} given by the green crosses are very close to
e−2r , as predicted by the large N limit of e−2r2 . Steering of system 1
is obtained when SN < 1. Genuine N-partite steering which implies
mutual steering of all subsystems is obtained for large r.

Thus we consider minimizing �(xk + h̃l xl + h̃mxm)�(pk +
g̃l pl + g̃m pm) where g̃i = gi/gk and h̃i = hi/hk . This example
is relevant for the application of secret sharing where the
collaborators l and m cannot be trusted. In order to detect
the steering across the bipartitions, one can select different
optimal choices of g̃i and h̃i for each bipartition, k − lm.
Similarly, from Lemma 1, we detect steering of the combined
systems l and m, if Slm|k < 1 where

Slm|k = �(hkxk + hl xl + hmxm)�(gk pk + gl pl + gm pm)

|glhl + gmhm| .

(124)

We note the generalization of the definition here of the steer-
ing product given in Eq. (25) where there is the steering of two
systems. We also note that in this case, as the variance product
Sk|lm goes to zero, so too will Slm|k .

A. CV GHZ and cluster states

1. Genuine tripartite steering using a single inequality

The inequality of Criterion 1 is useful to detect the gen-
uine tripartite steering of the CV GHZ state. For a single
choice of gi and hi defining u = h1x1 + h2x2 + h3x3 and v =
g1 p1 + g2 p2 + g3 p3, we wish to violate Eq. (36). Defining
S3 = �u�v, we test each of the six inequalities S3 < B pro-
vided by considering the right side of the inequality, where

B ∈ {|g1h1|, |g2h2 + g3h3|, |g2h2|,
× |g1h1 + g3h3|, |g3h3|, |g1h1 + g2h2|} . (125)

TABLE I. Values of the gains h and g that minimize the variance
product in criterion Eq. (126).

CV GHZ

r h g

0 0 0
0.25 −0.27 0.36
0.50 −0.40 0.68
0.75 −0.46 0.86
1.00 −0.49 0.95
1.50 −0.50 0.99
2.00 −0.50 1.00

If each inequality S3 < B is satisfied, we indicate steering
across one of the bipartitions in a certain direction. Genuine
tripartite steering is confirmed if all six possibilities are veri-
fied simultaneously, using a single set of gains, e.g., from the
single inequality Eq. (36).

We select g1 = h1 = 1, g2 = g3 = g, and h2 = h3 = h and
optimize for g and h by minimizing S3 with respect to these
gains. Criterion 1 given by Eq. (36) is then reduced to the
violation of

S3 � min{B1|23,B23|1,B2|13,B13|2,B3|12,B12|3}, (126)

where in this particular case B1|23 = 1, B23|1 = 2|gh|, B2|13 =
B3|12 = |gh|, and B12|3 = B13|2 = |1 + gh|. By differentiating
S3 with respect to g and h, we select the optimal gains given
by the analytical expressions Eq. (116). The numerical values
of optimal gains as a function of the squeezing parameter r
are tabulated in Table I. The value of S3 as a function of the
squeezing parameter r is given by Eq. (118). We calculate that
genuine tripartite steering is detectable using Criterion 1 when
r is sufficiently large (r > 0.8). The choice of gains used here
may not be the optimal to observe genuine tripartite steering
for a fixed r, but nonetheless ensures steering of system 1 (or
system 1 combined with 2 or 3) for all r values.

In Fig. 14, we plot S3 for a CV GHZ state with two squeez-
ing strengths, as given by Eq. (122). We also plot the different
bounds on the right side of the inequality Eq. (126). The
values of g and h are given by Table II. We take r2 = r3 = r
and obtain a minimum r2 = r3 of 0.633 to observe steering

TABLE II. Values of the gains h and g, as given by the analytical
expressions in Eq. (116), that minimize the variance product S3.
Here, the squeezing strength r2 = r and r1 is related to r2 by the
relation Eq. (120). For large r, the gains are identical to those in the
case where there is only one squeezing strength.

CV GHZ

r2 = r h g

0 0 0
0.25 −0.34 0.51
0.50 −0.45 0.80
0.75 −0.48 0.97
1.00 −0.49 0.99
1.50 −0.50 1.00
2.00 −0.50 1.00
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FIG. 14. The value of S3 ≡ S1|2 = �u�v as a function of the
squeezing parameter r, for the CV GHZ state, for g1 = h1 = 1, and
g2 = g3 = g and h2 = h3 = h. The results here correspond to the case
where two squeezing strengths are used, with r2 = r and r1 is related
to r2 by the relation Eq. (120). The gains g and h as a function of r
are given by the analytical expressions in Eq. (116). The blue solid
line corresponds to the value of S3, while other lines correspond
to different bounds on the right side of the inequality Eq. (126).
The gains are optimized to minimize S3, and hence to optimize the
observation of the steering of system 1.

in all bipartitions. This corresponds to r1 = 0.95 using the
relation Eq. (120).

2. Full tripartite steering inseparability

Next, we minimize the quantities Sk|lm and Slm|k as defined
in Eqs. (123) and (124), for each bipartition. For the steering
of mode 1 by 2 and 3, we minimize the quantity S1|23 by
optimizing the gains h̃2, h̃3, g̃2, and g̃3. On the other hand, for
the steering of modes 23 by 1, we minimize the quantity S23|1,
with an independent choice of gains. For the steering of mode
2 by 1 and 3, we minimize S2|13 by optimizing the gains h̃1,
h̃3, g̃1, and g̃3. The quantity S13|2 is independently minimized
for the steering of modes 1 and 3, by 2. We proceed similarly,
for S3|12 and S12|3.

The gains are optimized independently in each case. All the
optimal gains are numerically computed using the fminsearch
function in MATLAB. The maximum number of iterations that
calls the fminsearch function is chosen to be 106. The toler-
ance of this MATLAB function is chosen to be 10−6, where no
further iteration is taken if the quantity to be minimized is
smaller than 10−6 from one iteration to the next. The gains are
given in Tables III and IV.

Figure 15 shows the results for the steering across the
bipartitions for the CV GHZ state with a single squeezing
strength r. For all r, two-way steering can be detected across
each bipartition, using the relevant inequalities with the gains
given in Tables III and IV. For large r, the inferences improve
with the correct choice of gains, and all the relevant variances
become zero. This gives a method to confirm full tripartite

TABLE III. The optimal gains for the CV GHZ state. The opti-
mal gains for S3|12 are identical to the gains for S2|13 with h̃3 = h̃2 and
g̃3 = g̃2.

Gains for S1|23 Gains for S2|13

r h̃2 g̃2 h̃3 g̃3 h̃1 g̃1 h̃3 g̃3

0.25 −0.27 0.36 −0.27 0.36 −0.27 0.36 −0.27 0.36
0.50 −0.40 0.68 −0.40 0.68 −0.40 0.68 −0.40 0.68
0.75 −0.46 0.86 −0.46 0.86 −0.46 0.86 −0.46 0.86
1.00 −0.49 0.95 −0.49 0.95 −0.49 0.95 −0.49 0.95
1.50 −0.50 0.99 −0.50 0.99 −0.50 0.99 −0.50 0.99
2.00 −0.50 1.00 −0.50 1.00 −0.50 1.00 −0.50 1.00

two-way steering inseparability. The results for asymmetric
squeezing strengths r1 and r2 are also given.

3. Behavior in the highly squeezed limit

Most interesting is the limit of large r where the correla-
tions become ideal, implying zero variances, so that Sk|lm → 0
and Slm|k → 0. For the standard CV GHZ state [105] and
for the CV GHZ state with asymmetric squeezing strengths
[10], the optimal gain coefficients (refer to Tables III–VI) are
such that the steering criterion, for the steering of system k,
becomes

�

[
xk − (xl + xm)

2

]
�[pk + pl + pm] < 1 (127)

for each k = 1, 2, 3 (recalling k �= l �= m, where k, l, m ∈
{1, 2, 3}). For the standard CV GHZ state, we may also use
�[xk − xl ]�[pk + pl + pm] < 1, or �[xk − xm]�[pk + pl +
pm] < 1 [105]. For large r, the steering of system lm by k is
optimized by the same choice of gains. Noting that in this limit
|glhl + gmhm| = 1, we see that in fact the same inequality
Eq. (127) detects steering of lm by k, and therefore detects
two-way steering across the bipartition k − lm.

4. Genuine tripartite steering in a tripartite cluster state

We also compare with the results presented by Wang et al.
[106]. Here, the authors fixed R1 = 2/3 and varied R2 to
optimize the Gaussian steering parameter GA→B [37]. In par-
ticular, their analysis for R1 = 2/3 and R2 = 1/2 corresponds
to that for a tripartite unweighted cluster state. This is of
interest here, as this corresponds to where no two modes can

TABLE IV. The optimal gains for the CV GHZ state. The optimal
gains for S12|3 are identical to the gains for S13|2 with h̃3 = h̃2 and
g̃3 = g̃2.

Gains for S23|1 Gains for S13|2

r h̃2 g̃2 h̃3 g̃3 h̃1 g̃1 h̃3 g̃3

0.25 −1.37 1.87 −1.37 1.87 −1.37 1.87 −1.37 1.87
0.50 −0.73 1.23 −0.73 1.23 −0.73 1.23 −0.73 1.23
0.75 −0.58 1.08 −0.58 1.08 −0.58 1.08 −0.58 1.08
1.00 −0.53 1.03 −0.53 1.03 −0.53 1.03 −0.53 1.03
1.50 −0.50 1.00 −0.50 1.00 −0.50 1.00 −0.50 1.00
2.00 −0.50 1.00 −0.50 1.00 −0.50 1.00 −0.50 1.00
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FIG. 15. The steering across each bipartition as a function of
squeezing parameter r, for the CV tripartite GHZ state. Here k �= l �=
m. There is symmetry between all three systems and the plots hold
for each k = 1, 2, and 3. The values of S = �u�v for Sk|lm and Slm|k
are determined by the choice of gains in Tables III and IV. Here,
Sk|lm and Slm|k coincide. The gains for the case with two squeezing
strengths are tabulated in Tables V and VI.

steer one another, but where steering requires all three modes,
in line with the notion of genuine tripartite steering. They
confirm full tripartite steering inseparability (as we define it)
for this state, based on the assumption of a Gaussian state,
using the Gaussian parameter GA→B. Here, we give a method
sufficient to confirm tripartite steering inseparability and gen-
uine tripartite steering, without the assumption of Gaussian
states. A summary of the correlations for this state is given in
the Supplemental Material [103].

Before considering genuine tripartite steering for the clus-
ter state, we investigate the steering across all possible
bipartitions separately. For the bipartition 1 − 23, in our ap-
proach, we consider

u′
1 = h′

1,1x1 − h′
1,2 p2 + h′

1,3x3,

v′
1 = g′

1,1 p1 + g′
1,2x2 + g′

1,3 p3 . (128)

TABLE V. The optimal gains for the CV GHZ state with two
squeezing strengths. Here, r = r2 while r1 is related to r2 by
Eq. (120). The optimal gains for S3|12 are identical to the gains for
S2|13 with h̃3 = h̃2 and g̃3 = g̃2.

Gains for S1|23 Gains for S2|13

r h̃2 g̃2 h̃3 g̃3 h̃1 g̃1 h̃3 g̃3

0.25 −0.34 0.51 −0.34 0.51 −0.34 0.51 −0.34 0.51
0.50 −0.45 0.80 −0.45 0.80 −0.45 0.80 −0.45 0.80
0.75 −0.48 0.93 −0.48 0.93 −0.48 0.93 −0.48 0.93
1.00 −0.49 0.97 −0.49 0.97 −0.49 0.97 −0.49 0.97
1.50 −0.49 0.97 −0.49 0.97 −0.49 0.97 −0.49 0.97
2.00 −0.50 1.00 −0.50 1.00 −0.50 1.00 −0.50 1.00

TABLE VI. The optimal gains for the CV GHZ state with
two squeezing strengths. Here, r = r2 while r1 is related to r2 by
Eq. (120). The optimal gains for S12|3 are identical to the gains for
S13|2 with h̃3 = h̃2 and g̃3 = g̃2.

Gains for S23|1 Gains for S13|2

r h̃2 g̃2 h̃3 g̃3 h̃1 g̃1 h̃3 g̃3

0.25 −0.98 1.48 −0.98 1.48 −0.98 1.48 −0.98 1.48
0.50 −0.62 1.12 −0.62 1.12 −0.62 1.12 −0.62 1.12
0.75 −0.54 1.04 −0.54 1.04 −0.54 1.04 −0.54 1.04
1.00 −0.51 1.01 −0.51 1.01 −0.51 1.01 −0.51 1.01
1.50 −0.50 1.00 −0.50 1.00 −0.50 1.00 −0.50 1.00
2.00 −0.50 1.00 −0.50 1.00 −0.50 1.00 −0.50 1.00

As above, we analyze the steering for different bipartitions
by considering the quantity S′

1P ≡ �u′
1�v′

1. Full details are
given in the Supplemental Material [103]. We obtain two-
way steering along this bipartition if S′

1P < B1|23 and S′
1P <

B23|1 where the bounds are B1|23 = |g′
1,1h′

1,1| and B23|1 =
|g′

1,2h′
1,2 + g′

1,3h′
1,3|. These conditions become S1|23 < 1 and

S23|1 < 1, on defining the steering parameters as S1|23 =
S′

1P/B1|23 and S23|1 = S′
1P/B23|1.

It has been shown in the work of Wang et al. [106] that
a choice of h′

1,1 = g′
1,2 = −√

(1 − R1)/
√

R1R2 = −1, h′
1,3 =

−√
(1 − R2)/

√
R2 = −1, g′

1,1 = −h′
1,2 = 1, and g′

1,3 = 0 will
lead to S′

1P → 0 for a large squeezing parameter r. Here,
we have taken R2 = 1/2 and R1 = 2/3. These gains imply
that min{|g′

1,1h′
1,1|, |g′

1,2h′
1,2 + g′

1,3h′
1,3|} is 1. The analytical

expression for S′
1P is S′

1P = √
6e−2r . For large r, we see that

the steering inequalities S′
1P < B1|23 and S′

1P < B23|1 are both
satisfied for this choice of gains. Both bounds B1|23 and B23|1
are 1 for this choice of gains.

Similarly, there is two-way steering along the bipartition
2 − 13 if S′

2P < B2|13 and S′
2P < B13|2. Here, S′

2P = �u′
2�v′

2,
where

u′
2 = h′

2,1x1 − h′
2,2 p2 + h′

2,3x3,

v′
2 = g′

2,1 p1 + g′
2,2x2 + g′

2,3 p3 . (129)

With the choice of h′
2,1 = g′

2,2 = −√
(1 − R1)/

√
R1R2 =

−1, h′
2,3 = −√

(1 − R2)/
√

R2 = −1, g′
2,1 = −h′

2,2 = 1, and

g′
2,3 = 0, S′

2P = √
6e−2r → 0 for a large squeezing parameter

r. These gains imply that min{|g′
2,2h′

2,2|, |g′
2,1h′

2,1 + g′
2,3h′

2,3|}
is 1. We note that S′

1P and S′
2P have the same analytical

expression. The steering conditions for this bipartition be-
come S2|13 < 1 and S13|2 < 1, on defining S2|13 = S′

2P/B2|13

and S13|2 = S′
2P/B13|2 where B2|13 = |g′

2,2h′
2,2| and B13|2 =

|g′
2,1h′

2,1 + g′
2,3h′

2,3|. Both bounds are 1 for this choice of
gains.

Finally, in order to demonstrate steering 12 → 3 and 3 →
12, the inequalities S′

3P < B3|12 and S′
3P < B12|3 are used,

where S′
3P = �u′

3�v′
3 with

u′
3 = h′

3,1x1 − h′
3,2 p2 + h′

3,3x3,
(130)

v′
3 = g′

3,1 p1 + g′
3,2x2 + g′

3,3 p3,

and B3|12 = |g′
3,3h′

3,3| and B12|3 = |g′
3,1h′

3,1 + g′
3,2h′

3,2|. When
the gains h′

3,1 = −√
(1 − R1)/

√
R1R2 = −1, g′

3,2 = h′
3,3 =
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FIG. 16. Steering parameter Sk|lm as a function of the squeezing
parameter r, for the bipartitions of the cluster state considered by
Wang et al. [106]. Here, R2 = 1/2 and R1 = 2/3. Steering occurs
when Sk|lm < 1. Here, all three lines coincide, as expected from
symmetry. There is two-way steering across all possible bipartitions
for r � 0.44. This occurs when Sk|lm is below 1.

−√
(1 − R2)/

√
R2 = −1, −h′

3,2 = g′
3,3 = 1, and g′

3,1 = 0 can

be used, the analytical expression for S′
3P is S′

3P = √
6e−2r .

Also, we find min{|g′
3,3h′

3,3|, |g′
3,1h′

3,1 + g′
3,2h′

3,2|} = 1. The
steering inequalities can be expressed as S3|12 < 1 and S12|3 <

1 where we define S3|12 = S′
3P/B3|12 and S12|3 = S′

3P/B12|3.
Both bounds are 1 for this choice of gains.

The steering results for the cluster state are plotted in
Fig. 16, for a varying squeezing parameter r. This allows the
determination of the squeezing parameter r required to detect
two-way steering across each bipartition. In fact, we see that
there is two-way steering across all possible bipartitions for
r � 0.44. This confirms that full tripartite steering insepara-
bility can be detected for large r, using the inequalities with
the given choice of gains. We note that we have not optimized
the gains, and therefore this may not be the optimal criterion.

Having demonstrated steering across each bipartition, and
hence full tripartite steering inseparability, we are also able
to demonstrate genuine tripartite steering for this cluster state
using Criterion 3. On examining the gains h′

i, j and g′
i, j selected

for the u′
k and v′

k used in the definitions of Sk|lm above, we see
that Sk|lm are identical to Sk|lm defined according to Eqs. (44)
and (45), provided we choose h1,2 = 1, h1,3 = 1, g1,2 = −1,
g1,3 = 0, h2,1 = 1, h2,3 = 1, g2,1 = −1, g2,3 = 0, h3,1 = 1,
h3,2 = 1, g3,1 = 0, and g3,2 = −1 in the definitions of Sk|lm.
For those gains, all the relevant bounds on the right side of the
inequality of Criterion 3 are 1. The inequality of Criterion 3
reduces to

S′
1 + S′

2 + S′
3 � 1 (131)

where S′
k = Sk|lm are given by Eqs. (44) and (45). The analyt-

ical expressions for S′
1, S′

2, and S′
3 are solved above, as S′

1 =
S′

2 = S′
3 = √

6e−2r, respectively. Using these expressions, we
investigate genuine tripartite steering based on Eq. (131), as

FIG. 17. Genuine tripartite steering as a function of the squeez-
ing parameter r, using the criterion given by violation of the
inequality Eq. (131), for the cluster state studied by Wang et al. [106].
The values of S′

1 + S′
2 + S′

3 are given by the blue solid line. The black
dotted line corresponds to the bound for the steering inequality. There
is genuine tripartite steering for r > 1.

a function of squeezing parameter. The result is plotted in
Fig. 17 and genuine tripartite steering is possible for r > 1.

B. CV EPR state

1. Genuine tripartite steering with a single inequality

To investigate genuine tripartite steering for the CV EPR
state, Criterion 1 given by Eq. (126) can be used. We first se-
lect g1 = h1 = 1, g1 = g2 = g, and h1 = h2 = h and optimize
for g and h by minimizing S with respect to these gains. This
optimization has been carried out in Sec. IV A. The optimal
values are g = gx,s/

√
2 and h = gp,s/

√
2 where gx,s and gp,s

are given by Eqs. (79) and (80). The value of S3 as a function
of the squeezing parameter r is plotted in Figs. 2 and 18,
relative to the bounds of Eq. (125). We see that for this choice
of gains, there is steering of system 1 for all r values.

Genuine tripartite steering is detectable with Criterion 1,
for sufficiently large r > 0.76. The experiment of Walk et al.
[31] reports a maximum squeezing of −6.5 dB, corresponding
to a squeeze parameter of r = 0.75. This suggests that detec-
tion of genuine tripartite steering may be feasible using this
approach in the near future.

2. Full tripartite steering inseparability

Next, we examine full tripartite steering inseparability.
We numerically compute gains that minimize Sk|lm and Slm|k
[Eqs. (123) and (124), respectively] for each bipartition. The
values of these gains are given in Tables VII and VIII. In
particular, the gains for S1|23 are as above. As for the CV GHZ
state, there is two-way steering for all the bipartitions, and
hence full tripartite steering inseparability, for all values of r.
This is evident in Fig. 19. We note that in the limit of large
r, the correlations become ideal, implying zero variances, so
that Sk|lm → 0 and Slm|k → 0.
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FIG. 18. The value of S3 = �u�v as a function of the squeezing
parameter r, for the CV EPR state given by Fig. 1. The gains as a
function of r are given by the analytical expressions in Eqs. (79) and
(80), which here are optimized to enhance observation of steering
of system 1. The blue solid line corresponds to the value of S3. The
remaining lines correspond to different bounds on the right side of
the inequality Eq. (126). When S is smaller than all bounds, there is
genuine tripartite steering. This is obtained for r > 0.76.

3. Behavior in the highly squeezed limit

In the limit of large r where the correlations become ideal
and the variances small, the steering of system lm by k is
optimized by the same choice of gains as the steering of k
by lm. The optimal gain coefficients are such that the best
steering criterion for the steering of system k = 1 is, in the
limit of large r,

�

[
xk − (xl + xm)√

2

]
�

[
pk + (pl + pm)√

2

]
< 1 , (132)

as expected from the analysis of Sec. IV. Using that |glhl +
gmhm| = 1, we see that the same inequality Eq. (132) confirms
steering of lm by k, and therefore detects two-way steering
across the bipartition k − lm.

TABLE VII. The optimal gains for the CV EPR state. The opti-
mal gains for S3|12 are identical to the gains for S2|13 with h̃3 = h̃2 and
g̃3 = g̃2.

S1|23 S2|13

r h̃2 g̃2 h̃3 g̃3 h̃1 g̃1 h̃3 g̃3

0.25 −0.33 0.33 −0.33 0.33 −0.35 0.35 0.06 0.06
0.50 −0.54 0.54 −0.54 0.54 −0.65 0.65 0.21 0.21
0.75 −0.64 0.64 −0.64 0.64 −0.90 0.90 0.40 0.40
1.00 −0.68 0.68 −0.68 0.68 −1.08 1.08 0.58 0.58
1.50 −0.70 0.70 −0.70 0.70 −1.28 1.28 0.82 0.82
2.00 −0.71 0.71 −0.71 0.71 −1.36 1.36 0.93 0.93

TABLE VIII. The optimal gains for the CV EPR state. The op-
timal gains for S13|2 are identical to the gains for S12|3 with h̃3 = h̃2

and g̃3 = g̃2.

S23|1 S13|2

r h̃2 g̃2 h̃3 g̃3 h̃1 g̃1 h̃3 g̃3

0.25 −1.53 1.53 −1.53 1.53 −2.98 2.98 0.52 0.52
0.50 −0.93 0.93 −0.93 0.93 −1.71 1.71 0.56 0.56
0.75 −0.78 0.78 −0.78 0.78 −1.40 1.40 0.63 0.63
1.00 −0.73 0.73 −0.73 0.73 −1.31 1.31 0.70 0.70
1.50 −0.71 0.71 −0.71 0.71 −1.32 1.32 0.85 0.85
2.00 −0.71 0.71 −0.71 0.71 −1.37 1.37 0.93 0.93

4. Experimental observation

The observation of steering of a mode k using the criterion
Eq. (132) has been reported in the experimental system of
Armstrong et al. [38], using the setup of Fig. 1 for EPR
states. They reported steering of each mode in a tripartite
system using the violation of Sk|lm � 1, where gk = hk = 1
for the steered mode. This corresponds to a realization of full
tripartite steering inseparability, according to the definition
given in Sec. II C. They found agreement with the theoretical
predictions, with S1|23 = 0.78 and S2|13 = S3|12 = 0.87 (refer
to Table I in the supplementary information of [38]). From the

FIG. 19. The steering for each bipartition as a function of squeez-
ing parameter r, for the CV EPR state given by Fig. 1. Here,
S = �u�v with the choice of gains g and h given in Tables VII
and VIII, for the various quantities S = Sk|lm or Skm|l indicated. A
value of S less than 1 implies steering. We see that there is two-way
steering across each bipartition. There is symmetry with respect to
subsystems 2 and 3 (refer to Fig. 1) and hence the plots for S2|13

and S13|2 are identical to those of S3|12 and S12|3. For comparison, we
also plot (brown dotted line) the value of Sk|lm, which is identical
for all values of k (and l �= m �= k), for the CV GHZ state with two
squeezing parameters.
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FIG. 20. The value of S3 = �u�v as a function of the squeezing
parameter r, for the CV split-squeezed state. The gains as a function
of r are given by the analytical expressions in Eqs. (100) and (102),
which are optimized for the observation of steering of system 1 (refer
to Fig. 5). The blue solid line corresponds to the value of S3. The
remaining lines correspond to different bounds on the right side of
the inequality Eq. (126). When S3 is smaller than all the bounds,
there is genuine tripartite steering. This is obtained for r > 1.53.

gains provided in the same table of their paper, we obtain

S23|1 = �(h2x2 + h3x3 + x1)�(g2 p2 + g3 p3 + p1)

|g2h2 + g3h3| = 0.95 ,

(133)

which indicates two-way steering for the bipartition 1 − 23.
However, we estimate S13|2 = S12|3 = 1.73 > 1, which does
not satisfy the requirement for full tripartite two-way steering
inseparability. The estimated maximum squeeze parameter for
the experiment was r ∼ 0.47 based on a noise suppression
of −4.1 dB. The experiment was also constructed for up to
eight modes, with the steering of each mode of the eight mode
system observed.

C. CV split squeezed state

The CV SS state arises from a single squeezed input, as in
Fig. 5. Full tripartite inseparability can be detected using crite-
ria for entanglement, as explained in [70,71]. Here, however,
we optimize the correlations further, by selecting a different
choice of beam splitter reflectivity, as in Fig. 5.

1. Genuine tripartite steering using a single inequality

From Fig. 20, we see that genuine tripartite steering is
detectable using Criterion 1 for r > 1.56. This is expected
from the results of Sec. IV. Here, we use Criterion 1 as given
by the inequality Eq. (126), where we select g1 = h1 = 1,
g1 = g2 = g, and h1 = h2 = h and optimize for g and h. The
optimal gains are derived in Sec. IV. With only one squeezed
input, the amount of steering for a given r is reduced, but
nonetheless perfect steering is possible for large r.

FIG. 21. The steering for each bipartition as a function of squeez-
ing parameter r, for the CV tripartite SS state. Here, S = Sk|lm or Slm|k
as indicated. Here, the lines coincide. We numerically compute Sk|lm
and Slm|k , as defined in Eqs. (123) and (124), with the choice of gains
provided in Tables IX and X. Here k �= l �= m and k = 1, 2, or 3.
S < 1 implies steering. Steering is observed in both directions across
each bipartition.

2. Full tripartite steering inseparability

Full tripartite steering inseparability can be detected, for all
r. This is seen from Fig. 21. We numerically obtain the gains
that minimize Sk|lm and Slm|k , as given in Eqs. (123) and (124),
respectively, for each bipartition. When Sk|lm, Slm|k < 1, there
is steering for the corresponding bipartition. We see from the
figure that there is two-way steering across all bipartitions.
Hence, it is possible to detect full tripartite two-way steering
inseparability.

D. Experimental genuine tripartite steering using the van
Loock–Furusawa-type inequalities

We are able to apply the criteria derived in this paper to
confirm from experimental data the realization of genuine
tripartite steering for cluster states. The criteria that we use
are based on the van Loock–Furusawa variances, which have
been measured experimentally.

TABLE IX. The optimal gains for the CV SS state. The optimal
gains for S3|12 are identical to the gains for S2|13 with h̃3 = h̃2 and
g̃3 = g̃2.

S1|23 S2|13

r h̃2 g̃2 h̃3 g̃3 h̃1 g̃1 h̃3 g̃3

0.25 −0.15 0.18 −0.15 0.18 −0.15 0.18 −0.15 0.18
0.50 −0.27 0.36 −0.27 0.36 −0.27 0.36 −0.27 0.36
0.75 −0.35 0.54 −0.35 0.54 −0.35 0.54 −0.35 0.54
1.00 −0.40 0.68 −0.40 0.68 −0.40 0.68 −0.40 0.68
1.50 −0.46 0.86 −0.46 0.86 −0.46 0.86 −0.46 0.86
2.00 −0.49 0.95 −0.49 0.95 −0.49 0.95 −0.49 0.95
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TABLE X. The optimal gains for the CV SS state. The optimal
gains for S13|2 are identical to the gains for S12|3 with h̃3 = h̃2 and
g̃3 = g̃2.

S23|1 S13|2

r h̃2 g̃2 h̃3 g̃3 h̃1 g̃1 h̃3 g̃3

0.25 −2.81 3.31 −2.81 3.31 −2.81 3.31 −2.81 3.31
0.50 −1.37 1.87 −1.37 1.87 −1.37 1.87 −1.37 1.87
0.75 −0.93 1.43 −0.93 1.43 −0.93 1.43 −0.93 1.43
1.00 −0.73 1.23 −0.73 1.23 −0.73 1.23 −0.73 1.23
1.50 −0.58 1.08 −0.58 1.08 −0.58 1.08 −0.58 1.08
2.00 −0.53 1.03 −0.53 1.03 −0.53 1.03 −0.53 1.03

First, we note from the form of the inequality of Criterion 1
and from the symmetry of the CV GHZ state that in the limit
of large r, the CV GHZ state will give a zero value for the
van Loock–Furusawa quantities Bi and Si. These quantities
were defined by the van Loock–Furusawa-type Criteria 4 and
5 in Sec. III C. This is also seen directly, from the predictions
Eqs. (112) and (113) for the GHZ variances. The CV EPR
state will also give, in the limit of large r, a zero for the
product Si, as has been shown in [10,49] where similar in-
equalities were used to detect genuine tripartite entanglement
and steering. Hence, the van Loock–Furusawa-type steering
inequalities of Criteria 4 and 5 can also be used to detect
full tripartite steering inseparability and genuine tripartite
steering.

This is useful for interpreting the level of steering gen-
erated in previous CV experiments, which measure the van
Loock–Furusawa inequalities. Previous experiments report
full multipartite inseparability [60]. In the experiment of Arm-
strong et al. [60], the measured variances in the tripartite case
are BI and BII of Eq. (51). They reported BI = BII = 0.14 < 2
(note a different scaling of quadrature amplitudes) for the
CV EPR state. This implies an experimental confirmation
of full tripartite two-way steering inseparability according to
Criterion 4b.

In order to demonstrate genuine tripartite steering, Crite-
rion 5b can be used. However, BIII was not directly measured
in the experiment [60]. Here, the inequality of Criterion 6c
involving just BI and BII is useful. Armstrong et al. [60]
measured the van Loock–Furusawa entanglement inequalities
for a CV cluster state. In the following, we apply van Loock–
Furusawa-type inequalities of Sec. III C to show genuine
tripartite steering for the cluster state. The variances measured
in the experiment are B′

I ≡ �2(p1 − x2) + �2(p2 − x1 − x3)
and B′

II ≡ �2(p3 − x2) + �2(p2 − x1 − x3).
Following the proofs given for Criteria 5 and 6c, and the

result Eq. (27), we see that the violation of the inequality

B′
I + B′

II � 2P1 + 2P2 + 2P3 � 2 (134)

implies genuine tripartite steering. Following the proof for
Criterion 7, we see that the same violation also implies gen-
uine tripartite steering by the stricter Definition 3. In the
experiment, Armstrong et al. [60] obtained �2(p1 − x2) +
�2(p2 − x1 − x3) = 0.12 and �2(p3 − x2) + �2(p2 − x1 −
x3) = 0.18, which violates the above inequality and hence

demonstrates experimentally genuine tripartite steering, by
Definitions 1 and 3.

We note that the CV GHZ will satisfy Criterion 7 of Sec.
III D for large r. This follows from the predictions Eqs. (112)
and (113) for the variances. This gives an avenue to gener-
ate and detect the strict form of genuine tripartite steering
(Definition 3) for these states, which applies to networks of
only one trusted site. The extension to N systems would seem
straightforward.

VI. MONOGAMY RELATIONS

In this section, we summarize how the bipartite entan-
glement and steering are distributed among the subsystems
of the tripartite steerable states. It is known that for three
qubit systems, the bipartite entanglement between any two
of them is limited by monogamy relations [107]. This re-
sult can be extended to N-qubit systems [108] and to
nonlocality and steering [44,109–115]. The monogamy for
higher-dimensional systems is more complex, and has been
investigated for CV systems [44,116,117].

We first examine the distribution of bipartite steering
among the three systems created in CV GHZ, CV EPR, and
CV SS states. For steering, it is known that [44]

SA|BSA|C � 1 (135)

where Si| j is defined in Sec. II F for an arbitrary observable
of the steering parties. In this paper, the observables taken
for the steering parties are linear combinations of quadrature
phase amplitudes, in which case we write S ≡ S . The steering
parameter is then Sk|l = �(xk − hkl xl )�(pk + gkl pl ) where
the gains hkl and gkl are optimized to minimize the value
of Sk|l . Regardless of the choice of gains, however, steering
is obtained when Sk|l < 1 [25,36]. For the choice of optimal
gains, Sk|l < 1 becomes a necessary and sufficient condition
to demonstrate steering for Gaussian states and measurements
[23]. The specific monogamy inequality

Sk|l Sk|m � max
{
1, S2

k|lm
}
, (136)

where Sk|lm is defined with the optimal linear gains hk(lm)

and gk(lm) that minimize the value of Sk|lm, follows from the
definitions and Eq. (135) (without the assumption of Gaussian
states [38,44,118]). The relation has been verified experimen-
tally for the CV EPR state [38,119]. Where there is collective
steering such that S1|23 < 1, the monogamy relation gives
S1|2S1|3 � 1.

We see from the monogamy relation Eq. (136) that where
there is symmetry with respect to fields l and m, so that
Sk|l = Sk|m, then Sk|l � 1 and Sk|m � 1. Thus for the CV GHZ
state, which has three symmetrical modes, there can be no bi-
partite steering as witnessed by Sk|l < 1, for any system mode
k = 1, 2, 3 (Fig. 22). This implies there is no such steering
of k by just one of the other single subsystems l or m. There
is however maximal steering of any mode k if one considers
collectively both of the other modes, since Sk|lm → 0 for large
r. The steering witness Sk|lm refers to the error in the estimate
of x and p of system k by systems l and m, and hence this
property is of value for CV secret sharing.

For the CV EPR system, there is symmetry between the
modes 2 and 3, as depicted in Fig. 1. Therefore, S1|2 = S1|3 �
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FIG. 22. Steering and entanglement monogamy for the CV GHZ
state depicted in Fig. 8. Here, all modes are symmetric, e.g., S1|23 =
S2|13 = S3|12 and S1|2 = S1|3. Steering of system k by both steering
parties l and m is optimal for large r, as Sk|lm → 0, given by the
dash-dotted brown line. However, no bipartite steering as measur-
able by the criterion Si| j < 1 is possible for any mode i. Similarly,
there is no DGCZ bipartite entanglement measurable for large r, as
Bi j > 1 in this limit. We observe that the steering monogamy relation
Eq. (136) is saturated for all k, with Sk|l Sk|m = 1 (black dotted line).
The entanglement monogamy inequalities Eqs. (139) and (140) are
satisfied.

1, as evident in Fig. 23. We see however that S1|23 → 0 for
large r, implying that mode 1 steered collectively by 2 and 3
is useful for secret sharing.

The CV split-squeezed state also has symmetry between
the modes 2 and 3, as depicted in Fig. 5. Again, we obtain

FIG. 23. Steering and entanglement monogamy for the CV EPR
state depicted in Fig. 1. Modes 2 and 3 are symmetric, e.g., S1|2 =
S1|3. Steering of system 1 by both 2 and 3 is optimal for large r, but
no bipartite steering measured by S1|2 < 1 is possible. The steering
monogamy relation Eq. (136) is saturated for k = 1, with S1|2S1|3 =
1. A similar result is obtained for k = 3.

FIG. 24. Steering and entanglement monogamy for the CV SS
state depicted in Fig. 5. Notation is as for Fig. 22. Although bipar-
tite steering according to S1| j is not possible, we observe bipartite
entanglement B12 = B13 ∼ 0.63 for large r. The steering monogamy
relation Eq. (136) is saturated for k = 1, with S1|2S1|3 = 1. A similar
result is obtained for k = 3.

S1|23 → 0 for large r, and see that S1|2 = S1|3 � 1. We show
this relation in Fig. 24.

Further monogamy relations have been derived for Gaus-
sian systems [113–115], using the Gaussian steering quantifier
GB→A [37] that quantifies the steerability of mode A by B.
For two-mode Gaussian steering, the measure of Gaussian
steering GB→A may be mapped from SA|B, since SA|B < 1 is a
necessary and sufficient condition for steering [23]. Explicitly,
the steerability of mode A by B by the steering parameter SA|B
and the Gaussian steering quantifier GB→A are related by the
expression

SA|B = e−2GB→A
. (137)

We note that SA|B = 0 corresponds to maximum steering. In
the present paper, we restrict study to the condition SA|B < 1
which confirms steering without the assumption of Gaussian
states, giving an advantage for applications relating to secure
quantum communication. However, the Gaussian monogamy
relations derived in [37] and verified experimentally [43] will
hold for the CV systems we examine in this paper, which are
examples of Gaussian states.

We now turn to examine the distribution of bipartite
entanglement among the tripartite steerable systems. Rosales-
Zárate et al. derived four monogamy inequalities for entangle-
ment [118]. A monogamy relation exists for the bipartite CV
variance

Bi j ≡ 1
4 {[�(Xi − Xj )]

2 + [�(Pi + Pj )]
2} (138)

of Duan, Giedke, Cirac, and Zoller (DGCZ) [120]. The cri-
terion Bi j < 1 is sufficient to confirm entanglement between
states i and j [120]. We note B12 is given by BI of Eq. (51) with
g3 = 0, and B13 is BIII in Eq. (51) with g2 = 0 (apart from
a renormalization factor). For any tripartite state of systems
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labeled 1, 2, and 3, the monogamy inequalities

B12 + B13 � 1 (139)

and

B12 + B13 � max{1, S1|23} (140)

will always hold [118].
As pointed out by Rosales-Zárate et al. [118], the

monogamy relation Eq. (139) implies that where there is
symmetry between modes 2 and 3 (so that B12 = B13), it
follows that B12 � 0.5 and B13 � 0.5. Maximum bipartite
entanglement (B12 = 0, B13 = 0) is not possible. Since the
CV GHZ is fully symmetric for all three modes, this limit
applies to all DGCZ bipartite entanglement for the CV GHZ
state, as observed in Fig. 22. In fact, for large r there is no
DGCZ bipartite entanglement for the CV GHZ state. The
constraint B12, B13 � 0.5 also applies to the two symmetric
modes of the CV EPR and CV SS states (Figs. 23 and 24).
The optimal limit B12 = B13 = 0.5 is not obtained for any
of the three CV states, because of the enhanced fluctua-
tions arising from the antisqueezed quadrature of the highly
squeezed inputs. The CV SS state however has fewer squeezed
inputs, and Fig. 24 shows that for this case, B12 = B13 ∼
0.625 for large r. The monogamy relations Eqs. (139) and
(140) plotted in Fig. 23 agree with the results presented by
Rosales-Zárate et al. (Fig. 3 with the parameter η0 = 0.5
corresponds to the CV EPR state). Rosales-Zárate et al.
showed how the value B12 = B13 = 0.5 can be obtained for
the CV EPR state, if mode 1 is attenuated to reduce the in-
creased vacuum fluctuations entering from the squeezed input.
The full calculations are given in the Supplemental Material
[103].

A more general version of the inequality Eq. (139) can be
given in terms of the entanglement parameter

Skl = �(xk − hklxl )�(pk + gkl pl )/(1 + hkl gkl ) . (141)

Here, gi j and hi j are gain factors, selected to minimize Skl .
The condition Si j < 1 (for any gi j , hi j) confirms entanglement
between modes i and j without the assumption of Gaussian
states, as proved by Giovannetti, Mancini, Vitali, and Tombesi
[104]. The monogamy relation

Skl Skm �
max

{
1, S2

k|lm
}

(1 + hklgkl )(1 + hkmgkm)
(142)

holds for all states. The proof of the inequality Eq. (142)
extends the work of [118] and is given in the Supple-
mental Material [103]. This inequality is equivalent to the
steering inequality, Eq. (136). The criterion Si j < 1 with
optimal gains was shown equivalent to the Simon-Peres con-
dition for entanglement, provided there is symmetry between
X and P such that the correlation matrix elements satisfy
〈X1, X2〉 = −〈P1, P2〉 in which case hi j = gi j [121]. For two-
mode Gaussian systems i and j, the Simon-Peres condition is
necessary and sufficient to confirm entanglement [122,123].
The monogamy relation for this special case was derived in
[118]. By considering the variance expressions for observ-
ables X̂ = α1x̂1 − α2x̂2 and P̂ = β1 p̂1 + β2 p̂2 , which involve
an extra parameter, Marian and Marian generalized the results

FIG. 25. Bipartite entanglement and entanglement monogamy
for the CV GHZ state depicted in Fig. 8. The system is symmetric
with respect to all modes. Entanglement between i and j is confirmed
when Si j < 1. Bipartite entanglement is observed between all pairs
of parties. The values of S1|2S1|3 are given by the upper black dashed
line. Saturation of the generalized monogamy entanglement inequal-
ity Eq. (142) is observed for all k.

to show the how EPR variance criteria reduce to the Simon-
Peres condition for the two-mode Gaussian states [123].

In Figs. 25–27, we see bipartite entanglement Skl < 1 to
be possible for all three states (the CV GHZ, CV EPR, and
CV SS states). This extends the results of [118]. The bipartite
entanglement in these figures is numerically computed where
Skl is minimized with the optimal gains hkl and gkl , using the
fminsearch function in MATLAB. We found that Skl = Slk with

FIG. 26. Bipartite entanglement and entanglement monogamy
for the CV EPR state depicted in Fig. 1. Entanglement between i
and j is observed when Si j < 1. The values of S1|2S1|3 are given
by the upper black dashed line, and correspond to saturation of the
generalized monogamy entanglement inequality Eq. (142) for k = 1.
Here, there is bipartite entanglement detectable between systems 1
and 2, and between systems 1 and 3.
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FIG. 27. Bipartite entanglement and entanglement monogamy
for the CV SS state depicted in Fig. 5. Entanglement between i and j
is observed when Si j < 1. Here, bipartite entanglement is detectable
between all pairs of systems. The values of S1|2S1|3 are given by
the upper black dashed line, and correspond to saturation of the
generalized monogamy entanglement inequality Eq. (142) for k = 1.

the gains satisfying the relation hkl = 1/hlk and gkl = 1/glk ,
as proved in He et al. [33]. The relation Eq. (142) confirms it is
possible to obtain Si j < 1, even in the presence of symmetric
modes. However, the optimal EPR-correlated bipartite states
have h1 j = g1 j = 1, in which case for symmetrical fields
where S1i = S1 j , we will find S1 j � 0.5. In fact, we observe
the approximate relation Si j � 0.5 for each of the three types
of CV states.

For the states in this paper, S1|23 is equal to or smaller
than 1, and the generalized monogamy inequality be-
comes S12S13 � 1/[(1 + h12g12)(1 + h13g13)]. A saturation of
the generalized entanglement monogamy inequality is then
observed when S1|2S1|3 = 1, this being equivalent to the sat-
uration of the steering monogamy relation Eq. (136). The
authors of [118] observed that while there is no saturation of
the monogamy relations Eq. (139) for the CV EPR and CV
GHZ states, saturation of the generalized monogamy relation
Eq. (142) can be observed for CV EPR states. However, that
result was limited by the restriction hi j = gi j . Here, we extend
this result, by examining the CV GHZ and CV SS state, as
given in Figs. 25 and 27. These figures clearly show saturation
of the generalized monogamy relation Eq. (27) to be possible
for each of these states, for all r.

VII. CONCLUSION

In this paper we have examined the concept of multipartite
steering for multimode CV systems, deriving inequalities that
if violated signify the presence of genuine N-partite steer-
ing. In contrast with much previous work, the inequalities
are derived without the assumption of Gaussian states. This
gives an advantage for protocols which rely on the rigorous
confirmation of multipartite entanglement or steering (e.g.,
quantum key distribution).

Our classification of N-partite steering carefully distin-
guishes between full tripartite steering inseparability and
genuine tripartite steering. In fact, because of the asymmetry
of the steering correlation with respect to parties which may
have different levels of trust, a multitude of definitions is
possible. Here, we use a conceptual definition based on the
requirement to have steering both ways along each of the
different bipartitions of the N systems. However, alternative
definitions are likely to be useful, especially where the N
systems are nodes of a network with fixed levels of trust. In
this paper, we also consider one such alternative definition
(Definition 3) of genuine multipartite steering, motivated by
the example of networks with only one trusted subsystem. We
derive inequalities to detect this strict type of steering.

In Sec. IV, strategies are identified to generate genuine
multipartite steering based on the coherent beam splitter mix-
ing of one, two, and N squeezed beams with vacuum modes.
We examine the CV GHZ, CV EPR, and CV split-squeezed
states that use N , two, and one squeezed beams as inputs
for a network of N subsystems, respectively. It is shown that
the genuine N-partite steering for each of these states can be
detected by the inequalities derived in this paper, provided the
squeezing of the inputs is sufficiently large. Specific examples
for N = 3 are given in Sec. V, and the genuine N-partite
steering of a tripartite CV cluster state is also analyzed. We
also show that these systems predict the strict form of genuine
multipartite steering given by Definition 3, and that this type
of steering can be detected by a van Loock–Furusawa-type
inequality.

Using the inequalities derived in this paper, we confirm
that full tripartite steering inseparability has been experimen-
tally generated for three optical modes. Armstrong et al. [60]
produced CV EPR states and tested the van Loock–Furusawa
type inequalities, measuring BI and BII as given by Eq. (51) of
our paper. Using Criterion 4b, the experimental values show
violation of both BI � 2 and BII � 2, implying full tripartite
two-way steering inseparability. In a second experiment, Arm-
strong et al. [38] measured the steering along each bipartition
of the three modes A, B, and C by violating the steering
inequalities SA|BC � 1, SB|AC � 1, and SC|AB � 1 [Eqs. (17)
and (123)]. This confirms full tripartite steering inseparabil-
ity, by our definition. The experimental results of [60] also
indicate that genuine tripartite steering has been generated
for a CV cluster state. This is based on the data reported
for the van Loock–Furusawa inequalities. In Sec. V D, we
show that Criteria 6c and 7 (with an adjusted phase choice)
certify both forms of genuine tripartite steering for this data,
by Definitions 1 and 3. Deng et al. [43] generated four-mode
cluster states and examined full steering inseparability with
the focus on monogamy relations between these modes, but
within the Gaussian-state assumption.

For tripartite states, the distributions of bipartite steering
and of bipartite entanglement among the three subsystems
will be constrained. In Sec. VI, we present results for the
monogamy of steering and for the monogamy of entangle-
ment, as certified with respect to a particular witness. We
study the monogamy properties for the tripartite CV GHZ,
CV EPR, and CV SS states. We find that a limited amount
of bipartite entanglement may exist between the nodes of the
tripartite network, for each of the three types of states, but
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that bipartite steering as measured by the CV EPR steering
criterion cannot. The monogamy relations we derive do not
require the assumption of Gaussian systems and may therefore
be useful for CV secret sharing protocols.
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Chwedeńczuk, and A. G. Truscott, Nat. Commun. 10, 4447
(2019).

[92] M. Bonneau, W. J. Munro, K. Nemoto, and J. Schmiedmayer,
Phys. Rev. A 98, 033608 (2018).

[93] A. Bergschneider, V. M. Klinkhamer, J. H. Becher, R. Klemt,
L. Palm, G. Zürn, S. Jochim, and P. M. Preiss, Nat. Phys. 15,
640 (2019).

[94] A. S. Villar, M. Martinelli, C. Fabre, and P. Nussenzveig, Phys.
Rev. Lett. 97, 140504 (2006).

[95] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[96] H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103

(2003).
[97] S. L. W. Midgley, A. J. Ferris, and M. K. Olsen, Phys. Rev. A

81, 022101 (2010).
[98] V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T.

Franz, R. F. Werner, and R. Schnabel, Nat. Photonics 6, 596
(2012).

[99] W. Tittel, H. Zbinden, and N. Gisin, Phys. Rev. A 63, 042301
(2001).

[100] A. M. Lance, T. Symul, W. P. Bowen, T. Tyc, B. C. Sanders,
and P. K. Lam, New J. Phys. 5, 4 (2003).

[101] A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K.
Lam, Phys. Rev. Lett. 92, 177903 (2004).

[102] D. Mondal, C. Datta, J. Singh, and D. Kaszlikowski, Phys.
Rev. A 99, 012312 (2019).

[103] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevA.105.012202 for four-partite

012202-28

https://doi.org/10.1103/PhysRevA.94.042105
https://doi.org/10.1103/PhysRevA.103.062224
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1038/nphys2492
https://doi.org/10.1103/PhysRevA.90.062337
https://doi.org/10.1103/PhysRevLett.109.070401
https://doi.org/10.1103/PhysRevA.88.014102
https://doi.org/10.22331/q-2019-12-02-204
https://doi.org/10.1103/PhysRevLett.126.080502
https://doi.org/10.1103/PhysRevLett.88.170405
https://doi.org/10.1103/PhysRevA.102.052218
https://doi.org/10.1103/PhysRevLett.91.080404
https://doi.org/10.1126/science.1178683
https://doi.org/10.1103/PhysRevLett.107.030505
https://doi.org/10.1038/ncomms2033
https://doi.org/10.1103/PhysRevLett.112.120505
https://doi.org/10.1103/PhysRevLett.114.050501
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevA.94.042119
https://doi.org/10.1103/PhysRevA.77.062108
https://doi.org/10.1364/JOSAB.32.000A82
https://doi.org/10.1038/35096524
https://doi.org/10.1103/PhysRevA.65.052306
https://doi.org/10.1103/PhysRevA.67.052104
https://doi.org/10.1103/PhysRevA.100.022126
https://doi.org/10.1103/PhysRevA.102.049902
https://doi.org/10.1364/OE.17.018693
https://doi.org/10.1038/35051038
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1038/nature08919
https://doi.org/10.1103/PhysRevA.98.022120
https://doi.org/10.1103/PhysRevA.102.012412
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1038/s41534-018-0119-6
https://doi.org/10.1088/1402-4896/92/2/023005
https://doi.org/10.1103/PhysRevA.101.012117
https://doi.org/10.1103/PhysRevA.101.052117
https://doi.org/10.1103/PhysRevA.86.023625
https://doi.org/10.1088/1367-2630/14/9/093012
https://doi.org/10.1038/nature10654
https://doi.org/10.1103/PhysRevA.86.023626
https://doi.org/10.1038/ncomms9984
https://doi.org/10.1103/PhysRevLett.119.010402
https://doi.org/10.1038/s41467-019-12192-8
https://doi.org/10.1103/PhysRevA.98.033608
https://doi.org/10.1038/s41567-019-0508-6
https://doi.org/10.1103/PhysRevLett.97.140504
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.68.032103
https://doi.org/10.1103/PhysRevA.81.022101
https://doi.org/10.1038/nphoton.2012.202
https://doi.org/10.1103/PhysRevA.63.042301
https://doi.org/10.1088/1367-2630/5/1/304
https://doi.org/10.1103/PhysRevLett.92.177903
https://doi.org/10.1103/PhysRevA.99.012312
http://link.aps.org/supplemental/10.1103/PhysRevA.105.012202


FULL MULTIPARTITE STEERING INSEPARABILITY, … PHYSICAL REVIEW A 105, 012202 (2022)

steering in CV EPR state and the derivation of generalized
monogamy relation.

[104] V. Giovannetti, S. Mancini, D. Vitali, and P. Tombesi, Phys.
Rev. A 67, 022320 (2003).

[105] P. van Loock and S. L. Braunstein, Phys. Rev. A 63, 022106
(2001).

[106] M. Wang, X. Deng, Z. Qin, and X. Su, Phys. Rev. A 100,
022328 (2019).

[107] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61,
052306 (2000).

[108] T. J. Osborne and F. Verstraete, Phys. Rev. Lett. 96, 220503
(2006).

[109] M. Koashi and A. Winter, Phys. Rev. A 69, 022309 (2004).
[110] B. Toner, Proc. R. Soc. A 465, 59 (2009).
[111] A. Streltsov, G. Adesso, M. Piani, and D. Bruß, Phys. Rev.

Lett. 109, 050503 (2012).
[112] Y.-K. Bai, Y.-F. Xu, and Z. D. Wang, Phys. Rev. Lett. 113,

100503 (2014).

[113] S.-W. Ji, M. S. Kim, and H. Nha, J. Phys. A 48, 135301 (2015).
[114] L. Lami, C. Hirche, G. Adesso, and A. Winter, Phys. Rev. Lett.

117, 220502 (2016).
[115] Y. Xiang, I. Kogias, G. Adesso, and Q. He, Phys. Rev. A 95,

010101(R) (2017).
[116] G. Adesso and F. Illuminati, New J. Phys. 8, 15 (2006).
[117] T. Hiroshima, G. Adesso, and F. Illuminati, Phys. Rev. Lett.

98, 050503 (2007).
[118] L. Rosales-Zárate, R. Y. Teh, B. Opanchuk, and M. D. Reid,

Phys. Rev. A 96, 022313 (2017).
[119] W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, Phys.

Rev. Lett. 90, 043601 (2003).
[120] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.

Lett. 84, 2722 (2000).
[121] Q. Y. He, Q. H. Gong, and M. D. Reid, Phys. Rev. Lett. 114,

060402 (2015).
[122] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).
[123] P. Marian and T. A. Marian, J. Phys. A 51, 065301 (2018).

012202-29

https://doi.org/10.1103/PhysRevA.67.022320
https://doi.org/10.1103/PhysRevA.63.022106
https://doi.org/10.1103/PhysRevA.100.022328
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevLett.96.220503
https://doi.org/10.1103/PhysRevA.69.022309
https://doi.org/10.1098/rspa.2008.0149
https://doi.org/10.1103/PhysRevLett.109.050503
https://doi.org/10.1103/PhysRevLett.113.100503
https://doi.org/10.1088/1751-8113/48/13/135301
https://doi.org/10.1103/PhysRevLett.117.220502
https://doi.org/10.1103/PhysRevA.95.010101
https://doi.org/10.1088/1367-2630/8/1/015
https://doi.org/10.1103/PhysRevLett.98.050503
https://doi.org/10.1103/PhysRevA.96.022313
https://doi.org/10.1103/PhysRevLett.90.043601
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.114.060402
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1088/1751-8121/aa9fae

