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Excited rotational states of molecules in a superfluid
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We combine experimental and theoretical approaches to explore excited rotational states of molecules em-
bedded in helium nanodroplets using CS2 and I2 as examples. Laser-induced nonadiabatic molecular alignment
is employed to measure spectral lines for rotational states extending beyond those initially populated at the
0.37 K droplet temperature. We construct a simple quantum-mechanical model, based on a linear rotor coupled
to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and
measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on
molecular rotation can be rationalized by a single quantity, the angular momentum, transferred from the molecule
to the droplet.
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Perhaps the most intriguing example of quantized rota-
tional motion of molecules in a liquid is that of molecules
embedded in nanometer-size droplets of superfluid helium.
Infrared absorption spectroscopy of many different molecules
has established that the rotational energy structure is similar to
that of gas-phase molecules. In particular, for linear molecules
the rotational energy EJ can be expressed as [1–3]

EJ = B∗J (J + 1) − D∗J2(J + 1)2. (1)

Here J is the rotational angular momentum of the molecule
and B∗ and D∗ are, respectively, the rotational and centrifugal
distortion constants, which assume renormalized values com-
pared to their gas-phase counterparts B and D. Theoretical
models have been developed to describe renormalization of
the spectroscopic constants [2,4–12] and led to the following
insights. (i) A molecule corotates with a nonsuperfluid He
density component resulting in a larger moment of inertia
and hence a smaller rotational constant compared to that
of the isolated molecule. (ii) When J increases, the effec-
tive He-molecule coupling increases [8], which leads to the
J-dependent decrease of the rotational constant D∗(J + 1) [cf.
(1)], with D∗ typically 102–104 times larger than D [13].

The experimental knowledge of the rotational structure of
molecules in He droplets has been obtained almost exclusively
from IR spectroscopy. Due to selection rules, IR spectroscopy
can only provide information about EJ of those rotational
levels that are initially populated (actually one level higher
than the highest significantly populated level, due to selection
rules �J = ±1). At a 0.37 K temperature of the droplets,
this is the lowest-lying rotational state up to J ∼ 5 [14–16]
depending on B. Consequently, the question of what happens
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to EJ when J is increased beyond the values populated at
0.37 K remains unanswered by experiments. Notably, Eq. (1)
is not of any use in this regime as it predicts that EJ will start
decreasing when J exceeds a rather small value (e.g., J ∼ 10
for OCS molecules). Furthermore, this question also has not
been answered by theory. Here we combine theoretical and
experimental studies to get insight into rotationally excited
states of molecules in He nanodroplets.

Experimentally, we form rotational wave packets [17,18]
in the molecules by a picosecond alignment pulse and
measure the resulting time-dependent degree of alignment.
Fourier transformation of such traces reveals the energy of the
rotational states in the wave packets, a technique established
for gas-phase molecules [19–22] and recently demonstrated
for He-solvated molecules in the limit of weak alignment
pulses [23]. We conduct measurements for several align-
ment pulse intensities to systematically map out the rotational
energy structure and thereby circumvent the selection rule
limitations of IR spectroscopy.

The experimental setup is almost the same as that used in
[23]. Briefly, helium nanodroplets, doped with at most one
CS2 or I2 molecule, are irradiated by two linearly polarized
laser beams inside a velocity map imaging spectrometer. The
2.3-ps pulses in the alignment beam set the molecules into
rotation. Their time-dependent alignment is measured through
Coulomb explosion, induced by the 40-fs pulses in the probe
beam, and detection of two-dimensional velocity images of
S+ or IHe+ ions, respectively. Each probe pulse is delayed t
with respect to an alignment pulse. From the ion images, the
degree of the molecular alignment 〈cos2 θ2D〉 is determined,
θ2D being the angle between the alignment pulse polariza-
tion and the projection of the velocity vector of a S+ or
IHe+ ion on the detector. For details see [24], which includes
Refs. [25–27].

The left column in Fig. 1 shows 〈cos2 θ2D〉(t ) for CS2

molecules at different fluences of the alignment pulse and
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FIG. 1. The left column shows 〈cos2 θ2D〉(t ) for CS2 molecules
at 12 different fluences of the alignment pulse given in each panel
and the right column shows the power spectra of the corresponding
〈cos2 θ2D〉 traces.

the right column shows the corresponding power spectra ob-
tained by Fourier transformation of the 〈cos2 θ2D〉 traces.1

Although the results for I2 are qualitatively similar, the CS2

spectra are easier to visually interpret due to the absence of
odd rotational states. At the lowest fluences, clearly separated
peaks in the spectra are observed. When the fluence F is in-
creased, the spectrum shifts to higher frequencies, consistent
with the expectation that a stronger pulse adds more rotational
angular momentum to the molecule, and the distance between
the peaks in the high-end part of the spectrum decreases,
resulting in their overlap. For F � 2.8 J/cm2, the spectra are
dominated by a single broad peak centered at approximately
22 GHz. Such clustering of spectral lines or band of equidis-
tant states has no counterpart in the gas phase and has not been
observed before for molecules in helium droplets.

1The 〈cos2 θ2D〉 traces were actually recorded out to 1200 ps. How-
ever, in order to exclude noise, the power spectra in Fig. 1 were
computed using a Hamming window over only the signal bearing
part of the 〈cos2 θ2D〉 traces. This window ranged from the full
1200-ps trace for the lowest fluences to the first 400 ps for the highest
fluence.

FIG. 2. (a) and (b) Frequency differences (EL+2 − EL )/h as a
function of L for (a) CS2 and (b) I2. The black squares are the
experimental results obtained from the central positions of the peaks
in the spectra (cf. Fig. 1), the red circles are the results from the
theoretical model, and the green triangles are the values from Eq. (1)
using the data obtained in [23]. (c) The three contributions to the
rotational energy of I2 molecules in He droplets. (d) and (e) First
derivative of the He solvent angular momentum squared d〈�2〉/dL
for (d) CS2 and (e) I2.

The series of spectra recorded at incrementally increasing
F allows us to identify a total of eight peaks [24]. They
reflect the frequencies of the L ↔ L + 2 coherences of the
rotational wave packets [23], where L represents the total
angular momentum. In Fig. 2(a) the peak positions, given
by (EL+2 − EL )/h [23], are plotted as a function of L =
0, 2, . . . , 14. Similarly, we identified 13 peaks in the spectra
of I2 [24]. Their central positions are plotted in Fig. 2(b). The
details on identification of spectral lines are provided in [24].

For our theoretical model we start from general considera-
tions that are dependent neither on the molecular species nor
on the details of the molecule-solvent interactions. Consider-
ing only the addition of angular momenta, the rotational part
of the Hamiltonian for a linear-rotor molecule in a solvent can
be written as

Ĥrot = BĴ
2 = B(L̂ − �̂)2. (2)

Here B is the gas-phase rotational constant of the molecule,
Ĵ is the rotational angular momentum of the molecule, �̂ is
the angular momentum carried by the surrounding solvent
[28], and L̂ is the total angular momentum, which is the
only conserved quantity in the presence of molecule-solvent
interactions.

The Hamiltonian (2) can be mapped onto an effective
symmetric-top Hamiltonian similar to that of linear open-shell
molecules, such as OH or NO [29], with the solvent angular
momentum �̂ playing the role of the electron angular momen-
tum. The corresponding states can be expressed through the

L061303-2



EXCITED ROTATIONAL STATES OF MOLECULES IN A … PHYSICAL REVIEW A 104, L061303 (2021)

FIG. 3. The gas-phase molecular rotational states (blue open cir-
cles) are perturbed by a band of excited states (red closed circles;
only single solvent excitations are shown), resulting in the rotational
states of the molecule in the presence of the solvent (green open
squares; a calculation for the I2 molecule including multiple solvent
excitations is shown).

symmetric top states |LnM〉, where n and M label the projec-
tion of L̂ on the molecular and laboratory axes, respectively.2

From Eq. (2) one can see that the energies corresponding
to a given value of L depend on the value of �. In other
words, the rotational constant of a molecule in a solvent is,
strictly speaking, not renormalized. Rather, the change of the
rotational energies compared to the gas-phase case can be
explained by the finite value of � (discussed below).

Let us assume that an excitation of the solvent has angular
momentum λ and energy ω. While in the case of superfluid
helium it might be tempting to label these excitations as
rotons, we intentionally keep the treatment as general as
possible and focus solely on energy and angular momentum
conservation. If we initially include only single excitations of
the solvent and consider only the diagonal terms in Eq. (2) in
the |LnM〉 basis, the eigenvalues of Ĥrot are given by

EL,n = BL(L + 1) − 2Bn2 + Bλ(λ + 1) + ω, (3)

where we introduced an additional energy shift by the ex-
citation energy ω. Equation (3) corresponds to an oblate
symmetric top shifted by Bλ(λ + 1) + ω from the zero energy,
whose eigenstates are given by |LnM〉. When the off-diagonal
terms of Ĥrot are taken into account, |LnM〉 states with dif-
ferent n’s are mixed. This alters the eigenenergies compared
to Eq. (3) and renders n an approximate quantum number. In
what follows, we retain n to label the eigenenergies EL,n.

The red closed circles in Fig. 3 show EL,n with off-diagonal
terms of Ĥrot included. For each L (conserved quantity), the
EL,n’s form a band of 2n + 1 excited states, originating at
Bλ(λ + 1) + ω. Due to molecule-solvent interactions, whose
exact form is for now irrelevant, these states couple to the
free molecular states E (0)

L = BL(L + 1) (blue open circles).
This perturbation results in the rotational states of the He-
solvated molecules, shown by green open squares. Note that

2Note that for a linear molecule, n corresponds to the projection of
�̂ on the molecular axis, since the projection of Ĵ vanishes.

these states were determined by taking into account single,
double, and triple solvent excitations. Figure 3 shows, how-
ever, only states from single excitations to avoid an unreadable
figure. The data presented in Fig. 3 were calculated for the I2

molecule since it has both even and odd rotational states, but
the qualitative features of the energy of the states are general.

The shape of the band of excited states is determined by
the range of the possible projections −L � n � L (for a linear
molecule and single excitation, |n| � λ must also be fulfilled).
In the language of perturbation theory, the closer the band
edge is to the blue line, the stronger the free molecular state
perturbed by the solvent excitations is and the more the green
squares deviate from the gas-phase behavior. The perturba-
tion is the strongest after the free molecular states cross the
excitation threshold at an energy of approximately ω, which
happens for L � 12 [cf. Fig. 2(c)].

Let us consider a linear rotor coupled to a bosonic bath with
a single mode carrying energy ω and angular momentum λ, as
described by the Hamiltonian in the molecular frame [28]

Ĥ = B(L̂ − �̂)2 + ω
∑

μ

b̂†
λμb̂λμ + u(b̂†

λ0 + b̂λ0), (4)

where u gives the molecule-solvent interaction strength and
b̂†

λμ (b̂λμ) creates (annihilates) a solvent excitation with
angular momentum λ and projection onto the molecular axis
μ. We diagonalize the Hamiltonian in the basis containing
multiple excitations of the single bosonic mode and all pos-
sible projections n,

ψ
(m)
L[n1n2···nm],M = |LNM〉mol(b

†
λn1

b†
λn2

· · · b†
λnm

|0〉bos), (5)

where N = ∑
ni (with |N | � L) is the total angular momen-

tum projection of the bosons. We take into account the states
with m � 3; however, the arguments used for the single-
excitation case of Fig. 3 above still hold in this case. Most
importantly, the asymptotic behavior of the excited state band
at L → ∞ is identical to that shown in Fig. 3.

The introduced model is, on the one hand, a simplification
of the original angulon model [28]. The Hamiltonian in Eq. (4)
is obtained by replacing the continuous dispersion relation
ω(k) with the single mode ω. On the other hand, we substan-
tially expand the basis of wave functions. Including multiple
excitations of the bosonic mode allows us to describe a broad
range of molecules within the simple weak-coupling theory.

We used the model to calculate the rotational energies of
CS2 and I2 molecules in He droplets (the values of the param-
eters are listed in [24]). Green squares in Fig. 3 represent the
results for I2. For comparison with experiment, the frequency
differences (EL+2 − EL )/h were determined and plotted in
Figs. 2(a) and 2(b) by red circles. For both I2 and CS2 there is
good agreement between the experimental and theoretical re-
sults. Notably, the model predicts that the difference spectrum
exhibits a maximum frequency around 20–25 GHz, which is
very similar to that observed in experiment. Such a maximum
never occurs for a free rotor where the position of a spectral
line (EL+2 − EL )/h = 4L + 6 increases linearly with L.3

3Only at extreme values of L, reachable by an optical cen-
trifuge, will centrifugal distortion cause a deviation from the linear
behavior [30].
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FIG. 4. Anisotropic component of the helium density in the
molecular frame for (a) L = 0 and (b) L = 40. (c) The average dis-
tance of He atoms from the molecular z axis grows with the angular
momentum L. All plots are for the I2 molecule.

In what follows, we show how the rotational energy struc-
ture of molecules in He droplets can be rationalized in terms
of a single quantity, the angular momentum of the solvent �.
Figure 2(c) displays the L dependence of B〈L2〉, B〈�2〉 and
B〈2� · L〉, the three contributions to the molecular rotational
energy [cf. Eq. (2)], calculated for I2 molecules (the curves for
CS2 show a similar behavior [24]).

For L = 0, a nonrotating molecule is dressed by the ex-
citations of the solvent due to molecule-He interactions. The
corresponding many-particle state is given by a superposition
of the basis states (5) with zero and nonzero angular momen-
tum, which results in a nonzero expectation value 〈�2〉 [see
Fig. 2(c)]. Note that in order to have 〈�2〉 	= 0, the solvent
atoms do not need to be physically rotating. Barely placing
an anisotropic molecule into the solvent deforms its density
in a nonspherically symmetric fashion and thereby provides it
with a nonzero angular momentum (cf. Fig. 4).

Figure 2(c) shows that 〈L2〉 ≈ 〈2� · L〉 up to L ∼ 10,
which implies that 〈J2〉 = 〈(L − �)2〉 ≈ 〈�2〉, i.e., the angu-
lar momenta of the solvent and of the molecule are equal to
each other. Classically, this can be understood as follows. At
small values of L, the He atoms are almost rigidly attached
to the molecule and corotate with the molecule, which results
in the equal magnitude of the molecular and solvent angular
momenta. This is analogous to the nonsuperfluid solvation
shell, previously discussed in the literature [25]. In order for
the molecular rotation to be able to perturb the solvation
shell, the rotational kinetic energy must be comparable to the
energy of the solvent excitations, i.e., BL(L + 1) ∼ ω, which
for I2 molecules corresponds to L ∼ 12. Around this point we
observe the deviations of 〈2� · L〉 from 〈L2〉 in Fig. 2(c).

As we show in Figs. 2(d) and 2(e), the derivative of
d〈�2〉/dL alone is able to describe the experimental data
on the rotational energy splittings [Figs. 2(a) and 2(b)] quite
accurately. From this plot one can clearly see the origin of the
renormalized spectroscopic constants of Eq. (1). The linear
behavior of d〈�2〉/dL corresponds to an effective B∗. The
deviations of d〈�2〉/dL from the linear behavior, together
with the contributions from the 〈2� · L〉 at higher L, lead
to higher-order terms such as D∗L2(L + 1)2. Furthermore,
while the magnitude of 〈�〉 grows with L, it saturates and
assumes a constant value for large L [24]. As a result, � plays
a decreasing role for L → ∞, meaning that the rotational
spectrum eventually approaches that of the gas phase, which
can classically be interpreted as detachment of the molecule
from the surrounding superfluid [31].

Moreover, the model yields analytic expressions for B∗ and
D∗ in agreement with experiments [25]. In the basis of single
solvent excitations, the constants can be approximated as [24]

B∗

B
≈ 1 − ũ2

(1 + ω̃)3
,

D∗

B
≈ ũ2

λ(λ + 1)(1 + ω̃)5
, (6)

with ũ = u/[Bλ(λ + 1)] and ω̃ = ω/[Bλ(λ + 1)]. In the limit
of light molecules (ũ, ω̃) → 0, B∗ approaches B. Furthermore,
Eq. (6) provides a useful relation D∗/B ≈ ξ (1 − B∗/B)5/3,
with ξ = ũ−4/3/[λ(λ + 1)]. This dependence is similar to the
power law D∗ = 0.031 × B∗1.818 found in Ref. [13], but pro-
vides a correct limit of D∗ → 0 for B∗ → B.

To illustrate what the change of angular momentum of
Fig. 2(c) corresponds to in real space, we used the model
to evaluate the helium density distribution in the molecular
frame, as shown in Figs. 4(a) and 4(b) for L = 0 and 40, re-
spectively. Note that since our model accounts for He droplet
excitations by a single mode only and does not take into ac-
count a full molecule-He potential energy surface, the model
is not expected to provide quantitatively accurate density esti-
mates. We observe that with the growth of L, the solvent atoms
slightly move from the direction parallel to the molecular
axis (linear configuration) towards the T-shape configuration,
which is clearly visible in the average distance of the He atoms
from the z axis [Fig. 4(c)]. This reflects the fact that the B∗ and
D∗ constants can be interpreted in terms of formation of the
molecule–He-shell complex and the displacement of the He
atoms due to rotation of the complex.

In conclusion, through picosecond time-resolved
alignment experiments, we measured the rotational energy
levels of CS2 and I2 in He droplets up to L = 16 and 15,
respectively. The results agree well with the outcome of
a quantum model, which also shows that the rotational
energy structure can be understood in terms of the angular
momentum transferred from the molecules to the He solvent.
Interesting future challenges for both experiments and theory
include an understanding of the lifetimes of the highest
excited states observed.
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