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Two Nambu-Goldstone zero modes for rotating Bose-Einstein condensates
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We consider rotating finite-size vortex arrays in Bose-Einstein condensates that are confined by cylindrically
symmetric external potentials. We show that such systems possess two exact Nambu-Goldstone zero modes
associated with two spontaneously broken continuous symmetries of the system. We verify our analytical result
via direct numerical diagonalizations of the Bogoliubov–de Gennes equations. We conclude by comparing
rotating vortex lattices in superfluids to supersolids and discrete time crystals.
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For Lorentz-invariant quantum field theories, the Gold-
stone theorem posits that for every spontaneously broken
continuous symmetry, there should exist a corresponding
massless Nambu-Goldstone boson [1,2]. Under certain cir-
cumstances, the Higgs mechanism allows circumventing this,
whereby the would-be massless particle may acquire a finite
mass by coupling to the Higgs field [3–7].

In low-energy condensed-matter systems in the absence
of exact Lorentz invariance, the theory carries over with
the massless bosons corresponding to gapless quasiparticle
Nambu-Goldstone zero modes [8]. Prominent examples in-
clude phonons in solids and in superfluids and spin waves in
magnetic systems. Conventional superconductors are charac-
terized by an excitation energy gap and the absence of a zero
mode associated with the superconducting order parameter in
that case is attributed to the Anderson-Higgs mechanism [9].
The Higgs amplitude mode, a condensed-matter counterpart
to the Higgs boson, has recently been observed in cold-atom
experiments [10,11]. Classification and counting rules for the
number of expected zero modes in effective field theories of
low-energy condensed-matter systems have been established
that explain how a linear dependence between the generators
of the broken symmetries may lead to redundancies, reducing
the total number of zero modes with respect to the number of
spontaneously broken continuous symmetries [12–17].

An interacting scalar Bose-Einstein condensate (BEC) in
its ground state is described by a complex-valued order pa-
rameter φ(r) = |φ(r)|eiS(r) with a constant real-valued spatial
phase function S(r). The birth of a BEC is associated with
a spontaneous breaking of the continuous U(1) symmetry as
the atoms become phase locked, and the BEC wave function
φ(r) is the resulting Nambu-Goldstone zero mode. The con-
densate has a chemical potential μ that causes the condensate
phase to continuously sample all U(1) phases according to
φ(r, t ) = φ(r)e−iμt/h̄. As such, the effect of the zero mode is
to restore the broken symmetry in an average sense by rotating
the ground-state phase so that all possible broken-symmetry
phases are sampled equitably over time.

When such a BEC is spatially rotating, quantized vortices
nucleate in the condensate and these localized pointlike parti-

cles spontaneously arrange into a regular pattern breaking the
continuous SO(2) rotation symmetry. In equilibrium, a trian-
gular vortex lattice is typically realized [18–22]. The vortex
lattice ground state of a rotating BEC spontaneously breaks
two continuous symmetries and, according to the Goldstone
theorem, it would be reasonable to anticipate two Nambu-
Goldstone zero modes. Nevertheless, it has been suggested
that out of the two phonons only one would survive in the ther-
modynamic limit due to the aforementioned redundancy [15].

When a single off-center vortex is present in a trapped
BEC, the vortex orbits around the trap center with a constant
angular frequency [23,24]. Similarly, a vortex lattice in a
laboratory frame rotates as a rigid body at an orbital angu-
lar frequency � = κnv/2, where nv is the two-dimensional
vortex density and κ is the quantum of circulation. These
systems thus respond to the broken rotation symmetry by a
rotating excitation that in a time-averaged sense restores the
broken continuous symmetry. However, the low-energy vortex
mode [25–36] associated with this symmetry breaking has
remained elusive.

Here we show that rotating Bose-Einstein condensates
indeed possess an exact zero-energy Kelvin-Tkachenko Bo-
goliubov quasiparticle vortex mode associated with the SO(2)
symmetry breaking, in addition to the condensate zero mode
associated with the U(1) symmetry breaking. We begin by
proving analytically the existence of these two zero modes.
We then explicitly demonstrate their presence via direct
numerical diagonalizations of the Bogoliubov–de Gennes
equations. Next we rationalize our findings in the context of
previous analyses and finally we discuss the implications of
the obtained result and its relation to the supersolid phases of
matter and rapidly rotating condensates.

Let us consider a stationary order parameter φ(r) that
satisfies the Gross-Pitaevskii equation (GPE) in the reference
frame rotating at angular frequency �. The GPE can be ex-
pressed as

[T + V (r) − μ − �Lz]φ(r) = −g|φ(r)|2φ(r), (1)

where T = −h̄2∇2/2m is the kinetic energy operator, V (r) is
the external trap potential, here assumed to be cylindrically
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symmetric, Lz = −ih̄(x ∂
∂y − y ∂

∂x ) is the angular momentum
operator normal to the plane of rotation, and g is the cou-
pling constant [37]. The state is normalized according to∫ |φ(r)|dr = N , where N is the number of atoms.

The elementary excitations of such a system contain
co- and counterrotating terms and perturb the ground state
according to [37]

ψ (r, t ) = [φ(r) + εe−iωqt uq(r) − ε∗eiωqtv∗
q (r)]e−iμt/h̄, (2)

where ε is a complex number with an infinitesimal mag-
nitude. In order for ψ (r, t ) to satisfy the time-dependent
Gross-Pitaevskii equation, the mode functions must satisfy the
Bogoliubov–de Gennes (BdG) eigenvalue equations [37]

( L D12

D21 −L∗

)(
uq(r)

vq(r)

)
= Eq

(
uq(r)

vq(r)

)
(3)

for the quasiparticle amplitudes uq(r) and vq(r) correspond-
ing to the eigenenergies Eq = h̄ωq, where q uniquely labels
the quantum states, which satisfy the orthonormalization
condition

∫
(u∗

i u j − v∗
i v j )dr = δi, j . For the scalar BEC the

matrix elements are L = T + V (r) − μ − �Lz + 2g|φ(r)|2
and D12 = −D∗

21 = −gφ(r)2 such that the BdG eigenvalues
may have nonzero imaginary components as in non-Hermitian
quantum mechanics.

Suppose then that the system has a symmetry generated by
the operator P. Physically, there must exist an excitation cor-
responding to an infinitesimal transformation ψ (r, t ) = (1 +
iε′P)φ(r, t ) with real valued ε′ and ωq = 0. Setting uq = v∗

q =
Pφ(r) and ε = i

2ε′ results in iε′Pφ(r) = εu − ε∗v∗, consis-
tent with Eq. (2).

The BdG equations have an exact zero-energy E1 = 0
solution

u1(r) = v∗
1 (r) = φ(r), (4)

which is straightforward to verify by direct substitution into
Eq. (3). This condensate mode is the well-known Nambu-
Goldstone zero mode associated with the U(1) symmetry
breaking, generated by P = 1. In addition, we have found
that the BdG equations have another exact zero-energy E2 = 0
solution

u2(r) = v∗
2 (r) = Lzφ(r) (5)

associated with the SO(2) symmetry breaking, with generator
P = Lz.

To show that Eq. (5) is a solution of Eq. (3), we first
note that the auxiliary operator A = L − 2g|φ(r)|2 and Lz

commute, [A, Lz] = [A∗, Lz] = 0, and that Aφ = −g|φ|2φ and
(Lzφ)∗ = −Lzφ

∗. Therefore, direct substitution of the putative
zero-mode solution (5) into the BdG equations yields

(
A + 2g|φ(r)|2 −gφ(r)2

gφ(r)∗2 −A∗ − 2g|φ(r)|2
)

Lz

(
φ(r)

−φ(r)∗

)

=
(

ALzφ + 2g|φ|2Lzφ + gφ2Lzφ
∗

gφ∗2Lzφ + A∗Lzφ
∗ + 2g|φ|2Lzφ

∗

)

= g

(−Lz(|φ|2φ) + 2|φ|2(Lzφ) + φ2(Lzφ
∗)

φ∗2(Lzφ) − Lz(|φ|2φ∗) + 2|φ|2(Lzφ
∗)

)
= 0. (6)
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FIG. 1. The two Nambu-Goldstone zero modes for a single off-
centered vortex in a Bose-Einstein condensate. Densities of the
condensate quasiparticle mode |uU(1)|2 = |φ|2 that restores the U(1)
symmetry is shown in (a)–(c) for three different stationary states
for frame rotation frequencies � = (0.355, 0.398, 0.479)ω⊥, respec-
tively. The corresponding densities of the Kelvin quasiparticle mode
|uSO(2)|2 = |Lzφ|2 that restores the SO(2) symmetry are shown in
(d)–(f). The color scale is normalized to the peak density.

This proof survives the self-consistency condition accounting
for the presence of quantum fluctuations and thermal atoms
and generalizes to continuous symmetries generated by a
generic operator P, provided P is a derivation.

We note that in Eq. (2) a real part of ε corresponds to two
counterrotating terms that cancel each other. On their own,
each of these terms would shift the order parameter in a way
canonically conjugate to the symmetry generator. Adding a
real multiple of the condensate mode shifts the condensate
particle number, while adding a real multiple of the Lzφ zero
mode translates the vortices radially, shifting the angular mo-
mentum. These kind of perturbations would thus correspond
to Higgs amplitude modes in this system. The atom removal
method to excite the Tkachenko mode [25] may be viewed
from this perspective.

To verify that Eq. (5) indeed appears as a true zero mode in
the elementary excitation spectrum of rotating Bose-Einstein
condensates, we have performed direct numerical diagonal-
izations of the BdG equations for a range of stationary states.
Following the standard protocols, a stationary state solution
of the Gross-Pitaevskii equation is first found in the rotat-
ing reference frame. The obtained condensate wave function
determines the pair potential in the BdG equation that is
then diagonalized to yield the quasiparticle eigenstates of
the system. Our two-dimensional numerical calculations are
conducted using the JULIA programming language [38]. The
dimensionless coupling constant g2DN/h̄ω⊥a2

0 = 100, where
a0 = √

h̄/mω⊥ is the harmonic oscillator frequency with
k0 = 1/a0 and g2D is the effective two-dimensional coupling
constant.

We first revisit the single vortex case due to its direct
relevance to the rotational symmetry breaking and the prob-
lem of vortex nucleation [12,39–45]. Figure 1 shows the
densities |uq|2 for the two zero modes E1 = E2 = 0 corre-
sponding to the U(1) symmetry for which |u1|2 = |v1|2 = |φ|2
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FIG. 2. The two Nambu-Goldstone zero modes for two,
three, and seven vortex arrays in a Bose-Einstein conden-
sate rotating at respective orbital angular frequencies of � =
(0.482, 0.606, 0.800)ω⊥. The notation is as in Fig. 1.

[Figs. 1(a)–1(c)] and the SO(2) symmetry for which |u2|2 =
|v2|2 = |Lzφ|2 [Figs. 1(d)–1(f)] for the case of a single off-
centered vortex whose stationary radial position is set by the
frame rotation frequency �. This SO(2) Kelvin mode [46–51]
has a significant density in the vortex core where the U(1)
condensate mode density vanishes. When the vortex is about
to denucleate at the condensate edge, the Kelvin zero mode
hybridizes with the surface mode that mediates the symmetry-
breaking topological quantum phase transition between the
vortex and nonvortex states, associated with the closing of a
gap in the quasiparticle excitation spectrum.

To demonstrate that both zero modes are present for all
symmetry-broken states irrespective of the vortex number,
Fig. 2 shows the densities |uq|2 of the two zero modes for the
case of small arrays of two, three, and seven vortices. Simi-
larly to the single-vortex case, the SO(2) Kelvin-Tkachenko
zero-mode density has maxima at the cores of the off-center
vortices, highlighting the spatial crystalline order of the vortex
array. As in the single-vortex case, the condition |uq|2 = |vq|2
is satisfied for all the zero modes, making it straightforward to
identify them also by their quasiparticle amplitudes.

Having confirmed the presence of the zero modes, it is in-
structive to place them in the context of the overall structure of
the elementary excitations. Figure 3(a) shows the quasiparticle
excitation spectrum for the seven-vortex array as a function
of quasiparticle angular momentum per particle. The Landau
levels of the noninteracting harmonic oscillator, whose level
spacing equals the cyclotron gap 2h̄ω⊥, are provided for ref-
erence (gray horizontal lines). The magnitude of the chemical
potential μ = 5.6 h̄ω⊥ is shown using the dashed line. For this
case the parameter 
LLL = μ/2h̄� = 3.5 and the system is
not far from the mean-field quantum Hall regime [26].

The blue lines illustrate the frame rotation at frequency
� = 0.8 ω⊥. Consequently, the two Kohn modes are shifted
to E−1 = 1.8 ω⊥ and E+1 = 0.2 ω⊥ such that the line passing
through these modes has the slope −� [52,53]. The line
orthogonal to the one intersecting the Kohn modes has slope
1/� and passes through the origin and the breathing mode,
which due to the SO(2, 1) hidden symmetry has a frequency

(a) (b)

FIG. 3. Elementary excitation energy spectra as functions of
(a) angular and (b) linear momenta for a rotating Bose-Einstein
condensate with seven vortices. In (a) the straight lines have slopes
−� and 1/� and the dashed horizontal line is the chemical potential
μ. The seven Kelvin-Tkachenko vortex modes are highlighted with
green markers. In (b) the dashed line has a slope cs = √

μ/2m and
the dash-dotted line has a slope cT = √

h̄�/8m.

of 2ω⊥ [54]. We obtain this value within numerical uncer-
tainty such that the presence of a quantum anomaly [55–57]
seems unlikely in this system.

The two overlapping zero modes are shown in Fig. 3(a)
using the larger green and orange marker. The remaining six
Kelvin-Tkachenko vortex modes (for Nv vortices the spec-
trum contains Nv vortex quasiparticle modes) are shown using
green markers. The lowest Landau level (LLL) is comprised
of the Nv-vortex modes together with the low-energy surface
modes. The Alfvén wave of the vortex plasma, corresponding
to the inertial wave in the rotating superfluid, is gapped and
in the limit � = ω⊥ will oscillate at the cyclotron frequency
2�. By contrast, the U(1) and SO(2) phonons are gapless,
terminating at their respective zero modes.

Figure 3(b) shows the quasiparticle energies as a function
of their momentum p⊥(q) = √|Kq(u) + Kq(v) − 2K1(u)|,
where Kq(w) = 〈wq|T |wq〉/〈wq|wq〉. As in Fig. 3(a), the vor-
tex modes are highlighted with green markers. The dashed
line has a slope cs = b

√
μ/m and the dash-dotted line has a

slope cT = blB�/2[58–60], where lB = √
h̄/m� is the mag-

netic length. The speed ratio of these two sounds is cs/cT =√
8
LLL. For this system cs/cT ≈ 5.3 and we have used

b = 1/
√

2 in Fig. 3(b). Previous numerical calculations have
studied the low-energy excitations of vortex lattices either
by performing time-dependent GPE simulations [28,29] or
by solving the BdG equations for two-dimensional [29,30]
and three-dimensional [34,36,61] systems. Despite being in
reasonable agreement with the experiments [25,26], these pre-
vious numerical works did not identify the two zero modes,
apart from the fortuitous exception of [36]. The reason for
this may be the numerical complexity of diagonalizing ex-
ceedingly large matrices, a problem that has often been
solved using iterative methods. Guided by our analytical result
[Eq. (5)], it is straightforward to calculate the order parameter
of the SO(2) zero mode by using the GPE solution, to confi-
dently identify its presence also in the BdG spectrum.

The (n = 1, m = 0) Tkachenko mode, where the integers
n and m denote the number of radial and azimuthal nodes,
respectively, was observed to have very low oscillation fre-
quency, approaching zero in the rapid rotation limit [25,26],
and theoretical continuum models [15,27,31–33,35,58,59]
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predicted this mode to be either a linearly or a quadratically
dispersing soft mode. In this context, it is noteworthy that the
(1,0) Tkachenko mode is not the lowest-energy quasiparticle
excitation mode in these systems. The exact (0,0) zero mode
has no radial or azimuthal nodes; however, the motion of the
vortices generated by this mode is deceivingly similar to that
of the (1,0) mode.

As pointed out in Ref. [15], it is interesting to draw
parallels between vortex lattices and supersolid states of
matter [62–67]. A key characteristic of a supersolid is the
presence of multiplicity of broken continuous symmetries.
Specifically, a supersolid simultaneously possesses diagonal
long-range order (spatial crystal) and off-diagonal long-range
order (superfluid). The observable signature of this dual-
symmetry-broken supersolid phase is the presence of at least
two phonon modes, one corresponding to the sound wave
of the superfluid and one corresponding to the phonon of
the crystal vibrations. In a vortex lattice the superfluid order
enables the propagation of phonons as density waves [68,69]
and the presence of a vortex crystal results in the propagation
of Kelvin-Tkachenko vortex waves [25,26].

A usual two-dimensional solid-state crystal has three bro-
ken continuous spatial symmetries, two for translations and
one for rotation. However, linear dependence between the
fluctuations produced by the generators of these symmetries
results in redundancies leaving the system with a reduced
number of zero modes [8,15]. In a trapped BEC, all translation
symmetries are already explicitly broken by the confining
potential and the discrete translation invariance within the
vortex lattice does not amount to additional Nambu-Goldstone
zero modes. However, the rotation symmetry does remain
unbroken in the nonrotating ground state and therefore the
emergence of the vortex lattice spontaneously breaks the

continuous SO(2) rotation symmetry, resulting in the emer-
gence of the second Nambu-Goldstone zero mode.

The presence of twofold ground-state degeneracy is
also interesting from the perspective of discrete time crys-
tals [70,71]. The spontaneously emerging sixfold discrete
rotation symmetry of the vortex lattice means that the state is
recurrent in the laboratory reference frame with a period T6 =
T�/6, where T� = 2π/� ≈ 4π/κnv is the natural rigid-body
rotation period of the lattice. The vortex lattice is an excited
state in the absence of external driving, yet it is protected from
tunneling to the nonrotating ground state by the conservation
of angular momentum if the external potential is cylindrically
symmetric. In practice, in low-temperature experiments that
have good control of the trap asymmetry, the vortex lattice
is a metastable state with an unmeasurably long lifetime in
comparison to the lifetime of the host superfluid.

In conclusion, we have shown that rotating vortex lattices
in scalar Bose-Einstein condensates have two exact Nambu-
Goldstone zero modes in their quasiparticle excitation spectra.
How these gapless modes give way for gapped strongly
correlated quantum fluids deep in the LLL [26,72,73] is a
fascinating contemporary open question.
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