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King plots constructed from combinations of mass-weighted atomic isotope shifts provide a sensitive tech-
nique to search for electron-neutron interactions beyond the standard model mediated by a light boson. Using
high-precision variational wave functions in Hylleraas coordinates, we present a comprehensive survey of all
possible King plots arising from states of Li+ up to principal quantum number n = 10 and angular momentum
L = 7 in order to identify the ones most sensitive to new physics. A major limitation in previous work due
to second-order mass polarization is eliminated by the introduction of a second-King plot defined in terms of
second differences. The residual theoretical uncertainty is then of the order of α2(μ/M )3 ∼ 0.4 Hz, where α is
the fine-structure constant and μ is the reduced electron mass for a nucleus of mass M. Test results are presented
for the ALi+ isotope sequence with A = 6, 7, 8, 9, 11 and are compared with other methods, including the Yb+

case recently studied both experimentally and theoretically. It is shown that the second-King plots for Li+ have
about the same sensitivity to new physics as the Yb+ case for boson masses up to about 10 keV, and nuclear size
uncertainties (including nuclear polarization) are suppressed. This greatly extends the sensitivity to new physics
for light two-electron systems.

DOI: 10.1103/PhysRevA.104.L060801

I. INTRODUCTION

King plots have long been used to analyze isotope shift
measurements in atoms and extract information about the
nucleus [1]. Ideally, a linear relationship should result when
appropriately mass-scaled transition frequencies are plotted
against one another across a range of isotopes with the same
nuclear charge Z . However, recently, there has been a great
deal of interest in using King plots to search for new physics
beyond the standard model (BSM) [2–4]. In particular, light
bosons may exist that couple electrons to neutrons, resulting
in an additional Yukawa-like interaction that varies from one
isotope to the next according to the number of neutrons [5].
The resulting interaction could possibly reveal itself as a de-
viation from linearity of the King plot.

Two recent high-precision experiments have been per-
formed with the aim of searching for new physics BSM. The
first used the King plot to study S-D quadrupole transitions
in isotopes of Yb+ [6], and the second, in effect, studied
isotope shifts in the fine-structure splittings of Ca+ [7]. The
Yb+ experiment showed a 3σ deviation from linearity in
the King plot, which could potentially be a signal of new
physics BSM or other nuclear structure effects, while the Ca+

experiment showed no significant deviation from linearity.
Flambaum et al. [8] proposed that nuclear polarization effects
may account for the Yb+ anomaly.

Most work to date has been based on relatively heavy
atomic systems such as these. The main point of the present
paper is to show that there is an important scope for future
experiments on light two-electron ions such as Li+ and Be++.

*gdrake@uwindsor.ca

In the case of Li+, there are five experimentally accessible
isotopes whose isotope shifts have all been extensively studied
before (for the case of neutral Li) in connection with measure-
ments of the nuclear charge radius [9,10] and, more recently,
for 6Li+ and 7Li+ [11,12]. An advantage of working with
two-electron systems is that high-precision atomic structure
calculations are readily done [13] to facilitate the interpreta-
tion of measured isotope shifts.

An additional electron-neutron interaction mediated by
light bosons would lead to a Yukawa-type potential of the
form [5]

Vmφ
= NI yeyn

4πr
e−γ r, (1)

where γ = mφc/h̄ for a hypothetical light boson of mass
mφ , yeyn/(4π ) is a coupling constant, and NI is the number
of neutrons for isotope I , analogous to Ze2/(4πε0) for the
electron-nucleus interaction. Since it is only the change in NI

between isotopes that contributes to the relative isotope shift,
there is no particular advantage in working with heavy iso-
topes with large NI , at least for boson masses below about 10
keV. However, a disadvantage of working with light isotopes
is that higher-order terms proportional to (μ/M )2 and higher
must be taken into account in a King-plot analysis, where μ

is the electron reduced mass and M is the nuclear mass. Such
terms arise, for example, from mass polarization in the elec-
tronic structure and must be taken into account. In this work,
we show that by taking second differences, a second-King or
“super-King” plot can be constructed to eliminate terms of
order (μ/M )2.

In the present work, we report the results of an extensive
scan of transitions among the Rydberg states of Li+ covering
all states up to principal quantum number n = 10 and angular
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momentum L = 7 (K states) in order to identify the most
favorable cases for possible experiments. In the following
section, the conventional King plot is briefly summarized and
then extended to the second-King plot, and the influence of a
hypothetical electron-neutron interaction is discussed. This is
followed by a brief description of the computational methods
and a presentation of the results.

II. THE KING PLOT AND SECOND-KING PLOT

Let i and j denote two atomic states and a be a particular
isotope. The transition frequency between states i an j can
then be expanded in the form

ν i j
a = U i j + V i j

( μ

M

)
a
+ W i j

( μ

M

)2

a
+ · · · + Ci j r̄2

a , (2)

where U i j = (Ei − E j )/h̄ is the transition frequency for an
infinitely heavy point nucleus (including relativistic and QED
corrections), V i j denotes contributions from both the normal
and specific isotope shifts due to mass polarization, W i j de-
notes second-order contributions from the same sources, and
the last term, r̄2

a , is the lowest-order correction due to the finite
nuclear charge radius squared. The coefficient Ci j is given (in
lowest order) by

Ci j = 2πZe2

3

∑
k

[〈δ(rk )〉i − 〈δ(rk )〉 j] (3)

summed over the electron coordinates rk and so is determined
by the change in electron density at the nucleus for states i and
j, independent of the isotope to a good approximation. Further
nuclear structure and finite-mass corrections may also be im-
portant [2,8], but the above is sufficient for the purposes of
the present discussion. The normal procedure in constructing
a King plot is to define the King coordinate

η
i j
ab = ν

i j
a − ν

i j
b(

μ

M

)
a
− (

μ

M

)
b

. (4)

Then, with the definitions

Fab =
(

μ

M

)
a

+
(

μ

M

)
b

, (5)

Gab = r̄2
a − r̄2

b(
μ

M

)
a − (

μ

M

)
b

, (6)

the King coordinate can be written in the form

η
i j
ab = V i j + W i jFab + Ci jGab. (7)

The slope of the King plot for a pair of transitions i′ j′ plotted
on one axis and i j plotted on the other and for a sequence of
isotopes a, b, and c is defined by

S = η
i′ j′
ac − η

i′ j′
ab

η
i j
ac − η

i j
ab

. (8)

For heavy ions, the normal procedure is to ignore the W i j

term in Eq. (4). The factors of Gac − Gab in the numerator
and denominator then cancel, leaving

S = Ci′ j′

Ci j
(9)

for all isotope pairs.

For light ions, the W i j term can also be eliminated by
forming the second-King coordinate

κ
i j
abc = ηab − ηac(

μ

M

)
b − (

μ

M

)
c

. (10)

Then, with the definition

Qabc = r̄2
a[(

μ

M

)
a − (

μ

M

)
b

][(
μ

M

)
a − (

μ

M

)
c

]

+ r̄2
b[(

μ

M

)
b − (

μ

M

)
a

][(
μ

M

)
b − (

μ

M

)
c

]

+ r̄2
c[(

μ

M

)
c − (

μ

M

)
a

][(
μ

M

)
c − (

μ

M

)
b

] (11)

Eq. (10) becomes

κ
i j
abc = W i j + Ci jQabc + O(μ/M ). (12)

If the O(μ/M ) corrections due to higher-order mass polariza-
tion are neglected, then factors of Qabc − Qabd cancel from the
numerator and denominator of the second-King slope defined
by

S(2) = κ
i′ j′
abc − κ

i′ j′
abd

κ
i j
abc − κ

i j
abd

, (13)

leaving S(2) = Ci′ j′

Ci j , which is identical to Eq. (9) for the stan-
dard King slope. However, since the Q’s are larger than the
G’s by a factor of the order of (μ/M )−1 ∼ 104, the cancel-
lation is more nearly exact for the case of the second-King
plot, thereby suppressing nuclear size uncertainties by about
this factor. The disadvantage, of course, is that one needs a
sequence five isotopes instead of four to look for a change in
slope due to new physics BSM.

III. EXTENDED KING PLOT TO SEARCH FOR NEW
PHYSICS BSM

Suppose now that there is an additional interaction of the
form of Eq. (1). Since this term enters the analysis in parallel
with the finite-nuclear-size term Qabc, the modified second-
King coordinate becomes

κ
i j
abc = W i j + Ci jQabc + ϒ i jNabc, (14)

where, in parallel with Eq. (3),

ϒ i j = yeyn

4π

∑
k

[〈e−rk/λm/rk〉i − 〈e−rk/λm/rk〉 j] (15)

and, in parallel with Eq. (11),

Nabc = Na[(
μ

M

)
a − (

μ

M

)
b

][(
μ

M

)
a − (

μ

M

)
c

]
+ Nb[(

μ

M

)
b − (

μ

M

)
a

][(
μ

M

)
b − (

μ

M

)
c

]
+ Nc[(

μ

M

)
c − (

μ

M

)
a

][(
μ

M

)
c − (

μ

M

)
b

] , (16)

where Na, Nb, and Nc are the neutron numbers for isotopes a,
b, and c, respectively. Note that Nabc = 0 if {Na, Nb, Nc} are all
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equal, so it depends only on the change in neutron number. As
with the Q’s in Eq. (12), the N’s are enhanced by a factor of
(μ/M )−1 ∼ 104.

For brevity, we define �Qcd = Qabc − Qabd and �Ncd =
Nabc − Nabd . Once again, the W i j term cancels from the slope
of the second-King plot, resulting in

S(2) = Ci′ j′�Qcd + ϒ i′ j′�Ncd

Ci j�Qcd + ϒ i j�Ncd

� Ci′ j′

Ci j

[
1 +

(
ϒ i′ j′

Ci′ j′ − ϒ i j

Ci j

)
�Ncd

�Qcd

]
, (17)

assuming in the second line that the ϒ i j term is small so that
the denominator can be expanded into the numerator. Finally,
if the isotope d is replaced by a fifth isotope e, then the change
in slope is

�S(2)
de = Ci′ j′

Ci j

(
ϒ i′ j′

Ci′ j′ − ϒ i j

Ci j

)(
�Nce

�Qce
− �Ncd

�Qcd

)
. (18)

This shows a clear factorization into a part determined by the
nuclear properties represented by the last factor and a part
determined by the electronic wave function represented by the
first two factors. A nonzero value for the middle factor would
represent a signal of new physics BSM. The 1-Hz sensitivity
is then defined as the value for yeyn for which �S(2)

de /S(2) =
�S(2)

1Hz/S(2), where �S(2)
1Hz is the uncertainty induced in S(2)

by uncertainties of 1 Hz in each of the four isotope shift
measurements, added in quadrature.

IV. DETAILED CALCULATIONS FOR Li+

The purpose of this section is to summarize the method
used to calculate matrix elements and isotope shifts for Li+.
The starting point is to find solutions to the Schrödinger
equation with the mass polarization term p1 · p2/M included
explicitly in the Hamiltonian. High-precision solutions are
found by using variational wave functions in Hylleraas coor-
dinates of the form [13–15]

� = c0�0 +
i+ j+k��∑

i jk

⎡
⎢⎣c(A)

i jk ϕi jk (αA, βA)︸ ︷︷ ︸
A sector

+ c(B)
i jk ϕi jk (αB, βB)︸ ︷︷ ︸

B sector

⎤
⎥⎦,

(19)

where �0 is the screened hydrogenic term
ψ1s(r1, Z )ψnL (r2, Z − 1), Z − 1 is the screened nuclear
charge of the Rydberg nL electron, and the basis functions
ϕi jk (α, β ) are defined by

ϕi jk (α, β ) = ri
1 r j

2 rk
12 e−αr1−βr2 YM

l1,l2,L(r̂1, r̂2) ± exchange.

The quantity YM
l1,l2,L

(r̂1, r̂2) represents a vector-coupled prod-
uct of spherical harmonics of angular momenta l1 and l2 to
form a state with total angular momentum L and component
M. The parameter � = (i + j + k)max controls the size of the
basis set. Different nonlinear parameters αA, βA and αB, βB

are used for the asymptotic (A) and short-range (B) sectors,
respectively, as determined by calculating analytically the
four derivatives ∂E/∂αX and ∂E/∂βX and finding zeros using
Newton’s method [14,15]. An advantage of these doubled

basis sets is their compactness and numerical stability such
that standard quadruple precision (approximately 32 decimal
digits) in FORTRAN is sufficient, even for the largest basis sets
with up to 1566 terms. In addition, the accuracy does not
deteriorate significantly for the higher-lying Rydberg states up
to n = 10 and L = 7.

The remaining step is to calculate matrix elements of the
δ-function and Yukawa potential for each state. For matrix
elements of δ(r1) + δ(r2), there is an asymptotic expansion
that becomes extremely accurate for L � 3 [16]. Relativistic
and QED corrections were also calculated, as extensively
described previously [15,17,18]. These terms are needed to
calculate the total transition frequencies, but they do not sig-
nificantly affect the slopes of the second-King plots since the
leading nonvanishing term is of the order of (α)2(μ/M )3 ∼
10−17 a.u. (0.4 Hz). QED corrections are smaller still and
can be neglected in the second-King analysis. Detailed wave
functions, matrix elements, and total energies for these states
are available online [19].

V. RESULTS

In order to identify the optimized King plots most sensitive
to a light boson, we conducted a survey of all possible King
plots involving singlet and triplet transitions (including inter-
combination transitions) up to n = 10 and L = 7 (K-states).
Counting both singlets and triplets and ignoring fine struc-
ture, there is a total of 103 states. The number of possible
unique King plots is therefore N (N − 1)[N (N − 1) − 2]/8 =
13 794 378. The results that follow cover all of these, with
the exception of combinations involving the 7 1,3I-10 1,3H
transitions. For these, there is an accidental cancellation of
matrix elements of the δ-function in the lowest order in μ/M,
making the nuclear size term anomalously small. Nuclear size
and structure uncertainties are thereby suppressed. These tran-
sitions form a special case that will be discussed separately in
a future publication.

As shown in Table I, the second-King plots with the highest
sensitivity all involve transitions starting from principle quan-
tum number n = 2 in the limit of small γ (i.e., small boson
mass) and n = 1 for large γ . The upper states all terminate
at n = 10 for small γ , but this just represents the asymptotic
limit for the highest n in the sample space of states. In other
words, the same transitions with n = 9 and n = 8 have only
slightly less sensitivity, and so the choice is more a matter
of experimental convenience. In this limit, the Yukawa poten-
tial is almost the same as a Coulomb potential over atomic
dimensions, but as γ increases, the exponential cutoff occurs
at progressively shorter distances. Correspondingly, the op-
timum value of n for the upper state decreases toward n = 2
with increasing γ . The transition from the low-γ regime to the
high-γ regime occurs over a relatively narrow range around
γ = 0.5. At the other extreme, the 2 3P-8 3S/8 3G-8 3H com-
bination has a sensitivity of only 2.6 × 10−8 in the small-γ
limit. The Supplemental Material [20] gives a more exten-
sive tabulation for small and intermediate γ , including the
15 unique second-King plots formed by the four states with
n = 2. For these, the sensitivities are an order of magnitude
worse than for the optimized transitions in Table I.
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TABLE I. Transitions with the highest sensitivity to electron-
neutron interactions for different values of the Yukawa parameter γ .
The conversion factor from γ to boson mass mφ is Zαme = 11.1868
keV, with Z = 3.

γ (Z/a0) King transitions yeyn

0.001 2 1S-10 1S/2 3P-10 1S 9.6312 × 10−15

0.002 2 1S-10 1S/2 3P-10 1S 9.6465 × 10−15

0.005 2 1S-10 1S/2 3P-10 1S 9.7322 × 10−15

0.010 2 3P-10 3S/2 1S-10 1S 9.9455 × 10−15

0.020 2 1P-5 3S/2 1P-7 1S 1.0363 × 10−14

0.050 2 1P-5 3S/2 1P-7 1S 1.2040 × 10−14

0.100 2 1P-5 3S/2 1P-7 1S 1.5689 × 10−14

0.200 2 1S-10 1S/2 3P-10 3S 2.5312 × 10−14

0.200 2 1S-10 3S/2 3P-10 3S 2.5307 × 10−14

0.500 1 1S-2 1S/2 3P-2 3Sa 5.4886 × 10−14

1.000 1 1S-2 1S/2 3S-2 3P 1.2293 × 10−13

2.000 1 1S-2 1S/2 3S-2 3P 4.4138 × 10−13

5.000 1 1S-2 1S/2 3S-2 3P 4.8762 × 10−12

10.000 1 1S-2 1S/2 3S-2 3P 4.6078 × 10−11

20.000 1 1S-2 1S/2 3S-2 3P 5.5648 × 10−10

50.000 1 1S-2 1S/2 3S-2 3P 1.9496 × 10−8

100.00 1 1S-2 1S/2 3S-2 1P 2.7815 × 10−7

aFor this and the following entries, the strongly forbidden 1 1S-2 3S
transition has a slightly lower limit.

In the absence of additional bosonic perturbations, the
slopes of the King plots should ideally be constant across
different choices of isotope pairs. Table II shows the dramatic
difference in the variation of slopes between the first-King
and second-King cases for the pair of transitions 2 1S-10 1S
and 2 3P-10 1S with the highest sensitivity. Taking 7Li as the
common reference isotope, the isotope pairs are (7-6, 7-8), (7-
6, 7-9), and (7-6, 7-11) for the three first-King combinations
labeled k1, k2, and k3 and (7-6, 7-11, 7-8) and (7-6, 7-11,
7-9) for the two second-King combinations labeled k1(2) and
k2(2). In the infinite mass limit (first row), all the slopes are
perfectly constant and equal to the ratio Ci′, j′/Ci, j as expected.
However, with the addition of terms proportional to (μ/M )2

and higher due to both mass scaling and mass polarization,
the slopes k1, k2, and k3 become widely different, while k1(2)

and k2(2) remain equal to within 12 ppm. Also shown is the
uncertainty in the slope due to a nominal ±1 Hz uncertainty
in each of the four input isotope shifts, added in quadrature.
The comparison shows that there is a loss of about a factor of
5 in uncertainty of the slope for the second-King plots relative

to the first-King plots. The last row shows the uncertainty
due to the nuclear radius uncertainties of the five isotopes,
added in quadrature. The assumed nuclear charge radii and
their uncertainties are the same as in Table VIII of Ref. [10].
As recently discussed by Müller et al. [21], the uncertainties
in the slopes can be large for first-King plots, but as shown
in Table II, the uncertainties are strongly suppressed for the
second-King plots. The reason for the suppression follows
from the enhanced magnitude of the Q’s relative to the G’s,
as discussed following Eq. (13).

Despite the loss of a factor of 5 in sensitivity, the sensitivity
to light bosons of about 1.9 × 10−14 at the 95% confidence
level (CL) (i.e., twice the value shown in Table I) is about the
same as for the case of Yb+ recently discussed by Berengut
et al. [2]. Figure 1 shows a comparison with the regular
King-plot limit and the no-mass King plot method of Berengut
et al. for Yb+. An important difference is that the present work
does not contain a sharp resonancelike peak at around 10 keV.
A comparison with other atomic physics methods, such as
the H/D isotope shift, neutron scattering, and g − 2 measure-
ments, is also shown [5]. The comparison with astrophysical
limits and fifth-force searches is similar to that discussed
previously [2]. These provide much lower bounds on yeyn,
but they are strongly model dependent, so an independent test
using atomic physics methods is well justified. Not shown are
recent mass limits on a proposed cosmological relaxation of
the Higgs field by relaxions [22] and a hypothetical scalar
with a finite lifetime that can accommodate the recent KOTO
results [23,24], as further discussed in Ref. [2].

The closest previously discussed competitor in a two-
electron system [5] is the 3He-4He isotope shift in the
2 1S-2 3S [25] and 2 3S-2 3P [26,27] transitions around 1557
and 1083 nm, respectively. However, the interpretation in
terms of NP is limited by QED uncertainties at the 100-Hz
level.

There are two clear disadvantages of working with Li+.
The first is that the optimum transition wavelengths of 87.53
and 89.87 nm lie in the far uv and so are not so easily
accessible for high-precision measurements. However, with
rapidly improving experimental techniques and synchrotron
radiation sources, this problem may be overcome. The second
is that all of the isotopes of lithium from 6Li to 11Li contain
hyperfine structure, so the center of gravity must be located in
order to measure the isotope shift. The advantage of working
with a two-electron system such as Li+ is that high-precision
wave functions in Hylleraas coordinates are readily available

TABLE II. Contributions to the slope of the regular King plots k1, k2, and k3 and the second-King (super-King) plots k1(2) and k2(2) for
the transition pair 2 3P1-10 3S1/2 3S1-10 3S1 of Li+. The nuclear radius uncertainty includes the nuclear polarizability for 11Li (see the text).
The last row is the uncertainty in the slope induced by a ±1-Hz uncertainty in each of the independent isotope shift measurements.

Contribution k1 k2 k3 k1(2) k2(2)

Infinite mass limit –3.453 226 –3.453 226 –3.453 226 –3.453 226 –3.453 226
(μ/M )2 + · · · 4.101 441 4.446 124 2.328 237 0.000 153 0.000 082
(μ/M )r̄2

c 0.000 208 0.000 154 0.000 456 0.000 816 0.000 859
Total 0.648 423 0.993 052 –1.124 533 –3.452 257 –3.452 285
Nuclear radius uncertainty ±0.56 ±0.31 ±0.06 ±0.000 037 ±0.000 012
±1 Hz ±0.000 002 ±0.000 001 ±0.000 001 ±0.000 009 ±0.000 005
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FIG. 1. The 95% CL limits on the coupling constant yeyn as a
function of boson mass mφ for various methods of measurement. The
curves labeled Yb+ (a) and Yb+ (b) refer to the King-plot analysis
of Berengut et al. [2] for (a) a King plot with no mass uncertainty
(2DK) and (b) the no-mass generalized King plot (NMK). The solid
black curve indicates the present second-King limits for Li+. The
other atomic physics limits come from the H/D isotope shift, neutron
scattering, and (g − 2) measurements [5]. The astrophysics and fifth-
force limits are also shown, as discussed by Berengut et al. [2]. Not
shown are the recent relaxed-relaxion limits from Ref. [22].

to calculate the hyperfine structure as a function of the nu-
clear parameters. This was already done in connection with
measurements of the nuclear charge radius for all the isotopes
of lithium and was recently improved for the cases of 6Li+

and 7Li+ [11]. The main limitation may well be the Zemach
effect corresponding to the distribution of magnetic moment
across the nucleus. The level widths of the n = 10 states were
calculated by summing the decay rates over all electric dipole
transitions to lower-lying states. The results are 13.33 and
16.16 MHz for 10 1S and 10 3S and 229 and 17.4 MHz for
10 1P and 10 3P, respectively. Except for the 10 1P state, this is
substantially less than the J = 0 → 2 fine-structure splitting
of 465.0 MHz for the 10 3PJ manifold. For high-n Rydberg
states, the hyperfine splitting is larger and tends asymptoti-
cally to the same splitting as for the ground state of Li++. It
ranges from a low of 2.83 GHz for 6Li to a high of 12.8 GHz
for 7Li.

For all but 11Li, nuclear polarization effects are small
[9] and can be included in the analysis [8]. For the case

of 11Li, the energy shift due to nuclear polarization is
given by (in atomic units) [28] Epol = −αmc2〈∑i δ(ri )〉αpol,
where αpol is the nuclear polarizability, calculated to be [27]
60.9(6.1) fm3 = 4.11(41) × 10−13a3

0, where a0 is the Bohr
radius. Since the finite-nuclear-size correction is also pro-
portional to 〈∑i δ(ri )〉, the two can be lumped together to
form an effective nuclear charge radius that is the same for
all transitions. For the case of 11Li, the nuclear polarizability
(including the uncertainty) reduces the effective charge radius
from 2.482(14) to 2.316(14) fm. Similarly, higher moments of
the nuclear charge distribution can be included in an effective
nuclear charge radius since the energy shifts remain approx-
imately proportional to the electron density at the nucleus
[2,29].

VI. DISCUSSION

The main point of this paper is to report the results of
a broad survey of all possible King plots involving states
of Li+ up to n = 10 and L = 7, including intercombination
transitions, and to identify the ones most sensitive to new
physics BSM. The results indicate that the King-plot method
applied to light heliumlike ions has a potentially high sensitiv-
ity to light bosons mediating an electron-neutron interaction.
The use of a second-King plot eliminates second-order mass
polarization corrections proportional to (μ/M )2 if a sequence
of five isotopes is available, and the residual corrections of
the order of (μ/M )3 ∼ 10−13 can be accurately calculated and
included in the analysis if needed. The resulting sensitivity
is about the same as for the case of Yb+ recently discussed
in the literature [2]. The method of King-plot analysis also
automatically eliminates relativistic recoil and radiative recoil
corrections of orders (Zα)nμ/M and (Zα)n(μ/M )2, with n =
2, 3, . . . . The leading term not included in a purely nonrela-
tivistic calculation is therefore of the order of (Zα)2(μ/M )3 ∼
10−17 a.u., or ∼0.4 Hz. However, as shown in Table II, rela-
tivistic and recoil corrections to the nuclear size term (field
shift) could start to become important at the 1-Hz level of
accuracy, and the nuclear charge radius uncertainty is about
3 Hz. This is the dominant source of uncertainty. It is particu-
larly significant that the effect of nuclear size uncertainties is
strongly suppressed in the second-King plots.
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