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Ability of unbounded pairs of observers to achieve quantum advantage in random access codes
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Complications in preparing and preserving quantum correlations stimulate recycling of a single quantum
resource in information processing and communication tasks multiple times. Here, we consider a scenario
involving multiple independent pairs of observers acting with unbiased inputs on a single pair of spatially
separated qubits sequentially. In this scenario, we address whether more than one pair of observers can
demonstrate quantum advantage in some specific 2 → 1 and 3 → 1 random access codes. Interestingly, we
not only address these in the affirmative but also illustrate that unbounded pairs can exhibit quantum advantage.
Furthermore, these results remain valid even when all observers perform suitable projective measurements and
an appropriate separable state is initially shared.
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Introduction. Random access code (RAC) [1–3] is one
of the fundamental communication protocols which, when
assisted with quantum resources, manifests the astonishing
potential of quantum systems in the context of information
processing. In a n → m RAC, n is the number of bits (x0, x1,
. . . , xn−1) accessed by the sender, say, Alice. On the other
hand, m is the number of bits that Alice is allowed to send the
receiver, say, Bob with m < n. In each run, Bob chooses the
number y randomly (where y ∈ {0, 1, . . . , n − 1}) and tries to
guess the bit xy accessed by Alice, but unknown to Bob. The
efficacy of RAC is limited when only classical strategies are
employed. However, one can surpass the best classical strate-
gies using quantum resources, e.g., by using either quantum
communication [3] or classical bit communications assisted
with a shared bipartite quantum state [4,5].

RAC assisted with quantum resources was initially intro-
duced [1–3] in order to demonstrate the immense capabilities
of quantum systems in information processing tasks. The state
of a m-qubit system can be represented by a unit vector in a
2m dimensional complex Hilbert space, which opens up the
possibility of encoding and transmitting classical information
with exponentially fewer qubits, for example, Alice encoding
n bits into a m-qubit system (where n � m) and sending it
to Bob. However, due to the Holevo bound [6], m qubits
cannot transmit more than m classical bits of information
faithfully. Hence, it can be inferred that exponentially many
degrees of freedom of a quantum system remain inacces-
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sible. Nevertheless, the situation becomes interesting when
Bob does not need to know all the n bits of information
together and chooses which bit of classical information he
would like to extract out of the encoding. In order to extract
different bits of information, Bob performs different measure-
ments and these measurements are in general not commuting.
Thus, by choosing a particular measurement, Bob inevitably
disturbs the state and destroys some or all the information
that would have been revealed by other possible measure-
ments. This leads to the idea of RAC assisted with quantum
resources. RAC has served as a powerful quantum communi-
cation task with various applications ranging from quantum
finite automata [2,3,7], communication complexity [8–12],
nonlocal games [13], network coding [14,15], locally decod-
able codes [16–18], dimension witnessing [19–22], quantum
state learning [23], self-testing [24–27], quantum randomness
certification [28], quantum key distribution [29], and stud-
ies of no-signaling resources [30] to characterizing quantum
mechanics from information-theoretic principles [31]. Exper-
imental demonstrations of RAC protocols have also been
reported [32,33].

In the present study, we consider RAC using classical
communications assisted with shared quantum correlations.
In reality, it is experimentally difficult to create any quantum
correlation. Moreover, environmental interactions unavoid-
ably degrade the efficacy of any quantum correlation. To cope
with these, one can recycle a single copy of any quantum
resource multiple times. Furthermore, this also indicates how
much quantumness in a correlation is preserved even after
few cycles of local operations. Historically, this issue was first
addressed by Silva et al. [34], where two spatially separated
spin- 1

2 particles were assumed to be shared between a single
Alice and multiple independent Bobs. In this scenario, the
maximum number of Bobs was deduced [34–39], which can
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demonstrate Bell nonlocality [40]. This idea of sharing quan-
tum correlations by multiple sequential observers has been
extended in different contexts as well [41–56]. The applica-
tions of sequential sharing of quantum correlations in different
information processing tasks have also been demonstrated
[27,57–63]. In all these studies, multiple observers perform-
ing sequential measurements on only one qubit have been
considered, whereas the present study contemplates multiple
observers performing sequential measurements on each of
the two qubits. This is a more general and practical scenario
for reutilizing quantum correlations in commercial quantum
technologies.

In particular, we focus on recycling a single quantum re-
source in sequentially carrying out RAC tasks multiple times.
Here, we consider the scenario where a two-qubit state is
shared between two spatially separated wings. Multiple inde-
pendent Alices (say, Alice1, Alice2, Alice3, . . . ) and multiple
independent Bobs (say, Bob1, Bob2, Bob3, . . . ) act sequen-
tially on the first and second qubits respectively with unbiased
inputs. At first, Alice1-Bob1 executes the RAC task with the
initially shared two-qubit state. Afterward, Alice1 passes her
qubit to Alice2 and Bob1 passes his qubit to Bob2. Next,
Alice2-Bob2 also passes the two qubits to Alice3-Bob3 after
performing the RAC task and so on.

In the above scenario, we show that unbounded pairs
of Alice-Bob (i.e., Alice1-Bob1, Alice2-Bob2, . . . ) can gain
quantum advantage in executing RAC tasks. Specifically, we
demonstrate that the above result holds (1) when all pairs al-
ways perform some particular 2 → 1 RAC, (2) when all pairs
always perform some particular 3 → 1 RAC task, (3) when
each of the pairs always performs either a 2 → 1 RAC or a
3 → 1 RAC independent of other pairs, and (4) when each
pair performs a 2 → 1 RAC and a 3 → 1 RAC with different
probabilities independent of other pairs. While comparing
the classical and quantum strategies to demonstrate quantum
advantage, we restrict the amount of shared classical bits to be
equal to the amount of shared quantum bits. This constraint is
quite natural in the sense that classical bits, similar to qubits,
are expensive resources [5,64–66]. Since the aforementioned
scenario involves two qubits, quantum strategies are compared
with the classical ones assisted with two bits from a common
source.

2 → 1 and 3 → 1 RAC protocols assisted with classical
communication and a two-qubit state. Let us now describe the
n → 1 (with n ∈ {2, 3}) RAC protocol using limited classical
communication and shared two-qubit state. At first, Alice is
given a string of n bits x = (x0, x1, . . . , xn−1) chosen ran-
domly from a uniform distribution with xi ∈ {0, 1} for all i ∈
{0, 1, . . . , n − 1}. Next, depending on the input bit string, Al-
ice performs one of the 2n dichotomic measurements denoted
by Ax0x1···xn−1 on her qubit. The outcome of the measurement
Ax0x1···xn−1 is denoted by ax0x1···xn−1 ∈ {0, 1}. Alice then commu-
nicates the outcome of her measurement to Bob with one bit
of information. Next, Bob tries to guess one of the n bits xy

(with y ∈ {0, 1, . . . , n − 1}) given to Alice (in each run y is
chosen randomly). For this purpose, Bob performs one of the
n dichotomic measurements denoted by By on his qubit. The
outcome of the measurement By is denoted by by ∈ {0, 1}.
Finally, Bob’s guess is given by ax0x1···xn−1 ⊕ by. Hence, the
RAC task will be successful, i.e., Bob’s guess will be correct
if and only if ax0x1···xn−1 ⊕ by = xy.

FIG. 1. Scenario for performing n → 1 RAC task with multiple
pairs of observers sequentially.

In the present study, we will quantify the efficacy of the
RAC protocol by minimum success probability defined as

Pn→1
Min = min

x0,x1,··· ,xn−1,y
P(ax0x1···xn−1 ⊕ by = xy). (1)

Results. We consider a scenario involving multiple inde-
pendent Alices and multiple independent Bobs as described
in Fig. 1. Alice1-Bob1 initially shares one pair of qubit in
the singlet state, |ψ−〉 = 1√

2
(|01〉 − |10〉). This first pair per-

forms the aforementioned RAC task and then, Alice1, Bob1

pass their particles to Alice2, Bob2 respectively. Alice2, Bob2

also pass their particles to Alice3, Bob3 respectively after
executing the RAC. In this way, the process continues. Note
that each of the observers act with unbiased inputs. Here
we want to find out how many pairs of Alice and Bob can
exhibit quantum advantage. If any pair performs projective
measurements, it will disturb the state maximally and the
next pair may not get any quantum advantage. Hence, in
order to continue the above sequential RAC task with multiple
pairs of Alice-Bob, we consider weak measurements by all
pairs. We should choose the weak measurement formalism
in such a way that the disturbance due to this measurement
is minimized for any given amount of information gain [34].
One such example is unsharp measurement (a particular class
of Positive Operator-Valued Measure or POVM) [67] with
generalized von Neumann–Lüders state-transformation rule
[35,42].

In the present paper, we consider two particular RAC tasks.
The first one is the 2 → 1 RAC task assisted with two (quan-
tum or classical) bits, shared from a common source and
having maximally mixed marginal at the receiver’s end. In the
classical strategy, a source produces two correlated bits which
are shared by Alice and Bob. The two binary values 0 and 1 of
Bob’s bit are equiprobable. Consequently, Alice’s encoding
and Bob’s decoding strategies are now assisted with these
bits. The minimum success probability of such a classical
RAC task is always less than or equal to 1

2 [5]. In the case
of quantum strategy, two-qubit states with maximally mixed
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marginal at Bob’s end can only be shared in the context of
this task and P2→1

Min > 1
2 implies quantum advantage.

Another RAC task that we consider is the 3 → 1 RAC
task assisted with two (quantum or classical) bits shared from
a common source. There is no restriction on the marginals
of the shared bits in this case. For classical strategies, the
minimum success probability is always less than or equal to 1

2
[5]. Hence, P3→1

Min > 1
2 ensures quantum advantage.

Suppose the pair Alicek-Bobk for arbitrary k ∈ {1, 2, . . . }
performs the above RAC using the shared Bell-diagonal state,

ρk
AB = 1

4

(
I4 +

3∑
i=1

t k
ii σi ⊗ σi

)
, (2)

where (t k
uu)2 � (t k

vv )2 � (t k
ww )2 for an arbitrary choice of u 
=

v 
= w ∈ {1, 2, 3}; σi with i = 1, 2, 3 are the three Pauli ma-
trices.

Next, let us present the encoding-decoding strategies
adopted by the pair Alicek-Bobk . In the case of the 2 → 1
RAC, Alicek performs one of the four POVMs denoted by
Ak

x0x1
≡ {Ek,0

x0x1
, Ek,1

x0x1
} with (x0, x1) ∈ {(00), (01), (10), (11)},

where

E
k, ak

x0x1
x0x1 = 1

2

[
I2 + λk (−1)ak

x0x1
(
ûk

x0x1
· �σ

)]
. (3)

Bobk performs one of the two POVMs denoted by Bk
y ≡

{Ek,0
y , Ek,1

y } with y ∈ {0, 1}, where

E
k, bk

y
y = 1

2

[
I2 + ηk (−1)bk

y
(
v̂k

y · �σ
)]

. (4)

Here λk , ηk ∈ (0, 1] are the sharpness parameters; �σ =
(σ1, σ2, σ3); ak

x0x1
, bk

y ∈ {0, 1} denote the outcomes of the
POVMs Ak

x0x1
performed by Alicek and Bk

y performed by Bobk

respectively. The unit vectors ûk
x0x1

and v̂k
y are given by

ûk
x0x1

=
⎛
⎝ (−1)x0t k

11√
(t k

11)2 + (t k
22)2

,
(−1)x1t k

22√
(t k

11)2 + (t k
22)2

, 0

⎞
⎠, (5)

v̂k
0 = (1, 0, 0), v̂k

1 = (0, 1, 0). (6)

On the other hand, for executing the aforementioned 3 →
1 RAC, Alicek performs one of the eight possible POVMs
denoted by Ak

x0x1x2
≡ {Ek,0

x0x1x2
, Ek,1

x0x1x2
} with xi ∈ {0, 1} for all

i ∈ {0, 1, 2}, where

E
k, ak

x0x1x2
x0x1x2 = 1

2

[
I2 + λk (−1)ak

x0x1x2
(
ûk

x0x1x2
· �σ

)]
. (7)

Bobk performs one of the three POVMs denoted by Bk
y ≡

{Ek,0
y , Ek,1

y } with y ∈ {0, 1, 2}, where

E
k, bk

y
y = 1

2

[
I2 + ηk (−1)bk

y
(
v̂k

y · �σ
)]

. (8)

We choose the unit vectors ûk
x0x1x2

= �uk
x0x1x2

|�uk
x0x1x2

| and v̂k
y as fol-

lows,

�uk
x0x1x2

=
(

(−1)x0t k
11, (−1)x1t k

22, (−1)x2t k
33

)
, (9)

v̂k
0 = (1, 0, 0), v̂k

1 = (0, 1, 0), v̂k
2 = (0, 0, 1). (10)

With these, we can present the following lemma (for proof,
see Appendix A [68]), which will be useful for probing the
main result:

Lemma 1. Let Alicek-Bobk perform the n → 1 RAC task
(where n = 2 or n = 3) with a two-qubit Bell-diagonal state
(2) using the above unsharp measurements. Then the pair
achieves minimum success probability strictly greater than 1

2
if min

i�n
[(t k

ii )
2] 
= 0.

Next, we want to find out the postmeasurement state ρk+1
AB

received, on average, by Alicek+1-Bobk+1 from Alicek-Bobk .
When Alicek-Bobk performs the 2 → 1 RAC, following the
generalized von Neumann–Lüder’s transformation rule, we
have (see Appendix B [68])

ρk+1
AB = 1

8

1∑
x0,x1,y=0

[
1∑

ak
x0x1

,bk
y=0

(√
E

k, ak
x0x1

x0x1 ⊗
√

E
k, bk

y
y

)

× ρk
AB

(√
E

k, ak
x0x1

x0x1 ⊗
√

E
k, bk

y
y

)†

]

= 1

4

(
I4 +

3∑
i=1

t k+1
ii σi ⊗ σi

)
. (11)

The average is taken since we have assumed that multiple
Alices or multiple Bobs act independently of each other.
Here, we have also used the assumption that Alicek and
Bobk perform measurements with unbiased inputs. Similarly,
when Alicek-Bobk performs the 3 → 1 RAC, it is observed
that the average postmeasurement state ρk+1

AB received by
Alicek+1-Bobk+1 has the Bell-diagonal form (11) (see Ap-
pendix C [68] for details).

Moreover, when Alicek-Bobk performs the n → 1 RAC
task (where n = 2 or n = 3) with the state (2), it can be
shown that min

i�n
[(t k+1

ii )2] 
= 0 if min
i�n

[(t k
ii )

2] 
= 0 (for details, see

Appendix B [68]and Appendix C [68]).
Now, consider that the same n → 1 RAC (i.e., either the

2 → 1 or the 3 → 1 RAC) is performed by each of the pairs.
In such scenario, combining the above results, we can present
the following: If Alice1-Bob1 initially shares the singlet state,
then this pair achieves Pn→1

Min > 1
2 (with n = 2 or n = 3) us-

ing the aforementioned unsharp measurements. Moreover, the
average postmeasurement state ρ2

AB received by Alice2-Bob2

is the Bell-diagonal state (2) with k = 2 and min
i�n

[(t2
ii )

2] 
= 0.

Hence, Alice2-Bob2 also achieves Pn→1
Min > 1

2 . Subsequently,
Alice3-Bob3 receives the Bell-diagonal state (2) with k = 3
and min

i�n
[(t3

ii )
2] 
= 0 and exhibits Pn→1

Min > 1
2 as well. This pro-

cess continues for arbitrarily many pairs. Therefore, we can
present the following theorem:

Theorem 1. Unbounded pairs of Alice and Bob can
demonstrate quantum advantage either in 2 → 1 RAC task
assisted with two bits shared from a common source and
having maximally mixed marginal at the receiver’s end, or in
3 → 1 RAC task assisted with two correlated bits.

Importantly, the statements of Theorem 1 hold for all val-
ues of λk ∈ (0, 1] and ηk ∈ (0, 1] for all possible k ∈
{1, 2, . . . }. Moreover, for the aforementioned n → 1 RAC
with n = 2 or n = 3, starting with any Bell-diagonal two-qubit
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(entangled or separable) state given by Eq. (2) with k = 1 and
min
i�n

[(t1
ii )

2] 
= 0, one gets the same result as stated in Theorem

1. Hence, the following corollary can be stated:
Corollary 1. Unbounded pairs of Alice and Bob can ex-

hibit quantum advantage in some particular n → 1 RAC task
(with n = 2 or n = 3) even when each of the observers
performs suitable projective measurements and the initially
shared two-qubit state belongs to a particular subset of sep-
arable states.

When Alice1-Bob1 initially shares the singlet state and
performs the aforementioned n → 1 RAC (where n = 2 or
n = 3) using the measurements described earlier with λ1 =
η1 = 1 (i.e., projective measurements), then this pair achieves
Pn→1
Min = 1

2 (1 + 1√
n

). This is the maximum permissible value

of Pn→1
Min with quantum resources [4]. In this case also, the

residual quantum correlation in the average postmeasure-
ment state is sufficient for demonstrating quantum advantage
in the n → 1 RAC by unbounded pairs of Alice and Bob.
Hence, a single pair of qubits can be utilized indefinitely
to gain quantum advantage in some particular RAC even
when the optimal quantum advantage is exhibited in the first
round.

Remark. We observe that when an arbitrary pair gains a
large amount of quantum advantage, then only few numbers
of subsequent pairs will get significant quantum advantage.
On the other hand, when a pair gets a small amount of
quantum advantage, a larger number of subsequent pairs can
achieve significant quantum advantage. Here, “significant”
quantum advantage implies that (Pn→1

Min − 1
2 ) is positive and

large enough to be detected in a real experiment. Hence, there
may exist a trade-off relation between the amount of quantum
advantage gained by an arbitrary pair and the number of
subsequent pairs exhibiting considerable amount of quantum
advantage. Moreover, either of these two quantities can be
increased at the expense of the other by suitably choosing
the sharpness parameters of the measurements (see Appendix
D [68]). In practical scenario, a large but finite number of
sequential pairs of observers may be required to perform some
communication tasks with only one pair of qubits. The num-
ber of sequential pairs required to exhibit quantum advantage
depends on the particular context under consideration and
that can be realized by fine-tuning the unsharpness of the
measurements.

Next, we consider a more general scenario where an ar-
bitrary pair Alicek-Bobk performs the aforementioned 2 → 1
RAC task with probability pk and the aforementioned 3 → 1
RAC with probability (1 − pk ), where 0 � pk � 1. For exam-
ple, Alicek and Bobk can fix the task to be performed in each
experimental run prior to the initiation of sequential RAC and,
during the execution of sequential RAC, they perform the two
different tasks accordingly. This type of scenario is particu-
larly relevant when a sequence of RAC tasks is implemented
as an intermediate step in commercial quantum computation.
In such cases, different tasks may be required to be performed
by the same pair of particles in different steps depending
on the choices of users. In this scenario, if a singlet state
or any Bell-diagonal two-qubit (entangled or separable) state
given by Eq.(2) with k = 1 and min[(t1

11)2, (t1
22)2, (t1

33)2] 
= 0
is initially shared, then the following result is attained (see
Appendix E [68] for details):

Corollary 2. Unbounded pairs of Alice and Bob can
demonstrate quantum advantage when an arbitrary pair
Alicek-Bobk performs a 2 → 1 RAC (assisted with two cor-
related bits with maximally mixed marginal at the receiver’s
end) with probability pk and a 3 → 1 RAC (assisted with two
bits shared from a common source) with probability 1 − pk

independent of other pairs.
When Alicek-Bobk performs projective measurements and

pk = 1 (i.e., performs 2 → 1 RAC with certainty), then the
condition min[(t x

11)2, (t x
22)2, (t x

33)2] 
= 0 will not be satisfied
for the average postmeasurement state received by all sub-
sequent pairs (i.e., for all x ∈ {k + 1, k + 2, . . . }). Hence, all
these pairs will not achieve quantum advantage in 3 → 1
RAC. Hence, only under unsharp measurements (with the
sharpness parameters being strictly less than 1), we can state
the following corollary (see Appendix E [68] for details),

Corollary 3. Unbounded pairs of Alice and Bob can
demonstrate quantum advantage when an arbitrary pair
Alicek-Bobk performs a 2 → 1 RAC with certainty and an-
other arbitrary pair Alicek̃-Bobk̃ performs a 3 → 1 RAC with
certainty for all choices of k 
= k̃ ∈ {1, 2, . . . }.

Conclusions. Here we have considered a scenario involving
multiple independent pairs of Alice and Bob sharing a single
pair of qubits and performing some particular 2 → 1 and
3 → 1 RAC tasks with unbiased inputs sequentially. In this
scenario, we have shown that unbounded pairs can gain quan-
tum advantage even when all observers perform projective
measurements. These results address the issue of recycling a
single copy of a quantum resource in performing information
processing tasks multiple times sequentially. This is of utmost
importance since, in reality, preparing quantum correlations
and preserving them against inevitable environmental interac-
tions are difficult.

Our results point out that quantum correlations present in
separable states [69] can be preserved indefinitely in spite of
utilizing it in each step. Furthermore, weak measurements are
not necessary for this purpose; suitable projective measure-
ments can serve for this. Note that this is not the case for
entanglement or Bell nonlocality. Hence, these results signify
one fundamental difference between the quantum correlations
present in entanglement and that present in separable states:
The first one is destroyed only after one cycle of projective
measurements while the second one is retained even after infi-
nite cycles. The advantage of quantum information processing
tasks assisted with separable states [5,66] is thus pointed out
by our present study. In fact, our results open up the possibility
of implementing unbounded sequence of any task, for which
quantum advantage can be demonstrated even using separable
states (say, for example, remote state preparation [70]), with
only one pair of qubits.

There exists a complementarity between the question
addressed here and the one-way communication complex-
ity problem [71,72]. In one-way communication complexity
problem, Alice and Bob are given inputs x ∈ {0, 1}n and
y ∈ {0, 1}m respectively. The goal for Bob is to calculate a
binary function f (x, y). Alice is allowed to send limited clas-
sical communications to Bob. This game can be thought as
a number of parallel RACs taking place simultaneously. The
main goal of any communication complexity problem is to
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minimize the amount of classical communication. However,
there is no restriction on the shared entanglement. On the
contrary, the present study is aimed to reduce the amount of
shared correlation, but does not focus on reducing the number
of communicating bits.

Recently, measurement protocols have been proposed to
demonstrate arbitrary many Bell-CHSH inequality [40] vi-
olations with various independent Bobs and a single Alice
using unbiased inputs when a pure entangled two-qubit state is
initially shared [39]. The result, however, requires arbitrarily
high precision engineering for the measurement apparatus
and, hence, is too strenuous to implement in a reality. On the
other hand, the unsharp measurements chosen in the present
study can be realized in photonic systems based on the tech-
niques adopted in Refs. [62,63]. Moreover, our results are
valid for any range of sharpness parameters and do not require
any entanglement. Hence, for experimental implementation of
large sequence of detecting quantum correlation with a single
two-qubit state, our results are less demanding.

This study points out that there exist some communication
tasks in which unbounded pairs of observers can exhibit
quantum supremacy even if a single quantum resource
is used. Finding out different communication tasks with
the above feature merits further investigation. Next, it is
worthwhile to fully characterize the set of two-qubit states
for which Theorem 1 holds. It is also interesting to find out
whether there exists any two-qubit state for which weak
measurements are necessary for satisfying Theorem 1.
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