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Atom-orbital qubit under nonadiabatic holonomic quantum control
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Quantum computing has been attracting tremendous efforts in recent years. One prominent application is to
perform programmable quantum simulations of electron correlations in large molecules and solid-state materials,
where orbital degrees of freedom are crucial to quantitatively model electronic properties. Electron orbitals
unlike quantum spins obey crystal symmetries, making the atomic orbital in optical lattices a natural candidate
to emulate electron orbitals. Here, we construct an atom-orbital qubit by manipulating s and d orbitals of atomic
Bose-Einstein condensation in an optical lattice. Noise-resilient single-qubit gates are achieved by performing
holonomic quantum control, which allows geometrical protection. We find it is critical to eliminate the orbital
leakage error in the system. Our work opens up wide opportunities for atom-orbital-based quantum information
processing, of vital importance to programmable quantum simulations of multiorbital physics in molecules and
quantum materials.
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Orbital degrees of freedom are essential to the quantitative
description of electrons in large molecules [1] and solid-state
materials [2]. The complex interplay of spin, charge, and
orbital is key to the emergence of novel electron phenomena
such as multiferroics [2], unconventional superconductivity
[3], and exotic molecular spin filtering [4,5]. Incorporating
orbitals lies at the heart of accurate quantum chemistry cal-
culations [1] and adds substantial computation complexity
in simulating many-body electron correlation. With quantum
computing, the overall computation complexity of quantum
algorithms for quantum chemistry calculation has been re-
duced to polynomials [6,7], which has triggered much recent
research effort on experimental demonstration of such quan-
tum algorithms with superconducting qubits [8,9] and trapped
ions [10,11]. However, using these qubits to emulate elec-
tron orbitals meets the experimental challenge of expensive
qubit encoding [8] and demanding Hamiltonian engineering
to impose precise orbital symmetry [12], and consequently
the captured multiorbital effect in the experiments is rather
limited [8,9].

With ultracold atoms confined in optical lattices, the atom-
orbital wave function obeys the same crystalline symmetry as
the electron orbitals [13], making the atom-orbital qubit an
ideal qubit candidate to perform programmable quantum sim-
ulations of electron orbitals in molecules and solid materials.
There has been fascinating progress made in controlling atom
orbitals in optical lattices for quantum simulations of exotic
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superfluids [14–19] and topological quantum states [20–23].
However, their gate-based universal quantum control is still
lacking, leaving orbital qubit quantum computing so far un-
achieved.

In this Letter, we construct an atom-orbital qubit using s
and d orbitals of a one-dimensional optical lattice. We have
measured the orbital relaxation time (Trelax) and the dephasing
time (T2), finding Trelax = 4.5 ± 0.1 ms and T2 = 2.1 ± 0.1
ms in our experiment. By programming lattice modulation,
we reach universal nonadiabatic holonomic quantum gate
control [24,25] over the atom-orbital qubit, which exhibits
noise resilience against laser fluctuations due to geometrical
protection. We demonstrate the holonomic quantum control of
Hadamard and π/8 gates, which form a universal gate-set for
single-qubit rotation. The lattice modulation pulses are pro-
grammed to minimize orbital leakage error, which is the key
to reach high-fidelity holonomic quantum control of atom-
orbital qubits. We implement quantum process tomography
(QPT) on the orbital qubit to measure the full density matrix,
from which the obtained average gate fidelity is 98.36(10)%.

Atom-orbital qubit. Our experiment is based on a 87Rb
Bose-Einstein condensate (BEC) with 2 × 105 atoms confined
in a one-dimensional optical lattice. The lattice potential takes
the form of Vp(x) = V0 cos2(2πx/l ), with V0 being the lattice
depth and l the wavelength of the laser forming the lattice,
which is 1064 nm in this experiment. The lattice depth V0

is five times the laser recoil energy (Er = h2/2ml2), with
m being the atomic mass. With lattice confinement, atoms
acquire orbital degrees of freedom, as each lattice site contains
localized Wannier orbitals—s, p, d , ...[13], whose quan-
tum superposition gives multiple Bloch bands. Having atoms
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FIG. 1. Atom-orbital qubit in a one-dimensional optical lattice.
(a) The Bloch wave-function amplitude of the s, p, and d bands at
zero quasimomentum. The s and d states constitute our orbital qubit.
The dashed line represents the optical lattice potential. (b) The band-
gap structures in our experimental optical lattice. The energy bands
from bottom to top are s, p, d , f , and g bands, respectively. (c) Mea-
surement of relaxation time Trelax in the decay dynamics of the d-band
population. The red dots correspond to the time evolution of the atom
number Nd in the d band by time-of-flight measurement. The blue
line represents fitting to the function Nd (t ) = N0 exp(−t/Trelax ). The
relaxation time is determined as Trelax = 4.5 ms. (d) Measurement of
dephasing time T2 through Ramsey interference. The red dots show
the measured time evolution of the proportion of atoms Pd in the
d ,band by the band-mapping method. The blue line represents the
fitting function Pd = A exp(−t/T2) sin(ωt + φ) + B, with the black
line being the envelope of the Ramsey oscillations. We have a de-
phasing time of T2 = 2.1 ms by fitting.

condense at lattice quasimomentum k = 0, the orbital quan-
tum state is described by the density matrix

ρ =
∑
νν ′

ρνν ′ |ν〉〈ν ′|, (1)

where |ν = s, p, d, . . .〉 represents the Bloch mode at k = 0
of the ν-orbital band. In order to control the orbital state, we
apply lattice modulation with a particular frequency ω to res-
onantly couple s and d orbitals (see Fig. 1), which introduces
an additional potential,

�V (x, t ) = A sin(ωt + ϕ)Vp(x), (2)

with both amplitude A and phase ϕ programmable in our
experiment (see Supplemental Material [26]). With leakage to
other orbitals neglected, the system corresponds to a two-level
system, defining our atom-orbital qubit, with |d〉 and |s〉 being
orbital states identified as the qubit basis states |0〉 and |1〉. In
our experimental lattice setup, the energy gap between s and d
bands has a large detuning from the energy gap between other
orbitals except the gap from the s band to the p band. Despite
the absence of the energy suppression of the s to p transition,
this transition is forbidden due to the inversion symmetry
present during the lattice modulation. The transitions from the
s orbital to the undesired orbitals are thus avoided, either by
energy suppression or by symmetry.

For qubit initialization, we selectively load the atomic
BEC into the lattice using our previously developed shortcut
preparation method [27], with which we are able to initialize
the qubit to an arbitrary state, |ψ〉 = cos θ |0〉 + sin θeiφ |1〉,
within 250 μs. For qubit readout, we implement a time-of-
flight quantum state tomography (TOFQST), which extracts
the full information of the density matrix ρνν ′ from the atomic
momentum distribution (see Supplemental Material [26]). In
the experiment, we prepare a set of six complementary initial
states, S ≡ {|0〉, |1〉, |+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 −

|1〉), | + i〉 = 1√
2
(|0〉 + i|1〉), | − i〉 = 1√

2
(|0〉 − i|1〉)}, whose

measured state fidelities are 99.96(2)%, 99.88(5)%,
99.30(11), 99.37(10)%, 99.83(5)%, and 99.98(1)%. The
averaged fidelity is 99.72(7)%.

By initializing to the excited d-orbital state, namely, |0〉,
we measure the time (t) evolution of the atom number Nd in
the d band and obtain Nd (t ). Fitting this function to e−t/Trelax ,
we extract the relaxation time Trelax, which is 4.5 ± 0.1 ms
[Fig. 1(c)]. To measure the dephasing time T2, we prepare
the orbital superposition state [|0〉 + |1〉]/√2. For the energy
splitting between s and d orbital bands in the lattice, this
superposition state develops Ramsey interference fringes in
dynamics. The time dependence of the off-diagonal term has
the form [Fig. 1(d)]

Re[ρsd (t )] ∼ e−t/T2 cos(�t + φ), (3)

with �, φ, and T2 determined by fitting the experimental data
gotten by the band-mapping method. We obtain a T2 time of
2.1 ± 0.1 ms.

Nonadiabatic holonomic orbital gate construction. With
the optical potential in Eq. (2), we have a qubit control Hamil-
tonian H (t ) of the form

1
2�σz + 1

2λ[− cos(ωt + ϕ)σy + sin(ωt + ϕ)σx], (4)

where � is the gap between the s and d bands at quasimomen-
tum k = 0 (� = 5.23Er in our experiment), and the induced
coupling by the lattice modulation is

λ = A
∫

dxVp(x)φd (x)φs(x), (5)

with φν=s,d (x) being the Bloch function of the ν-orbital
band at k = 0. With the resonant coupling ω ≈ �, the over-
all quantum gate operation time is determined by 1/λ. To
avoid nonresonant transitions to other bands, predominately
the g band, which has an energy gap from the s band, �sg

(= 16.73Er 	 �), it is required that λ 
 |�sg − ω|, which
sets an upper limit for the amplitude of lattice modulation.
For this requirement, it becomes more desirable to construct
nonadiabatic quantum gates, as the adiabatic control would be
too slow—the total adiabatic evolution time is required to be
much longer than 1/λ to maintain quantum adiabaticity.

We implement nonadiabatic holonomic orbital con-
trol based on a dynamical invariant of the Hamiltonian
in Eq. (4), I = (� − ω)σz + λ[− cos(ωt + ϕ)σy + sin(ωt +
ϕ)σx] [24,25], with its instantaneous eigenstates |ψ±(t )〉.
Through one period (T = 2π/ω) of quantum evolution,
an initial quantum state

∑
n cn|ψn〉 is transformed to
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∑
n cnei(γ g

n +γ d
n )|ψn〉, with the accumulated geometrical phase

γ
g
n = ∫ T

0 dt〈ψn(t )|i∂t |ψn(t )〉 and the dynamical phase γ d
n =

− ∫ T
0 dt〈ψn(t )|H (t )|ψn(t )〉. The wave-function evolution in

the dynamical invariant eigenbasis during the holonomic
quantum control resembles quantum adiabatic dynamics
[24,25]. The geometrical phase only depends on the solid
angle enclosed by the evolution path of |ψn(t )〉 on the Bloch
sphere [28]. The holonomic gate is thus a generalization of
the adiabatic geometrical gate [29]. This gate has intrinsic
resilience against experimental control errors for geometrical
protection [30,31], which has been demonstrated with liquid
NMR [32,33], solid state [34–39], neutral atoms [40–42], ions
[43–47], and superconducting qubits [48–53]. To exploit the
geometrical protection, the dynamical phase has to be can-
celed, which corresponds to

λ2 + �(� − ω) = 0. (6)

This gives the holonomic gate condition [25], which is ex-
plicitly satisfied in our lattice modulation design. The SU(2)
rotation through one period of lattice modulation is then
Uβϕ (T ) = ∑

± eiγ g
±|ψ±(0)〉〈ψ±(0)|. This single-qubit rotation

can be rewritten as

Uβϕ = −eiπ sin β[− sin ϕ cos βσx+cos ϕ cos βσy+sin βσz], (7)

with β being determined by the lattice modulation
frequency—cos2 β = �/ω (β ∈ [0, π/2])—and the angle ϕ

being controllable by programming the potential [Eq. (2)].
An arbitrary target of holonomic SU(2) rotation, Utarget,
is approached by combining multiple periods (M times)
of lattice modulation, which gives a concatenated unitary
U = UβMϕMUβM−1ϕM−1 . . .Uβ2ϕ2Uβ1ϕ1 . The parameter sequence
(β j, ϕ j) is determined by optimizing the gate fidelity F =
| tr(U †U target )|/2. We then obtain a control sequence of lat-
tice modulation frequency, amplitude, and phase, denoted by
� j ≡ (ω j, Aj, ϕ j ). With this scheme, we expect gate fidelities
above 99.999% using M � 5 for X , Y , Z , Hadamard, and π/8
gates under the idealized model in Eq. (4).

However, in comparing the results of the ideal model with
a more precise multiorbital numerical simulation that incor-
porates all continuous degrees of freedom of the lattice (see
Supplemental Material [26]), we find significant discrepancy.
Figure 2 illustrates one example of state evolution under
a constructed holonomic X gate. In the example shown in
Fig. 2(a), the gate fidelity obtained by the multiorbital nu-
merical simulation is below 85%. The sizable difference from
the ideal model is attributed to the leakage to other unwanted
orbitals. Even a small fraction of the g-band population below
5% is found to strongly disturb the qubit evolution on the
Bloch sphere [Fig. 2(a)]. To resolve the problem of orbital
leakage, we develop an orbital leakage elimination protocol
(see Supplemental Material [26]), where the leakage error is
minimized by optimizing the control sequence � j . With the
optimal control sequence designed for the holonomic X , Y , Z ,
Hadamard, and π/8 gates (see Supplemental Material [26]),
the gate fidelity is improved to above 98% in the multior-
bital numerical simulation. The orbital leakage elimination
protocol is implemented in our experiment for high-fidelity
realization of holonomic gates.

FIG. 2. Simulated time evolution of the |0〉 state on the Bloch
sphere under the holonomic X gate. North and south poles of Bloch
sphere denote the |d〉 and |s〉 orbital states. The red curve shows
the ideal state trajectory under the holonomic control according
to the idealized qubit model [Eq. (4)]. The blue (green) curve shows
the state trajectory by the multiorbital numerical simulation, with
(without) the orbital leakage error eliminated.

Holonomic quantum orbital gate fidelities. In the ex-
periment, we implement holonomic orbital gates taking the
control sequences as designed with our orbital leakage elim-
ination protocol. The band population dynamics during the
gate operation has a very good agreement with our mul-
tiorbital numerical simulation (See Supplemental Material,
Fig. S5 [26]). Figure 3 shows the experimental realization
of the holonomic X gate. The atomic BEC is initialized
in the quantum state | − i〉. We then perform the holo-

FIG. 3. Experimental realization of the holonomic quantum
gates. (a) Experimental procedures of performing the holonomic X
gate on the initial state, |−i〉. The numbers on top of the square pulses
in panel (a) represent the time durations in units of microseconds.
(b) Time-of-flight patterns at different evolution times. The con-
densed numbers of atoms at moments 0h̄K and ±2h̄K are extracted
following standard analysis in cold-atom experiments. (c) Oscillation
dynamics of the atom number proportion at 0h̄K and ±2h̄K . We
average over four experimental runs for each data point, with the
error bar denoting the standard statistical error. Here we set the lattice
confinement V0 = 5Er .
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TABLE I. Measured fidelities of the experimental holonomic quantum gates by TOFQST.

Initial state |0〉 |1〉 |+〉 |−〉 | + i〉 | − i〉 Average

X gate 99.92(3) 99.08(8) 98.87(11) 93.28(34) 98.75(9) 99.13(7) 98.17(16)
Y gate 99.19(13) 99.71(6) 98.29(13) 96.91(20) 98.73(11) 99.15(8) 98.66(13)
Z gate 97.87(14) 99.97(3) 97.47(18) 94.83(29) 99.14(11) 97.75(16) 97.84(17)
Hadamard 98.24(18) 98.38(11) 99.45(7) 97.90(20) 99.08(8) 96.77(23) 98.30(16)
π/8 gate 99.21(21) 99.76(7) 97.78(30) 95.94(41) 99.69(8) 99.28(24) 98.61(25)

nomic X gate control. The occupation of momentum p̃ = 0
and p̃ = 2h̄K (with K = 2π/l) states are measured through
time-of-flight (TOF), by which the full orbital qubit state
is mapped out through TOFQST (see Supplemental Mate-
rial [26]). This experimental procedure is repeated for all
the initial states in S. The fidelity (F ) averaged over the
final states is 98.17(16)% (Table I), as calculated from
the overlap of the density matrix measured in the experi-
ment (ρexp) with the theoretical construction (ρth), i.e., F =
|Tr(ρexpρ

†
th )|/

√
Tr(ρexpρ

†
exp)Tr(ρthρ

†
th ). We also implement the

holonomic Y , Z , Hadamard, and π/8 gates in the experi-
ment, whose averaged final state fidelities are 98.66(13)%,
97.84(17)%, 98.30(16)%, and 98.61(25)%.

One way to construct a universal holonomic gate for
single-qubit rotation is to combine Hadamard and π/8 gates
[54]. The other is to search for the control sequence numeri-
cally, whose universality is confirmed through our multiorbital
numerical simulation. We randomly sample 100 Haar ran-
dom SU(2) rotations and find all can be constructed by the
concatenated unitary sequence with M � 5, producing final-
state fidelities all above 98% (See Supplemental Material,
Fig. S2 [26]).

To characterize the holonomic quantum gates directly, we
further perform quantum process tomography (QPT). We ini-
tialize the atomic BEC in the six orbital states in S and map

FIG. 4. Representations of the experimentally accomplished
quantum processes. (a) The schematic illustration of the quantum
processes. The red lines, gray arrows, and red dots represent the
rotation axis, the direction, and the angle of the corresponding SU(2)
rotation, respectively. (b) Process matrices of the implemented holo-
nomic X , Y , Z , Hadamard, and π/8 gates by QPT measurements.

out the final quantum states following the holonomic quantum
gates by TOFQST. The χ matrices, which represent the quan-
tum gate operations, are reconstructed by the QPT method
[55,56]. The results are shown in Fig. 4. For completeness
we also provide quantum process fidelities (QPFs) as defined

by |Tr(χexpχ
†
th )|/

√
Tr(χexpχ

†
exp)Tr(χthχ

†
th ), with χexp and χth

being the χ matrix reconstructed from experimental mea-
surements and the theoretical expectation, respectively. The
measured QPFs are 98.47(9)%, 98.35(11)%, 97.81(13)%,
98.53(8)%, and 98.63(15)%, for the X , Y , Z , Hadamard, and
π/8 gates, respectively, in the experiment.

Discussion. We have constructed an orbital qubit us-
ing atomic Bose-Einstein condensation in a one-dimensional
optical lattice. The atom-orbital qubit is equipped with nona-
diabatic holonomic quantum control, which shows noise
resilience against laser intensity fluctuations due to geomet-
rical protection (see Supplemental Material, Fig. S3 [26]). In
order to further improve the gate fidelity in the experiment, we
expect it is helpful to incorporate the inhomogenity produced
by the trap, which can be treated by integrating spin-echo-like
pulse or optimal control protocols [44,57,58].

To achieve universal quantum computing with the orbit
qubit setup, we still need to construct two-qubit gates, which
can be implemented through an atom collision scheme (see
Supplemental Material [26]). We expect the orbital quantum
control techniques developed here can be generalized to full
quantum control of all orbitals. For orbital transitions that
respect parity symmetry, one may still take the lattice mod-
ulation protocol but using different resonant frequencies. To
control orbital transitions violating parity symmetry would
require lattice shaking techniques [59]. The orbital-lattice-
based quantum computing would provide novel opportunities
for programmable quantum simulations. For example, the
demonstrated arbitrary coupling between s and d orbitals may
be used to perform programmable quantum simulations of
spin-orbital interaction analogs and the consequent topolog-
ical physics [21].
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