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Nonlinear conversions within the plasmonic structures are important for ultrafast nanophotonics; however,
the impact of higher-order dispersion on nonlinear polaritonic efficiency remains unexplored. In this work,
we uncover the role of higher-order dispersion and self-steepening on nonlinear surface-plasmon polaritons
(NSPPs) within a coherent plasmonic interface that comprises an atomic medium doped on top of a low-loss
negative-index metamaterial (NIMM) layer. This dispersion in the atomic medium–NIMM interface yields
nonlinear plasmonic phase match and resonant launching of Cherenkov SPPs. We establish time-reversal and
PT symmetry breaking for propagated NSPPs that yield asymmetric plasmonic comb excitation and anomalous
plasmonic phase singularities. Our work thereby suggests a fingerprint for nonlinear plasmonic field evolution
through the appearance of a Cherenkov field and develops a framework for designing a frequency selector and
nanoscopic pulse shaper, which opens prospects for nonlinear nanophotonic applications.
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Introduction. Nanoscopic nonlinear frequency conversions
are of great interest due to their promising applications in
on-chip frequency modulators [1], supercontinuum generation
[2], and Stokes lasers [3]. Nonlinear field interactions within
plasmonic nanostructures would yield frequency conversions
[4] but the inclusion of higher-order dispersions and inter-
face characteristics on nonlinear surface-plasmon polaritons
(NSPPs) and frequency generations has not yet been explored.
In this work, we uncover the role of third-order dispersion [5]
and self-steepening [6] on polaritonic field evolution, report
the appearance of plasmonic Cherenkov wave formation and
anomalous phase singularities, and explore the application of
this waveguide as a nanoscopic frequency selector [7].

The interplay between anomalous dispersion and self-
focusing nonlinearity yields nonlinear wave formation that
can emit Cherenkov radiation (CR) [8], which has been es-
tablished within a nonlinear fiber with third-order dispersion
(TOD) [9,10]. On the other hand, the interface between a
low-loss metallic-like layer and a nonlinear medium generates
NSPPs [11,12] that possess dissimilar propagation properties
due to different field dispersions and nonlinear coefficients.
Including second-order dispersion and self-focusing nonlin-
earity to SPP field evolution yields generation of different
NSPP classes, from solitons to rogue waves, and from
breathers to shock waves [4,11], which are symmetric in
spatiotemporal and spatial-spectral domains. Among these
works, the inclusion of higher-order dispersion and self-
steepening to the dynamical evolution of NSPPs remains an
open question. In this work, we uncover the role of these quan-
tities in NSPPs and elucidate the appearance of plasmonic
CR and symmetry breaking, which can only be obtained in
a system with TOD and self-steepening.
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Model. We consider a plasmonic waveguide comprising a
nonlinear medium situated on top of a negative-index meta-
material (NIMM) layer. We coupled light to the waveguide
using end-fire coupling technique [13] and employed a scat-
tering scheme as the detection system. We assume coherent
nonlinear interactions for which a cold atomic layer serves
as a nonlinear medium, the NIMM layer acts as a low-
loss medium, and fields excite the system as light sources.
Our system can then be technically described as a source-
waveguide-detection triplet. We assume a strong couple (c),
switch (s), and weak probe (p) as source fields, all are linearly
polarized, frequency stabilized, possess longer coherent time
(τL) than the waveguide decay τW, are spatially coherent lL
enough to cover the waveguide length l , and are prepared
similar to Ref. [14] (see Fig. 1). Quantitatively, we describe
the total electric field at the interface E(r, t ) in terms of field
components as E(r, t ) = ∑

l=c,s,p E l exp{iK · r − ωl t}, which
is tightly confined to the interface with ζl (z) [11].

Waveguide. These laser fields excite a four-level N-type
atomic medium (4NAs) that is appealing due to inducing
Kerr nonlinearity and controllable dispersion to SPPs. Specif-
ically, we consider Pr3+ ions with atomic density Na that
are doped as impurities within Y2SiO5 crystals. Specifi-
cally, we choose |1〉 = |3H4,±5/2〉, |2〉 = |3H4,±3/2〉, |3〉 =
|1D2,±3/2〉, and |4〉 = |1D2,±5/2〉 as transition levels,
whose natural decay rates are �mn and dephasing rates are
γ

deph
mn . Quantitatively, probe, couple, and signal fields with

Rabi frequencies �l and frequency detunings �l drive |1〉 ↔
|3〉, |2〉 ↔ |3〉, and |2〉 ↔ |4〉 respectively (see Fig. 1). The
nonlinearity comes from this atomic medium. The atomic
layer provides an electromagnetically induced transparency
window satisfying vanished loss and giant nonlinearity;
hereafter we term these conditions as propagation require-
ments, which support stable NSPPs. The control mechanism
based on the atomic medium introduces coherence to NSPP
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FIG. 1. Our proposed plasmonic scheme: This nonlinear waveg-
uide comprises 4NAs (yellow dots) doped as a thin layer in a
dielectric (εD, μD) situated on top of a NIMM layer with (εN, μN).
Laser fields are obtained from a coherent laser source (CLS) and
corresponding detunings are finely tuned using acousto-optic (AO)
modulators.

propagation, and NSPPs excite using a low probe field
power [11]. Exploiting coherent structures such as the atomic
medium is one, nonunique way to obtain the NSPPs through
the interaction interface. We note that any medium, such as
multiple layers with nonlinear properties satisfying the prop-
agation requirements, could serve as our upper layer.

Our aim in this work is to uncover the role of higher-
order dispersion in NSPP propagation that can be excited
in a waveguide that comprises a dielectric satisfying propa-
gation requirements situated on top of a metallic-like layer.
Among metallic layers, NIMM is an engineered structure with
metallic-like properties and possessing ultralow Ohmic loss,
and is suitable to support linear and nonlinear SPP waves,
hence its inclusion is crucial to observe our predicted effects.
We suggest a nanofishnet NIMM due to its efficiency for pro-
ducing SPPs within the optical frequency range [15], and we
establish Ohmic loss compensation using virtual gain, which
is obtained by destructive interference of two contrapropa-
gating fields for |1〉 ↔ |3〉 dipole transition wavelength [16].
We model the nanofishnet NIMM layer with electrical per-
meability εN(ω) and magnetic permittivity μN(ω), which is a
macroscopic description of the metallic layer, following the
Drude-Lorentz model [17,18]. The field within this surface
becomes ζl (z)�l , and we excite two contrapropagating SPP
modes with controllable phase to achieve effectively zero
imaginary part in the refractive index [19]. We note that our
work using this ultralow NIMM layer is an extension to NSPP
dynamics, which is observed only for such metallic interfaces.
A nonlinear waveguide with a positive index instead of NIMM
cannot support SPP waves and hence this layer is not suitable
to predict our effects.

Detection. To detect output NSPPs, we suggest a pro-
grammable dielectric as a Bragg grating structure that scatters
the output NSPP field for our preferable frequency range.
The output field is evanescently coupled to a fiber and the
output power collects using intensifiers and optical detec-
tion systems. Quantitatively, we model the output SPP waves
as an evanescent field with θ = K(ω) · r − (ω + ωp)t , that
propagates through the Bragg dielectric with a characteristic
frequency that is in resonance with the NSPP frequency. For
a scattered energy Usca and reflected SPP field energy Uref,
the flux rate for SPP mode volume V = ALB and for group
velocity vg is � j ∼ Uj/(vg(λ j )V ), j ∈ {sca, ref}, and the scat-
tered ratio that propagates through the fiber is ηsca(λsca) ∼
vg(λsca)/vg(λref ).

Mathematical description of NSPPs. SPPs excite with lin-
ear dispersion K(ω) = K (ω) + k(ω). For frequencies around
the spectral transparency window ωSPP, we employ K(ω) =∑∞

m=0(Km/m!)(ω − ωSPP)m, Km = [∂mK(ω)/∂ωm].1 Here
K2 and K3 are group-velocity dispersion and TOD, re-
spectively. NSPPs stably propagate through the interac-
tion interface with self-focusing nonlinearity W and with
group velocity vg(ω) = [∂K(ω)/∂ω]−1. We introduce ε =
min{�p/�c,�p/�s} as a perturbation parameter, we consider
ᾱ = ε2Im[K(ω)] as the loss related to this nonlinear waveg-
uide, and τ0 is the SPP’s temporal pulse width. The NSPPs
excite in the interface with nonlinear polarization PNL, with
Rabi frequency U0 = [K2/(τ 2

0 W )]1/2, and with characteristic
dispersion length LD = τ 2

0 /K2. We rescale the output NSPP
field as u = �p/U0 and thereby the NSPPs stably propagate
up to a few nonlinear lengths LNL = (U 2

0 W )−1. In this nonlin-
ear waveguide, third-order dispersion would be relevant if the
NSPPs propagate for characteristic length LTOD = 6τ 3

0 /K3.
Next, we rescale the variables in spatiotemporal and

spatial-spectral spaces in terms of NSPP parameters to achieve
the dynamical evolution of the SPP field within this hy-
brid interface. To this aim, we choose the frequency grid as
ι := U0, and rescale the spatial domain as s := x/LNL and
temporal domain as σ := τ−1

0 (t − x/vg). We consider LD ≈
LNL for dispersion-nonlinearity balance and stable NSPP
formation, and define �ω = vgδK as the spectral deviation
for which NSPP can stably propagate. The SPP noise re-
lated to this interface is �u � u, the interface dissipation
is u = [�p/U0] exp{−ᾱx}, and finally we assume nonlinear
dispersion of the system as βNL ∼ W/(ωSPPu). We achieve
the nonlinear evolution related to this SPP field u := u(x, t )
within this hybrid interface as

i
∂u

∂x
− K2

2

∂2u

∂σ 2
− i

K3

6

∂3u

∂σ 3
− βNL

∂ (|u|2u)

∂σ
+ |u|2u ≈ ᾱu.

(1)

Introducing TOD and βNL affects the dynamical evolution of
NSPP, which evidently differs from previous works [4,11,12]
where only K2 and W were taken into account.

Methods. Our quantitative approach towards NSPP dynam-
ics is based on Maxwell-Bloch equations that are represented
in Ref. [21], and here we qualitatively describe this per-
turbative method for a nonlinear plasmonic interface. The
temporal evolution of the atomic medium is obtained by the
Liouville equation and we achieve the SPP field dynamics
using the Maxwell equation, consequently we employ cou-
pled Maxwell-Liouville equations to evaluate the propagation
properties of the NSPPs. We then calculate the nonlinear
dynamics by exploiting asymptotic expansion commensurate
with slow-scale position xl = εl x, l = {0, 1, 2} and slower
scale time tl = εl t , l = {0, 1} to Maxwell-Liouville equations,
and we truncate the perturbative solution to fourth order
to include the third-order and nonlinear dispersion effects.

1k(ω), the propagation constant of SPP field can be obtained using
boundary conditions [20] and we evaluate K (ω) for this atomic sys-
tem similarly to Ref. [11]. For more details related to this expansion
see Refs. [11,12].
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To simulate the spatiotemporal and spatial-spectral dynam-
ics of NSPPs, we consider Pp as input power and consider
u(x = 0, t ) = √

Ppψ (t ) + �u as initial condition of (1). Our
simulation for this plasmonic waveguide with u(x = 0, t ) as
initial condition is based on the split-step Fourier transform
technique [22], for which we employ the impact of dispersion
through temporal steps and nonlinearity through the spatial
step to achieve u(x, t ), and we employ the dispersion through
a frequency grid to evaluate the corresponds spatial-spectral
evolution.

To test the feasibility of our scheme inreal-life experi-
ment, we consider atomic density as Na = 6 × 1018 cm−3,
radiative decays �31 = �42 ≈ 9 KHz, and non radiative de-
cay �

(NR)
31 ≈ 6 KHz. We also choose �c = 0.5 MHz, �p =

0 MHz, �c = 50 MHz, �s = 90 MHz, and assume �s

as a control parameter to tune the dispersion and nonlin-
earity. The SPP excitation frequency is ωSPP ≈ 2π (4.95) ×
1014 s−1, and The plasmonic pulse width is τ0 = 0.6 μs−1.
We note that higher-order dispersions in our proposed in-
terface Km would depend on Rabi frequencies, detunings,
and relaxation rates of Pr3+, and for these parameters we
have K2 = (2.4 − 0.32i) × 10−17 cm−1s2 and K3 = (7.69 +
0.28i) × 10−22 cm−1s3, and the nonlinearity coefficient is
W = (3.1 + 0.32i) × 10−14 cm−1s2. The NSPPs then propa-
gate with a few nonlinear characteristic lengths in the presence
of TOD and nonlinear dispersion.

Plasmonic Cherenkov propagation. Equation (1) uncovers
a concept for the dynamical evolution of the SPP field, for
which any input plasmonic field possesses deformation due
to the existence of higher-order dispersions, and hence it
is possible to generate new types of plasmonic waves. We
proceed through NSPP evolution by considering plasmonic
Peregrine waves ψP(x, t ) and Akhmediev breathers ψAB(x, t ),
and establish the appearance of new types of plasmonic field,
which we termed plasmonic CR, through this hybrid interface.
The SPP field undergoes nonlinear evolution with pulse shape
U and phase ϑ = kCh(ω)x − ωT , T := t − x/VCh(ω) as

u(x, t ) = U exp{iϑ}, (2)

representing plasmonic CR within NSPP wings that prop-
agates with group velocity VCh(ω), which is a single field
for a Peregrine wave and periodic for Akhemediev breather
excitation as shown in Figs. 2(a) and 2(c). We write the corre-
sponding wave number of this NSPP field as

kCh(ω) := kL
Ch(ω) + kNL

Ch (ω) + K(ω). (3)

We evaluate kL
Ch(ω) by plugging (2) into (1), and

rewrite the nonlinear part as kNL
Ch (ω) = 1/LNL + kNL

l (x, t )
for kNL

l (x, t ) := [∂φl (x, t )/∂x] and with φl (x, t ) the phase
evolution of the NSPP fields. We achieve this phase and con-
sequently kNL

Ch (ω) by assuming a nonlinear plasmonic field as
E l,SPP(r, t ) = ξl (x, t )EL

SPP(r, t ) whose nonlinear form factor
ξl (x, t ) = |ξl (x, t )| exp{iφl (x, t )} in the low-dispersion limit
Kl>1 	→ 0 is

∇ξl (x, t ) = −i
ω2

SPPμ0

2kpneff

∫
dzPl,NLEL

SPP(r, t )
∫

dz|E l,SPP(r, t )|2 . (4)

Consequently, Cherenkov SPPs appear due to higher-order
dispersion, and nonlinear plasmonic phase match kNL

Ch (ω) and

FIG. 2. Panel (a) is the dynamics of SPP Peregrine waves in
the presence of TOD, and (b) represents the phase evolution of the
plasmonic Peregrine wave. Panels (c) and (d) are the amplitude and
phase dynamics of the SPP Akhmediev breathers. We termed the SPP
waves that appeared as CR.

its single or periodic field modulations depend on the spa-
tiotemporal evolution of NSPPs, as is shown in Figs. 2(b) and
2(d). CR would then stably propagate through the interface
with a group velocity VCh(ω) := [∂kCh(ω)/∂ω]−1. Quantita-
tively, this radiation or equivalently considering higher-order
dispersion introduces time-dependent terms to (1) that affect
the temporal symmetries, and hence breaking time-symmetry
can be expected through plasmonic CR. Our simulations also
establish that the plasmonic Cherenkov field introduces asym-
metries in the temporal domain and its excitation breaks the
temporal symmetry, for both plasmonic field amplitude [see
Figs. 2(a) and 2(c)] and phase [see Figs. 2(b) and 2(d)],
which was preserved for unperturbed Peregrine wave and
breathers. Hereafter we termed this breaking as time-reversal
symmetry breaking. Cherenkov SPPs appear due to plasmonic
pulse compression and propagate as a singular point to NSPP,
consequently the stable propagation of this Cherenkov plas-
monic field should affect the NSPP dynamics. The spectral
dynamics for a plasmonic Peregrine field represents CR ωCh

with narrow linewidth δωCh that propagates as a wing of
the unperturbed Peregrine wave and Akhemediev breather,
as shown in Figs. 3(a) and 3(c) respectively. Appearance of
Cherenkov SPP is conceptually similar for both Peregrine and
Akhmediev breather excitation as both pulsations experience
the same dispersion and nonlinearity; however, interestingly,
CR for the Akhmediev breather generates additional side-
bands ω ± δωCh that arise due to time-periodic pulsation [i.e.,
Fig. 2(c)] and modulation instability, as clearly shown within
2.1ω0 < ω < 2.7ω0 spectral windows in Fig. 3(c). Gener-
ally, CR yields plasmonic pulse deformation, and symmetry
breaking in the spatial-spectral domain, and the Cherenkov
excitation hence would destroy the plasmonic phase singu-
larities and induce plasmonic amplitude asymmetries through
both spatiotemporal and spatial-spectral symmetry breaking,
as shown in Figs. 2 and 3. Spatiotemporal symmetry break-
ing is an extension of temporal symmetry breaking and is
expected, as temporal and spatial evolution of NSPPs are
coupled through inclusion of higher-order dispersion terms
in (1). Consequently, any symmetry breaking in the temporal
domain would also introduce symmetry breaking in the spatial
domain. We refer to this symmetry breaking as PT breaking.
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FIG. 3. Panels (a) and (b) represent the spectral amplitude and
phase of the NSPPs, respectively, for SPP Peregrine wave excitation
and panels (c) and (d) denote the spectral-sideband excitation and
breather formation in the presence of higher-order dispersion. CR
appears as wings of a stretched spectral plasmonic pulse, and propa-
gates as frequency combs for breather wave excitation.

To evaluate ωCh, we rewrite (3) as kL
Ch + K(ω) =

δkNL, which is a phase-matching condition for character-
izing Cherenkov excitation frequency. We then use kL

Ch =
(K3/6)ω3 + (K2/2)ω2 − (vg + βNL)ω and perform Taylor
expansion to SPP field K(ω) = K0 + K1ω + (K2/2)ω2 +
O(ω3). Plugging into the phase-matching condition and solv-
ing in terms of ω, we achieve the CR frequency. Here, for SPP
exciting with group velocity vg = 2.34 × 10−4c,2 and with
ω0 = 5 MHz, we achieve ωCh ≈ 9.9 MHz for both Peregrine
and Akhmediev breathers, and CR propagates with VCh ≈ vg.
This pulse introduces a propagating defect mode to the spec-
tral dynamics, and hence its appearance breaks the spectral
phase singularities that appeared due to unperturbed plas-
monic Peregrine and Akhemediev breather fields. The spectral
phase corresponding to NSPP propagation represents a dis-
tortion and asymmetric profile within 2.1ω0 < ω < 2.7ω0

compared to its negative frequency deviation, which represent
the Cherenkov field creation and spectral phase singularity
distortions. Singularity breaking and asymmetric phases are
shown in Figs. 3(b) and 3(d).

Harmonic sideband and frequency selection. Our excited
SPP fields interact with focusing nonlinearity and second-
and third-order dispersions, and, consequently, the propagated
plasmonic waves generate sidebands as ω = ±n� that yield
frequency comb excitation for both Peregrine and Akhmediev
breather waves, as depicted in Figs. 4(a) and 4(b), respec-
tively. The spectrum corresponds to the plasmonic Peregrine
wave and Akhemediev breather excitation, justifying the ex-
istence of CR; however its corresponding frequency can be
tuned via the third-order dispersion term. In our numeric sim-
ulations, the Cherenkov frequency for K3 = (1.92 + 0.07i) ×
10−22 cm−1s2 is ω ≈ 2.48ω0 and for K3 = (2.31 + 0.08i) ×
10−22 cm−1s2 is ω ≈ 1.38ω0.

To expand our method, we also include the noise
as a plasmon mode with perturbation frequency νmod

2Here c is the speed of light in vacuum.

FIG. 4. Panels (a) and (b) represent the logarithmic power
(log[P(ω)] := log10[P(ω)]) of NSPPs. Panels (c) and (d) are out-
put NSPP pulses that we obtained using the transmission function
approach. In both blue solid [panel (a)] and black solid [panel
(c)] lines we have used K3 = (2.31 + 0.08i) × 10−22 cm−1s2, and
for dotted-dashed red [panel (a)] and dotted-dashed green [panel
(c)] curves we set K3 = (1.92 + 0.07i) × 10−22 cm−1s2. For panel
(c) νmod = 0.5ωSPP and for panel (d) νmod = 0.415ωSPP.

and amplitude �u = 0.08u0 as �p(ε, t ) = √
Pp(1 +

�u cos{2πνmodt})ψl (x, t ), and employ expansion to ω(K).
We then use the transmission function approach [23] com-
mensurate with third-order and nonlinear dispersion terms to
evaluate �p(x, t ) := ∫

dωT (x, ω)�p(x = ε, t ) exp{iω(K)t}.
Our simulations indicate that the higher-order dispersion
terms affect the output NSPP pulse and the system selects
specific frequencies by tuning the third-order parameter
term, as clearly represented in Figs. 4(c) and 4(d), for
both Peregrine and Akhemediev breather excitations. The
output NSPP consequently is a pulse-shaped signal and
preferred frequencies propagate through tuning the third-order
dispersion term, and hence our device can act as a nanoscopic
frequency selector or pulse shaper.

Conclusion. To sum up, we developed a concept that ex-
ploits spatiotemporal and spectral-spatial control of NSPPs
to excite and propagate plasmonic CR. These waves ap-
pear in our designed nonlinear waveguide that comprises
Pr3+:Y2SiO5 crystal, situated as a thin layer on top of an
ultralow loss NIMM layer. We uncover that the third-order
dispersion term introduces a nonlinear mismatch to the SPP
field and breaks the spectral and temporal symmetries of
the system, which is an origin for launching Cherenkov
SPPs. Also, we justify that Cherenkov SPP is a single pul-
sation or periodic field that excites within temporal wings
of the NSPPs, which generates additional harmonic side-
bands as frequency combs for plasmonic Akhmediev breather
propagation. Our numerical simulations indicate that the
excitation frequency of CR is controllable, and can be co-
herently tuned via manipulation of detuning and intensity
of driving laser fields. Finally, we established that the pres-
ence of TOD in a nanoscopic nonlinear system modifies
the output spectral SPP field and we explored our designed
waveguide’s application to a frequency selector and pulse
shaper, a concept that, for the plasmonic system, would open
prospects for selective ultrafast nanophotonics and frequency
modulators.
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