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We introduce a continuous one-dimensional non-Hermitian matrix gauge potential and study its effect on
dynamics of a two-component field. The model is emulated by a system of evanescently coupled nonlinear
waveguides with distributed gain and losses. The considered gauge fields lead to a variety of unusual physical
phenomena in both linear and nonlinear regimes. In the linear regime, the field may undergo superexponential
convective amplification. A total power of an input Gaussian beam may exhibit a finite-distance blowup, which
manifests itself in absolute delocalization of the beam at a finite propagation distance, where the amplitude
of the field remains finite. The defocusing Kerr nonlinearity initially enhances superexponential amplification,
while at larger distances it suppresses the growth of the total power. The focusing nonlinearity at small distances
slows down the power growth and eventually leads to the development of the modulational instability. Complex
periodic gauge fields lead to the formation of families of stable fundamental and dipole solitons.
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Impact of imaginary magnetic fields or, more generally,
of non-Hermitian gauge potentials on wave processes at-
tracts considerable attention nowadays. This interest was
initially motivated by the discovery of localization transi-
tions and mobility edges in random systems due to imaginary
vector potentials [1,2]. The unusual features introduced by
such potentials into physics of wave localization were fur-
ther investigated in [3–7]. More recently, it was shown that
non-Hermitian gauge potentials can support robust transport
in chains with non-Hermitian hopping [8–10], and enhance
forces acting on photons [11]. Complex vector potentials were
also introduced for non-Hermitian extensions of the Dirac
equation [5,12,13], where they result in Lorentz-symmetry
violation.

In contrast to Hermitian gauge fields that are present in
description of different physical systems and can even be
designed at will, for example, in atomic systems [14,15],
applications of non-Hermitian gauge fields and approaches
to their creation remain scarce. In Refs. [1,2] the imaginary
magnetic field was introduced in the context of imaginary-
time description of localization of bosons in superconducting
vortex arrays [16,17]. Models emulating non-Hermitian gauge
fields by complex hopping between neighboring sites were
proposed using optical settings, such as coupled microring
resonators [8], photonic lattices [9], and frequency lattices
[18]. Non-Hermitian arrays emerging in such models are
linear, discrete, and characterized by a scalar field. Implemen-
tation of the effective imaginary gauge field in a system of
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parallel slabs using nonreciprocal elementary cells consisting
of microrings or nanoparticles was also suggested [11].

In this Letter, we introduce a continuous one-dimensional
(1D) non-Hermitian matrix gauge potential and study its
effect on linear and nonlinear spinor fields. We show that
such potentials enable new striking features of the dynam-
ics, ranging from unconventional superexponential convective
amplification, to (linear) power blowup leading to complete
delocalization at a finite propagation distance, and formation
of stable soliton complexes in periodic non-Hermitian gauge
fields.

Optical potential. We start by presenting a simple optical
system that allows to emulate the matrix gauge potential in
experimentally feasible conditions. To this end we consider
a paraxial light beam propagating along the z direction in a
system of two evanescently coupled waveguides which are
separated along the y axis (as illustrated schematically in
Fig. 1). The waveguides have gain and losses characterized
by a differentiable function η(x) which is bounded, |η(x)| �
h0, by a constant h0. The transverse dielectric permittivity
of such a structure is described by a nonseparable optical
potential V (x, y). We assume it to be of the form V (x, y) ≡
V0(y + iη(x)), where V0(y) is a real even double-well po-
tential describing the waveguides without gain and losses:
PyV0(y) := V0(−y) = V0(y). Thus, V (x, y) is PyT symmet-
ric: PyT V (x, y) := V ∗(x,−y) = V (x, y), where the asterisk
means complex conjugation. For most of the phenomena con-
sidered below η is considered small enough and thus V ≈
V0(y) + iη(x)V ′

0 (y). While a double-well potential is the most
standard model for dual-core optical waveguides, required
distributions of gain and losses can be created by doping of its
cores with active impurities, by shaping the pump beam in a
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FIG. 1. Schematics of two waveguides (shown by the wavy
structures) with complex-valued dielectric permittivities ε1,2(x, y),
which are separated in the y direction. Each waveguide supports
its own mode, φ1(x, y) and φ2(x, y), localized around minima of
the effective potential wells, whose coupling creates an x-dependent
complex-valued matrix gauge potential A(x) for the envelopes
�1,2(x, z) propagating along the z axis.

nonlinear process providing gain [19], or in atomic cells filled
by gasses of multilevel atoms that allow designing dielectric
permittivity landscapes practically at will [20–23].

To further specify the requirements on the potential, we
consider an eigenvalue problem Hηφ̃ j (x, y) = −β j φ̃ j (x, y),
where Hη := −(1/2)∂2

y + V (x, y) and φ̃ j (x, y) are the eigen-
modes localized along the y axis. It will be assumed that the
two eigenvalues with largest absolute values, β1 > β2, are real
and x independent (the last condition is for simplicity and can
be relaxed) while superpositions φ j = [φ̃2 + (−1) j φ̃1]/

√
2,

j = 1, 2, are localized in the cores of different waveguides
with exponentially small overlap. Assuming that there are
no exceptional points in the spectrum of Hη, we introduce
the eigenmodes of the Hermitian adjoint: H†

η ϕ̃1,2 = −β1,2ϕ̃1,2,
such that 〈ϕ̃k, φ̃ j〉 := ∫ ∞

−∞ ϕ̃∗
k φ̃ jdy = δk j , as well as their su-

perpositions ϕ j = [ϕ̃2 + (−1) j ϕ̃1]/
√

2.
Let 
̃1,2(y) be real orthonormal eigenmodes of the Hermi-

tian [i.e., η(x) ≡ 0] eigenvalue problem H0
̃1,2 = −β1,2
̃1,2.
Then Py
̃1(y) = 
̃1(y) and Py
̃2(y) = −
̃2(−y). Let also

̃1,2(y) have analytic continuations from the real axis y ∈ R
to a stripe Im y ∈ (−h0, h0), and for any h ∈ (−h0, h0) the
eigenmodes remain localized in y: limy→±∞ 
̃1,2(y + ih) =
0. The same is also assumed for the derivatives 
̃′

1,2(y). Then
φ̃1,2(x, y) = 
̃1,2(y + iη(x)) are the eigenmodes of Hη with
the real and x-independent eigenvalues β1,2. Moreover, all
integrals 〈ϕ̃k, φ̃ j〉 do not depend on η (and hence on x) [24],
and φ1,2 satisfy the biorthonormality conditions for all x:
〈ϕk, φ j〉 = δk j .

An example of the double-well potential (that we use be-
low in numerics) is given by [25] Vex(y) = ξ 2 f 2 cosh(4 f y) −
4ξ f 2 cosh(2 f y). Its eigenfunctions are known in the explicit
form [24]. The imaginary part of corresponding complex
potential Vex(y + iη(x)) produced at η(x) � 1 is perfectly
compatible with experimentally achievable optical gain levels
of a few cm−1 [19,23].

Non-Hermitian gauge potential. Further we consider the
propagation of the paraxial beam in the medium in the pres-
ence of the above potential V and Kerr nonlinearity, described

by the nonlinear Schrödinger equation

i
∂�

∂z
= −1

2
∇2� + V (x, y)� + U (x, y)� + χ (x)|�|2�,

(1)
where � is the dimensionless field amplitude, ∇ ≡ (∂x, ∂y),
and χ (x) is a real function describing (generally speaking, x-
dependent) Kerr coefficient. In (1) we introduced an auxiliary
potential U (x, y) (whose role is specified below).

Now we employ the two-mode approximation and look
for a solution of (1) in the form � ≈ ei(β1+β2 )z/2[�1(x, z)φ1 +
�2(x, z)φ2], where �1,2 are slowly-varying envelope ampli-
tudes. Using this ansatz in Eq. (1), applying 〈ϕ j, ·〉, and
neglecting all nonlinear terms with integrals containing prod-
ucts of φ1 and φ2 (which is justified by their localization) we
arrive at the equation for the column vector � = (�1, �2)T:

i
∂�

∂z
= 1

2
2� − U� +

(
χ̃1|�1|2 0

0 χ̃2|�2|2
)

�. (2)

Here  = −i∂x − A(x), A(x) is a complex-valued 2 × 2
matrix gauge potential with the entries Ak j = 〈ϕk, i∂xφ j〉,
χ̃ j = 〈ϕ j, χ |φ j |2φ j〉 are the effective nonlinearity coefficients,
U = (β2 − β1)σ1/2 + u(x) + A2(x)/2 is the effective ma-
trix potential, u(x) is a 2 × 2 matrix with entries uk j =
〈∂xϕk, ∂xφ j〉/2 − 〈ϕk,Uφ j〉, and σ1,2,3 are the Pauli matrices.
For the PT -symmetric double-well potential specified above
the gauge potential is obtained explicitly:

A(x) = iηxασ2, α =
∫ ∞

−∞

̃′

1(y)
̃2(y)dy. (3)

Here ηx = dη(x)/dx.
Since the main goal of this paper is to describe the effects

that emerge specifically due to the non-Hermitian gauge, we
observe that the U in (2) can be made exactly zero by a
judicious choice of the auxiliary potential U (x, y) [24]. Al-
ternatively, one can consider smooth functions η(x) allowing
one to keep the terms ∼ηx and neglecting those ∼η2

x . Since
for sufficiently large separation between the waveguides one
can also achieve β1 − β2 � η2

x , the mismatch between the
propagation constants can be neglected, as well. Then, all
entries of the matrix U in Eq. (2) become of the order of η2

x
and one can neglect U even at U (x, y) = 0. Therefore, from
now on we consider the cases where U = 0.

Superexponential amplification. In the linear limit, χ̃1 =
χ̃2 = 0, the matrix gauge potential can be gauged out. To
this end we introduce time-independent mutually orthogonal
carrier states ζ1,2(x), ζ†

1ζ2 = 0, as solutions of the equation
ζ1,2(x) = 0 [26,27], and look for the field in the form
�(x, z) = v1(x, z)ζ1(x) + v2(x, z)ζ2(x), where v1,2(x, z) are
the envelopes. For the gauge field (3) we have

ζ1 = eαη(x)(−i, 1)T, ζ2 = e−αη(x)(i, 1)T, (4)

and the linear model reduces to ivz = −(1/2)vxx, where v =
(v1, v2)T. Therefore, linear propagation of the initial field
distribution �0(x) can be solved explicitly:

� = e−iπ/4

√
2πz

∫ ∞

−∞
ei(x−ξ )2/(2z)(cosh {α[η(x) − η(ξ )]}

+σ2 sinh {α[η(x) − η(ξ )]})�0(ξ )dξ . (5)
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FIG. 2. (a) Convective instability in the constant gauge field
A(x) = 0.1iσ2. Evolution of the beam in the gauge potential A(x) =
0.02ixσ2/(1 + 0.002x2)2 in the linear (b), defocusing (e), and fo-
cusing (f) media. Corresponding dependencies of the power on
propagation distance are shown in (c), where labels χ = 0, +1, −1
correspond to linear, defocusing, and focusing cases, respectively.
The blue dotted line shows a reference superexponential law
exp(0.03z2). (d) Power blowup in the linear gauge field A(x) =
0.02ixσ2 for the beam with initial width �0 ≈ 2.24. Panels (a,b,d)
correspond to linear propagation. Nonlinear propagation in (c,e,f) is
simulated using (8) where χ0(x) is +1 (defocusing medium) or −1
(focusing medium) for |x| < 2 and is zero otherwise. Hereafter all
quantities are plotted in dimensionless units.

Thus, the gauge field directly affects the intensity distribution
of the diffracting beam by rotating the input field �0 through
an imaginary angle iα[η(x) − η(ξ )] in the transverse plane.
This may lead to unusual propagation scenarios. We describe
them for an input carrier state ζ1 with a Gaussian envelope,
�0 = e−x2

ζ1, of the width 1/
√

2. Then (5) becomes

� = −i√
1 + 2iz

exp

[
αη(x) − 2x2

2(1 + i2z)

](
1
i

)
. (6)

Starting with an example of a 2π -periodic func-
tion η(x) = η(x + 2π ) and using the expansion e2αη =∑∞

n=0(an cos nx + bn sin nx), one obtains that the total power
P(z) = ∫ ∞

−∞ �†� dx for this linear solution evolves as P =
(2π )1/2 ∑∞

n=0 ane−n2(1+4z2 )/8. Thus, although P(z) remains
finite, it approaches the constant value limz→∞ P(z) =
(2π )−1/2

∫ 2π

0 e2αηdx faster than exponentially, in sharp con-
trast with power oscillations occurring in usual periodic
PT -symmetric potentials [28].

When gauge potential (3) is x independent, i.e., η(x) =
εx, where ε � 1 guarantees the smallness of ηx, the total
power P(z) = P(0)e2(αεz)2

manifests superexponential growth
accompanied by the directional drift of the wave packet
[Fig. 2(a)] that is a feature of convective instability [29].
Now the system is PxT symmetric and its dynamics strongly
contrasts with previously known giant, but bounded and

periodically oscillating, amplification in a PT -symmetric
parabolic potential [30].

Explosive beam amplification can also be observed in
spatially localized non-Hermitian gauge fields. In Fig. 2(b)
we illustrate typical evolution of the beam governed by
Eq. (6), which splits into two beams in the gauge poten-
tial A(x) = 0.02ixσ2/(1 + μ2x2)2, corresponding to αη(x) =
0.01x2/(1 + μ2x2), with μ � 1. For the validity of the model
at large x and long propagation distances z in this case one has
to use the auxiliary potential U (x, y) in order to make U in (2)
negligible [24], since |ηx| is effectively small only when the
wave packet is concentrated near x = 0 at the initial stages
of evolution. The power of the beam manifests quick initial
growth [black curves in Figs. 2(c) and 2(d)] that is superex-
ponential [in Fig. 2(d) it is approximated by the exp(0.03z2)
law shown by the blue dots]. However, this amplification is
transient due to its convective character and in our example it
takes place for z � 10. At larger distances the beam leaves the
region of localization of the gauge field.

Power blowup. Superexponential amplification can for-
mally be made as strong as necessary. For example, let
us consider A(x) = iεxσ2 [corresponding to αη(x) = εx2/2],
where ε < 2. In this case using (6) one obtains

�†� = 2(1 + 4z2)−1/2e−x2/�2(z), (7)

where �(z) characterizes the width of the beam �2(z) = (1 +
4z2)/[2 − ε(1 + 4z2)]. Solution (7) describes a Gaussian-
shaped beam of the input width �(0) = �0 = (2 − ε)−1/2.
The specific feature of this solution is that at the finite dis-
tance z = zpb = ε−1/2�0/(1 + ε�2

0) it acquires infinite width,
limz→zpb �(z) = ∞, while its intensity becomes x indepen-
dent, �†� → 2[1 + (ε�2

0)−1]−1/2, leading to divergence of
the power P(z) = [1 − (z/zpb)2]−1/2P(0). This phenomenon
is illustrated in Fig. 2(d) and it can be termed power blowup.
The power blowup is characterized by the transformation of an
input Gaussian beam into a constant-amplitude chirped wave.
By applying time inversion T [that implies replacement of
A(x) by A∗(x)], one can show that under the action of the
non-Hermitian gauge field the input chirped plane wave can
be transformed into the output Gaussian beam.

Minimal nonlinear model. Now we elucidate the effect of
nonlinear terms in (2). Due to opposite parities of the func-
tions 
̃1(y) and 
̃2(y), we have

χ̃1 = χ̃∗
2 = χ0(x) := χ (x)

4

∫ ∞

−∞
[
̃2(y + iη) − 
̃1(y + iη)]3

×[
̃2(y − iη) − 
̃1(y − iη)]dy.

If η(x) remains small on the support of χ (x), we can approxi-
mate

χ0(x) ≈ χ (x)

4

∫ ∞

−∞
[
̃4

1(y) + 6
̃2
1(y)
̃2

2(y) + 
̃4
2(y)]dy,

where the neglected terms are proportional to χ (x)η2. Then
Eq. (2) reduces to the “minimal” model with real effective
nonlinearity

i
∂�

∂z
= 1

2
2� + χ0(x)

(|�1|2 0
0 |�2|2

)
�. (8)
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FIG. 3. Profiles of (a) odd and (c) even solitons at b = 2
and max[αη(x)] = 0.2, and dipole (e) soliton at b = 5.5 and
max[αη(x)] = 0.4. Only nonzero components w1r , w2i are shown.
The dashed line shows α2η2

x . Propagation of these solitons is shown
in (b), (d), and (f), respectively. (g) Power of odd and even soli-
tons vs b at max[αη(x)] = 0.2. (h) Power of dipole soliton vs b
at max[αη(x)] = 0.4. Stable (unstable) branches are shown black
(red). All results correspond to the uniform focusing nonlinearity
χ0(x) = −1.

If χ0(x) is an even function, then Eq. (8) with the gauge field
(3) is PxT symmetric if η(x) = −η(−x), and obeys Px and
σ3T symmetries if η(x) = η(−x). We also note that removing
the gauge field from (8) results in a nonlinearity of complex
form [24].

Nonlinear diffraction and solitons. The phenomenon of
power blowup resembles the well-known wave collapse in
nonlinear media [31–33], in the sense that a physically mean-
ingful solution ceases to exist at a finite blowup distance.
Except for this, the two phenomena are drastically different.
While the usual collapse is associated with spatial contrac-
tion of the beam accompanied by the infinite growth of its
amplitude for conserved total power (or L2 norm), the power
blowup implies the divergence of the L2 norm, whereas the
amplitude of solution remains bounded for all z � zpb. Hence,
power blowup is a genuinely non-Hermitian phenomenon.
Even more importantly, power blowup can occur in linear
and effectively one-dimensional system. This raises a question
about the impact of nonlinearity on the phenomenon. To ad-
dress this issue we return to the example of spatially localized
gauge potential and compare the behavior of the exact linear
solution with numerically simulated nonlinear propagation for
the same input beam [see Fig. 2(c)]. We consider χ0(x) in
the form of a finitely supported rectangular function, such
that η(x) remains small within the support. The defocusing

FIG. 4. 2D field distribution at z = 0 (a) and z = 18 (b). The
field at z = 0 corresponds to the input of 1D simulation in Fig. 2(b).
(c) Amplitude of the envelope �1 extracted from the 2D field dis-
tribution at z = 18. (d) Power of the spinor envelope (�1, �2)T

extracted from 2D simulations for zero, defocusing, and focusing
nonlinearities. Note that, in spite of the huge power amplification
in (d), the amplitude and power of the (2+1)D field � in (a,b) do not
grow.

nonlinearity, leading to faster broadening of the beam [cf.
panels (e) and (b)], results in acceleration of the initial power
growth [see the red line in Fig. 2(c)]. At longer distances,
however, due to convective nature of the instability, the split
wave packets propagate outwards the region of the gauge field
localization [Fig. 2(e)], and the amplification in the nonlinear
medium gradually slows down. For the focusing nonlinearity,
at initial distances we observe slower growth of the power
[Figs. 2(c) and 2(f)].

Although our system is non-Hermitian, the presence of the
Px and σ3T symmetries, discussed above, suggests that the
nonlinearity can enable families of bright solitons [34,35].
In Fig. 3 we illustrate such families for a representative ex-
ample of periodic gauge field η(x) = η0 cos(2x). Solitons of
Eq. (8) can be found in the form �1,2 = eibzw1,2(x), with real
propagation constant b and wk = wkr + iwki. Importantly, the
inhomogeneous gauge potential dictates stable equilibrium
positions for the soliton center. Thus, fundamental bell-shaped
solitons can be stable only if they reside on maxima of the
η2

x function [see Figs. 3(a) and 3(b) corresponding to such
“odd” states], while solitons residing on minima of η2

x exhibit
drift instabilities [Figs. 3(c) and 3(d), “even” states]. More-
over, non-Hermitian gauge potentials arrest repulsive forces
between out-of-phase solitons leading to formation of dipole
and more complex solitons [Figs. 3(g) and 3(h)]. Dipole soli-
tons can also be stable (at least for certain intervals of the
propagation constant), if the amplitude of the gauge field is
large enough.

Evolution of the 2D field. To validate the approximations
used for derivation of the reduced (1+1)D model (2), we
have studied evolution in the original full (2+1)D equation (1)
for the potential V ≡ Vex(y + iη(x)), defined above (see also
[24,25]), without the additional potential U (x, y). Figure 4
presents the 2D results for the same gauge potential as the
one used in Figs. 2(b), 2(c), 2(e), and 2(f). The input 2D
field �(x, y, z = 0) [Fig. 4(a)] is constructed from the initial
conditions used in Figs. 2(b), 2(c), 2(e), and 2(f). Propagation
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of the 2D field is simulated using Eq. (1), and then the
1D spinor wavefunction is extracted from the 2D data using
the projection �1,2(x, z) = ∫ ∞

−∞ φ1,2(x, y)�(x, y, z)dy. The
results for the spinor field shown in Figs. 4(c) and 4(d) are
in good qualitative agreement with the predictions obtained
from the reduced model. In particular, the full simulation
reproduces the beam splitting [compare Figs. 2(b), 2(e), 2(f),
and 4(b)] and transient superexponential amplification for the
power P(z) of the (1+1)D spinor, in linear and nonlinear
regimes [compare Figs. 2(c) and 4(d)]. Remarkably, in spite
of the huge growth of P(z), the amplitude of the field (2+1)D
field � itself does not undergo the superexponential growth.
In other words, the superexponential growth is emulated by
the effective (1+1)D model due to the non-normalized eigen-
states φ1,2, whereas the real optical power does not grow
appreciably (i.e., the phenomenon is indeed experimentally
feasible).

To conclude, we introduced a system of two optical waveg-
uides emulating non-Hermitian matrix gauge potential. Field

propagation in this setup features unusual properties even in
the linear regime. These are superexponential amplification
and finite-distance power blowup, accompanied by complete
spatial delocalization of the wave packet. While in the linear
model the non-Hermitian matrix field can be gauged out, in
Kerr media this transformation leads to an inhomogeneous
non-Hermitian nonlinearity which supports families of fun-
damental and dipole vector solitons. The approach can be
directly generalized to multiple-waveguide optical systems
and to gases of multilevel atoms, thus allowing design of non-
Abelian non-Hermitian gauge fields in higher-dimensional
settings.
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