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All entangled states are quantum coherent with locally distinguishable bases
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We find that a bipartite quantum state is entangled if and only if it is quantum coherent with respect to complete
bases of states in the corresponding system that are distinguishable under local quantum operations and classical
communication. The corresponding minimal quantum coherence is the entanglement of formation. Connections
to the relative entropy of entanglement and quantum coherence, and generalizations to the multiparty case are
also considered.
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I. INTRODUCTION

Entanglement [1] and coherence [2] of quantum states
result from the superposition principle, except that for the
former, at least a two-party situation is necessary. Both have
been used to develop resource theories. Indeed, entangle-
ment and quantum coherence are the main resources in many
applications of quantum information for demonstrating bet-
ter performances than their classical counterparts. It is also
known that an entangling gate necessarily requires coherence
at the input to produce entangled states.

The literature of local distinguishability or its absence of
sets of orthogonal states of multiparty systems have developed
rather independently. Indeed, it was noticed that entanglement
of the constituent states is not directly related to the local in-
distinguishability of such sets—at least, not in all cases [3–5].

The problem of whether or not a state is entangled is known
to be intricate and has as yet not been solved. The situation
is similar for quantum coherence with respect to clusters of
bases with specific properties and for local distinguishability
of sets of quantum states. The quantifications of these con-
cepts do exist in the literature [1,2,6] but are typically difficult
to compute.

Here we show that entangled quantum states can be seen
as quantum coherent states in locally distinguishable bases.
Moreover, a convex-roof based measure of quantum coher-
ence, of a bipartite quantum state of arbitrary dimensions,
in optimal locally distinguishable bases turn out to be the
entanglement of formation of the state, where the latter is a
measure of entanglement [7]. A different approach of quan-
tification of quantum coherence, for a bipartite state, using
the concept of relative entropy [8], provides an upper bound
for relative entropy of entanglement of the state, where the
latter is another measure of entanglement [9,10]. We then
show that the considerations can be carried over to multiparty
systems. We therefore find that the two salient resource theo-
ries of quantum information, viz. entanglement and quantum
coherence, are closely related and that the relation is effected
by using a priori unrelated concepts in the domain of local
distinguishability of sets of orthogonal multiparty states.

II. DEFINITIONS AND RESULTS

We will require the concepts of von Neumann entropy
and relative entropy between quantum states [8]. The von
Neumann entropy of a quantum state � is denoted by S(�)
and is given by

S(�) = −tr(� log2 �). (1)

The von Neumann relative entropy between two quantum
states, � and ς , is denoted by S(� ‖ ς ) and is given by

S(� ‖ ς ) = tr(� log2 � − � log2 ς ). (2)

It is to be noted that the relative entropy is not symmetric with
respect to its arguments.

A qualitative definition of quantum coherence, as has al-
ready been given in the literature, can be as follows [2].

Definition. A pure quantum state |ψ〉 of a physical system
represented by a Hilbert space Cd is said to be quantum
coherent with respect to a complete orthonormal basis of Cd

if it is not an element of that basis.
The notion has also been quantified, and one of the quan-

tifications is as follows [2].
Definition. Let B be a complete orthonormal basis of pure

states in Cd . Let CB(|ψ〉) be the relative entropy of quantum
coherence of |ψ〉 ∈ Cd , so

CB(|ψ〉) = min
ρB∈MB

S(|ψ〉〈ψ | ‖ ρB), (3)

where MB is the set of all probabilistic mixtures of the projec-
tors onto the elements of B.

Complete orthonormal bases of bipartite quantum systems
are, of course, distinguishable under global operations. One
just makes a measurement onto that basis. Things are more
complicated, however, when a restricted class of operations
is allowed. An important such restricted class is the class
of local quantum operations and classical communication
(LOCC) [7,10,11]. If a complete orthonormal basis is also
distinguishable under LOCC, we will call the basis locally
distinguishable.

A bipartite pure state is said to be entangled if it cannot be
written as a tensor product of pure states of the two systems.
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Theorem 1. A bipartite pure state is entangled if and only if
it has a nonzero quantum coherence with respect to all locally
distinguishable complete orthonormal bases.

Proof. Let |ψ〉 be a pure entangled state of a bipartite
quantum system, the Hilbert space corresponding to which
is Cd1 ⊗ Cd2 . Let us now consider an arbitrary locally
distinguishable complete orthonormal basis. |ψ〉 will have
vanishing quantum coherence in this basis if and only if it is an
element of this basis. However, if |ψ〉 is an element of this ba-
sis, the latter cannot be locally distinguishable, as was proven
in Ref. [5] that any complete orthonormal basis containing
even a single entangled state cannot be locally distinguishable.
Therefore, |ψ〉 must have a nonzero quantum coherence in
any locally distinguishable complete orthonormal basis.

On the other hand, an arbitrary pure product state can al-
ways be expanded to form a complete biorthonormal product
basis, which can always be distinguished by LOCC. There-
fore, the product state has zero quantum coherence, at least
with respect to this basis. �

It is clear that the states formed by mixing locally dis-
tinguishable orthonormal complete basis states are separable
states, and the basis forms the spectral states of the separable
state, where a separable state is any state that can be prepared
by LOCC after starting from product states [12]. Not all sepa-
rable states are, however, of this type, that is, not all separable
states have a spectral basis that is locally distinguishable.
To see this, let us consider a specific example. Consider the
two-qubit states, |ψ±〉 = (|01〉 ± |10〉)/

√
2, and an unequal

mixture of them, viz. ρ2 = p|ψ+〉〈ψ+| + (1 − p)|ψ−〉〈ψ−|,
where p ∈ (0, 1) and p �= 1/2. By using the positive partial
transpose criterion [13], one can check that this family has
only entangled states. (The state for p = 1/2 is separable.)
Now, the spectral decomposition of ρ2 is unique, as there is no
degeneracy in the spectrum. Also, a locally distinguishable ba-
sis is necessarily an orthogonal set. The spectral basis of ρ2 is
incomplete but can always be completed to a full orthonormal
basis, and any such completion—for p �= 1/2—will be locally
indistinguishable, as at least two states of it will be entangled,
viz. |ψ±〉 [5]. Therefore, there is no locally distinguishable
basis which can be probabilistically mixed to form ρ2 for
any p �= 1/2. Because of the existence of such examples, it
may seem that quantum coherence of a bipartite state with
respect to locally distinguishable bases may not be related
to the state’s entanglement content. We, however, have the
following result.

Theorem 2. The minimum among quantum coherences
with respect to all locally distinguishable complete orthonor-
mal bases of any bipartite pure quantum state is given by its
local von Neumann entropy.

Proof. The minimal relative entropy distance of a pure
state |ψ〉 of Cd1 ⊗ Cd2 , written in Schmidt decomposition as∑n

i=1 αi|ii〉, from the set of separable states, is attained in the
state

∑n
i=1 α2

i |ii〉〈ii|, and is given by the von Neumann entropy
of either of the local densities [9,10]. Here, n � min{d1, d2},
and αi are real and positive. The state

∑n
i=1 α2

i |ii〉〈ii|
is of course a separable state but is also a mixture of
states of a locally distinguishable orthonormal basis, viz.
{|i〉| j〉}d1,d2

i=1, j=1. �
The result reminds us of similar ones for quantum dis-

cord [14] and quantum work deficit [15], which also were

equal to the local von Neumann entropy for all pure bipartite
states.

Natural extensions of the concept of quantum coherence to
mixed states can be made in several ways. One of them is by
using the concept of the convex roof [7].

Definition. A quantum state ρ on Cd is said to be quantum
coherent with respect to a class of complete orthonormal bases
{B} of Cd with a special presettled property if it cannot be
written as a convex (i.e., probabilistic) sum of pure states of
Cd with zero minimal quantum coherence when optimized
over such bases.

The qualitative definition of quantum coherence can be
quantified as follows.

Definition. For a quantum state ρ on Cd , its quantum co-
herence with respect to a class {B} of bases on Cd is given by

C{B}(ρ) = min
∑

i

pi min
B∈{B}

CB(|ψi〉), (4)

where the outer minimization is over all decompositions of ρ

into
∑

i pi|ψi〉〈ψi|.
When the set {B} contains all bases of Cd , it is clear that

all quantum states will have vanishing quantum coherence.
Quantum coherence is typically defined with respect to a fixed
basis, and one subsequently demonstrates that it satisfies cer-
tain conditions [2]. The definition presented above, however,
involves a class of bases. As we show in the Supplemental
Material [16], it can also be shown to satisfy the usual condi-
tions of a quantum coherence measure, in the case of interest
to us, viz. when {B} is the class of all locally distinguishable
complete orthonormal bases of a multiparty quantum system.

We will now need the concept of entanglement of forma-
tion [7], which, for a bipartite quantum state ρAB is defined as

EF (ρAB) = min
∑

i

piEF (|ψi〉AB), (5)

where the minimization is over all decompositions of ρAB into∑
i pi|ψi〉〈ψi|, and where the entanglement of formation for a

pure bipartite state is given by the von Neumann entropy of
either of the local densities [17]. Entanglement of formation
has been put forward as a measure of entanglement and is typ-
ically difficult to compute [7,18], where a bipartite entangled
state is one which is not separable.

At the qualitative level, we have the following result, the
proof of which is presented in the Supplemental Material [16].

Theorem 3. A bipartite quantum state, possibly mixed, is
entangled if and only if it has a nonzero quantum coherence
with respect to all locally distinguishable complete orthonor-
mal bases.

Just like for pure states, the connection between entangle-
ment and quantum coherence in LOCC-distinguishable bases
can be taken to a quantitative level.

Theorem 4. The quantum coherence in locally distinguish-
able bases of a bipartite quantum state, possibly mixed, is the
entanglement of formation of the state.

A proof is presented in the Supplemental Material [16].
A similar result was obtained in Ref. [19], where quantum
coherence in product bases and its convex-roof extension were
considered. We note that a complete orthonormal basis having
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even a single entangled state is necessarily locally indistin-
guishable [5]. However, there exists complete orthonormal
bases of product states that are locally indistinguishable [3].
We also remember here that an entangling gate necessarily
requires coherence at the input to produce entangled states at
the output. See Ref. [20] in this regard.

As already alluded to, there are other avenues of natural
extensions of the concept of quantum coherence to mixed
quantum states. One such is given as follows [2].

Definition. A quantum state ρ on Cd is said to be relative
quantum coherent with respect to a complete orthonormal
basis B of Cd if it is not a mixture of states of the basis.

The christening is nonstandard and is made to distinguish
it from the previous definition, in this section, of quantum
coherence, and is chosen because it is relative to a particular
basis B and not, as in the previous case, with respect to a class
{B} of bases. We now provide a quantification of the notion of
relative quantum coherence [2].

Definition. For a quantum state ρ on Cd , its relative entropy
of quantum coherence with respect to the basis B on Cd is
given by

CR
B (ρ) = min

ρB∈MB

S(ρ ‖ ρB). (6)

This definition of quantum coherence has been widely used to
build a resource theory, and the corresponding monotonicity
properties have been proven in literature [2].

We will now need the concept of the relative entropy of
entanglement [9,10], which, for a bipartite state ρAB is given
by the minimal relative entropy distance of the state from the
set of separable states in the same Hilbert space, so

ER(ρAB) = min
σAB

S(ρAB ‖ σAB), (7)

where σAB is a separable state. Just like the entanglement of
formation, the relative entropy of entanglement has also been
proposed as a measure of entanglement, and is again typically
difficult to compute [9,10].

At the qualitative level, we have the following result.
Theorem 5. Any bipartite entangled state, possibly mixed,

has a nonzero relative quantum coherence with respect to all
locally distinguishable complete orthonormal bases.

And on the quantitative level, we have the following rela-
tion.

Theorem 6. The minimal relative entropy of quantum co-
herence of a bipartite quantum state, possibly mixed, with
locally distinguishable bases is bounded below by the relative
entropy of entanglement of the state.

The proofs of Theorems 5 and 6 are presented in the Sup-
plemental Material.

We have until now been considering the case of entangle-
ment of bipartite states and local distinguishability of sets of
bipartite states. These considerations can be carried over to the
multiparty case. Both the concepts, viz. entanglement and lo-
cal distinguishability, are far richer in the multiparty domain.
The connection between entanglement and quantum coher-
ence can, however, be carried over to the multiparty case, and
we exemplify the situation by considering two diametrically
opposite types of multiparty entanglements in the following
two theorems (proofs in Supplemental Material [16]).

Theorem 7. A multiparty pure state in Cd1 ⊗ Cd2 ⊗ . . .Cdm

is entangled across at least one bipartition if and only if it is
quantum coherent with respect to all locally distinguishable
complete orthonormal bases.

Theorem 8. A multiparty pure state in Cd1 ⊗ Cd2 ⊗ . . . ⊗
Cdm is genuinely multiparty entangled if and only if it is
quantum coherent with respect to complete orthonormal bases
that are locally distinguishable in at least one bipartition of the
m parties.

These results in the multiparty scenario are for pure states,
but the generalizations to the regime of mixed states are simi-
lar to those already done in the bipartite case.

It is important to mention here about the experimental fea-
sibility of measuring the quantities examined. Entanglement
and quantum coherence are deeply studied topics and their
experimental characterization and quantification have been
performed in the literature in a large number of works. These
strategies are probably more studied for entanglement than
for quantum coherence. In particular, the quantum coherence
measures studied here have not been experimentally charac-
terized in the literature. However, these quantum coherence
measures have all been found to be intimately related, in many
cases equal, to known measures of entanglement. And the
latter have been characterized and quantified in the literature.

III. CONCLUSION

Entanglement of shared quantum states forms one of the
most successful resources for performing quantum informa-
tion tasks [1]. It is therefore interesting to characterize and
quantify it in as many different ways as possible, as that
may lead to a deeper understanding of the concept and also
potentially result in new applications.

Quantum coherence has also been argued to be resourceful
in attaining quantum advantage in specified tasks over their
classical counterparts [2].

We found that quantum coherence in locally distinguish-
able bases can be used to define and quantify entanglement.
It is to be noted that there exists complete globally distin-
guishable bases that are not locally distinguishable, and it
has typically been argued that the local indistinguishability
of such bases is unrelated to the entanglement content of the
constituent states [3–5].

We initially proved the results for pure bipartite states. De-
pending on the way, the generalization of quantum coherence
to mixed states is executed, the relation between quantum
coherence in locally distinguishable bases and entanglement
is obtained in terms of the entanglement of formation [7] or
the relative entropy of entanglement [9,10]. The results were
then shown to be generalizable to the multiparty domain.
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