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End-point measurement approach to assess quantum coherence in energy fluctuations
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We discuss the role of quantum coherence in the energy fluctuations of open quantum systems. To this aim, we
introduce a protocol to which we refer as the end-point measurement scheme, allowing us to define the statistics
of energy changes as a function of energy measurements performed only after the evolution of the initial state.
At the price of an additional uncertainty on the initial energies, this approach prevents the loss of initial quantum
coherences and enables the estimation of their effects on energy fluctuations. We demonstrate our findings by
running an experiment on the IBM Quantum Experience superconducting qubit platform.

DOI: 10.1103/PhysRevA.104.L050203

When the size of a physical system is scaled down to the
micro-/nanoscopic domain, fluctuations of relevant quantities
start playing a pivotal role in establishing the energetics of the
system. Such fluctuations obey fundamental relations, known
as fluctuation theorems, that recast the laws of thermody-
namics in such a new regime. Should the range of energies
involved in a given system bring its dynamics within the do-
main of quantum theory, the very nature of energy fluctuations
becomes even more interesting, encompassing both classical
(i.e., thermal) and quantum contributions. The characteriza-
tion of the latter and the understanding of how they conjure
with the former to set the dynamics of fundamental energy
transformations are very stimulating open problems.

One of the key achievements of the field of thermody-
namics of quantum processes [1–4] is the identification of a
strategy for the assessment of the energetics stemming from
nonequilibrium quantum dynamics. The so-called two-point
measurement (TPM) protocol [5–8], where the energy is mea-
sured both at the initial and final time, has been introduced to
determine the work statistics of a quantum system driven by
a time-dependent protocol. However, in quantum mechanics,
measurements condition the evolution of the measured system
[9]. In particular, in TPM an energy measurement performed
before the dynamics takes place destroys the quantum coher-
ences in the initial state of the system, forcing it into an energy
eigenstate [10,11]. Such a loss of coherence is common to
interferometric formulations of the TPM protocol, which have
been put forward to ease the inference of the energetics of
out-of-equilibrium systems [12–14].

Recently, much effort has been devoted to understanding
the role of coherence in quantum thermodynamics [15–25].
In particular, in Refs. [15,16,20,26] full counting statistics
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[27,28] has been used to study work fluctuations in quantum
systems initialized in an arbitrary state, pointing out that the
quantum interference stemming from considering quantum
coherences could lead to negative quasiprobability work dis-
tributions [29].

In this paper we propose an end-point measurement (EPM)
protocol to quantify the statistics of energy-change fluctua-
tions in the (possible) presence of quantum coherence in the
initial state of a system. The motivation for such a protocol
is twofold: (i) it is directly inspired from the typical quantum
mechanical setup in which a state is prepared, then evolved,
and only at the end measured; and (ii) such a protocol re-
moves the need for the first projective measurement required
by TPM, thus preventing the collapse of the initial state of
the system onto the energy basis. This is in contrast with
recent proposals such as Ref. [25], where the system has to be
prepared in a mixture of eigenstates of an observable O that
does not commute with the Hamiltonian of the system. This
is equivalent to an experiment measuring O at the initial time
so that in each trajectory the starting point is an eigenstate of
O. Our proposal is different from this and other TPM schemes,
since we do not use any initial projective measurement and the
initial state fully evolves according to its quantum dynamics.
This is the typical situation encountered when considering
the evolution of quantum systems, where the measurement
is performed only at the final time—like during quantum
computing algorithms. Thus, analyzing the differences and
analogies between our scheme and other existing protocols
helps in comparing the typical measurement procedures with
those in quantum thermodynamics.

Remarkably, we are able to characterize the fluctuations
of energy changes by distinguishing between contributions
stemming from quantum coherences and those resulting from
initial populations, albeit at the cost of a quantifiable ex-
tra uncertainty. These results offer the possibility to set
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coherence-induced quantum effects apart from those due to
thermal fluctuations. Renouncing to the initial energy mea-
surement on the system entails a substantive experimental
simplification, thus making such an approach an alternative
to the TPM scheme when quantum signatures are considered.
We demonstrate the effectiveness of EPM in pinpointing the
role of initial coherences in the statistics of energy fluctua-
tions by performing a series of experiments using the IBM
Quantum Experience (IBMQ) platform. This highlights the
applicability of our scheme for the characterization of the
energetics of quantum computation, a topic which is receiving
growing attention in recent years [30–33].

Coherence in the energy eigenbasis. Let us consider
a d-dimensional quantum system S evolving according to
a one-parameter family of completely positive and trace-
preserving (CPTP) maps �t : ρi → ρf = �t [ρi] [34] within
the time interval [ti, tf ]. Here, ρi (ρf ) is the initial (final)
density operator of the system. Our derivation can be spe-
cialized to the case of closed systems with a time-dependent
Hamiltonian, where energy fluctuations identify as work, or to
open time-independent ones where only heat transfer occurs.

Let us thus consider a system S subject to no initial projec-
tive measurement and characterize energy fluctuations only
through a final time measurement. The only energy measure-
ment of our protocol is performed at the final time tf . This
generates the trajectories T k

i : ρi → �k
f , with �k

f ≡ |Ek
f 〉〈Ek

f |
denoting the projector onto the kth energy eigenstates |Ek

f 〉
of the Hamiltonian at time tf , i.e., H (tf ) = ∑

k Ek
f �k

f . The
stochasticity of the outcomes provided by the EPM protocol,
with respect to the initial energies that S would have if the
energy had been measured, makes �E ≡ Ef − Ei a random
variable.

Dynamically, the initial quantum coherence in the state of
S , written in the energy basis, is accounted for by considering
the probability distribution of the final energy due to the
evolved initial state ρi, comprising its coherence. By fixing
the energy of S at tf , there is a probability law weighting
the trajectories T k

i , which can be arranged in N groups cor-
responding to the number of possible energy values at ti. This
is a classical law, interpreted as the uncertainty on the values
of Ei and thus �E . By performing energy measurements at the
final time tf , one can embed the effects of initial coherences
into single realizations of the evolution. The uncertainty on
Ei reflects the fact that its values are obtained as if we were
performing virtual projective measurements, thus without any
state collapse. This entails independence of the measurements
at tf with respect to the initial virtual one.

Suppose the initial state ρi is not diagonal in the energy
basis of S; one can object that there is an observable O on
whose basis ρi is diagonal. However, there is an expected
difference between the cases where (a) a measurement of O
is done at time ti, then one starts each trajectory from an
eigenstate of O and averages a posteriori over all possible
results of the first measurement [25], and (b) no measurement
is implemented and the dynamics can show interference in the
energy basis. Such a difference will be quantified later.

If the energy is not measured at ti, how can we talk about
the initial energies Ei? Such information, and the related ther-
modynamic cost, is encoded in ρi, which is such that if we
decide to measure the energy, we would find the initial ener-

FIG. 1. Protocol for the quantification of energy fluctuations
and the extraction of information about coherence. An ensemble
of identical systems, prepared in the initial state ρi, is divided in
three subgroups. One is used to obtain p�

i = Tr(ρi�
�
i ) via an initial

energy measurement. The second goes through a dephasing channel,
returning a state P diagonal in the energy basis. This then undergoes
map �t and is used to determine pk

P = Tr(�tf [P]�k
f ). The systems

in the third subgroup are not initially measured but subjected to the
dynamics and used to obtain pk

f = Tr(�tf [ρi]�k
f ).

gies Ei. One could prepare ρi a large number of times, and in a
fraction of them measure energy to verify that the eigenvalues
E �

i ’s of the Hamiltonian at t = ti, i.e., H (ti ) = ∑
� E �

i ��
i , are

obtained with the probability assigned by ρi [cf. Fig. 1]. At the
remaining times one uses ρi as input for our protocol without
measuring energy at ti.

Energy-change distribution and link with fluctuation rela-
tions. Let us assume a time-dependent Hamiltonian process
and define the probability distribution associated to �E by
analyzing its properties. At the single-trajectory level, the
density operator after the end-point energy measurement is
one of the eigenstates �k

f of the time-dependent Hamiltonian
H (tf ). Such a state is achieved with probability

pk
f ≡ Tr

(
ρf�

k
f

) = Tr
(
�tf [ρi]�

k
f

)
. (1)

Thus, given the change �Ek,� ≡ Ek
f − E �

i in terms of the
eigenvalues of H (t ), the probability distribution of �E is

Pcoh(�E ) =
∑

k

pk
f

∑

�

p�
i δ(�E − �Ek,�), (2)

where p�
i ≡ p(E �

i ) = Tr(ρi�
�
i ) is the probability of obtain-

ing E �
i if an energy measurement was performed on S

(initial virtual measurement). In Eq. (2), the suffix “coh”
stands for “coherence.” The joint probability p(E �

i , Ek
f ) asso-

ciated to the stochastic variable �Ek,�, such that Pcoh(�E ) =∑
�,k p(E �

i , Ek
f )δ(�E − �Ek,�), can then be written as

p
(
E �

i , Ek
f

) = p�
i pk

f = Tr
(
ρi�

�
i

)
Tr

(
�tf [ρi]�

k
f

) ≡ p�,k
coh. (3)

As already noticed, the assumption behind Eq. (3) is the
statistical independence of the final energy projective mea-
surements and initial virtual one. This comes from the fact
that the initial measurement is not performed and only the
statistics related to the initial state preparation is used. The
following properties hold:

Property (i). Pcoh(�E ) is such that
∑

k,� p�,k
coh = 1.

Property (ii). The average energy variation 〈�E〉Pcoh ≡∫
d�E Pcoh(�E )�E reproduces the average energy change
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induced by the CPTP map �t , that is,

〈�E〉 = Tr(H (tf )ρf ) − Tr(H (ti )ρi), (4)

where we have assumed statistical independence between vir-
tual initial energy measurements and final ones [35].

Property (iii). Pcoh(�E ) does not reduce to the TPM proba-
bility distribution for [ρi, H (0)] = 0, i.e., it cannot result from
a fluctuation theorem (FT) protocol in the sense of Ref. [19].

Even by replacing the initial state ρi in Eq. (2) with a
state diagonal in the (initial) energy basis, it is not possible
to recover the conventional energy-change statistics resulting
from the TPM protocol. The latter is recovered only when the
initial state is an energy eigenstate (cf. the Supplemental Ma-
terial (SM) accompanying this paper [36]). For an initial state
diagonal in the energy eigenbasis, the discrepancy between
the TPM and EPM joint probabilities is due to classical uncer-
tainty on the initial state of S , which is retained in our scheme
but is lost in TPM due to the initial energy measurement.
As shown in Ref. [36], this agrees with the no-go theorem
in Ref. [37]. For the same reasons, besides a few exceptions,
the distribution Pcoh(�E ) may not be convex under a linear
mixture of protocols that only differ by the initial density
operator ρi [36]. Therefore, given ρi = ζρi,1 + (1 − ζ )ρi,2

with ζ ∈ [0, 1], Pcoh(�E |ρi ) cannot in general be expressed
as a linear composition of the distributions Pcoh(�E |ρi,1) and
Pcoh(�E |ρi,2).

In order to pinpoint the effect of coherence in the energy
basis of ρi and separate it from classical uncertainty, we take
ρi = P + χ with P diagonal in the energy basis and χ en-
coding the coherence contributions [Tr(χ ) = 0]. Then p�,k

coh in
Eq. (3) can be split as p�,k

coh = p�
i pk

f ≡ p�
i pk

P + p�
i pk

χ , with

pk
f ≡ pk

P + pk
χ = Tr

(
�tf [P]�k

f

) + Tr
(
�tf [χ ]�k

f

)
. (5)

The term p�
i pk

P encodes information on classical uncer-
tainty on the initial system populations, while p�

i pk
χ takes

into account the effects of initial coherence. We introduce
pPcoh ≡ p�

i pk
P and, owing to the statistical independence of out-

comes {E �
i } and {Ek

f }, such terms can be separately analyzed.
In particular, the term containing information on the initial
coherence can be determined as illustrated in Fig. 1.

Note that the absence of initial coherences makes the EPM
distribution equal to the product of the marginals of the TPM
distribution [38]. We thus have H(pTPM) � H(pcoh|χ=0),
where H(p) is the Shannon entropy of a generic distribution
p. This inequality follows from the positivity of mutual in-
formation. However, the same result is not true in general if
initial coherence is present (cf. the case study of a three-level
thermal engine in Ref. [36]).

We now address the differences with the protocol in
Ref. [25]—which we label MLL—to study the effects of
coherence. In MLL, an initial state decomposed in terms
of its eigenstates {|s〉} as ρi = ∑

s ps|s〉〈s| is associated with
the joint probability p�,k

MLL ≡ ∑
s ps|〈s|E �

i 〉|2Tr(�tf [|s〉〈s|]�k
f ).

This reduces to the joint probability of the TPM protocol for ρi

diagonal in the energy basis, and to the distribution p�,k
coh of our

protocol for initial pure states. However, for a generic initial
state, such correspondences are lost and MLL requires ρi to
be one of its eigenstates, as the construction of p�,k

MLL requires
one to know the evolution of each component of ρi. The EPM

protocol thus requires less information on the dynamics at the
cost of extra uncertainty on the statistics of �E (cf. Ref. [36]
for a comparison between EPM, MLL, and TPM).

Linear response approximation. We now further charac-
terize the distribution of energy changes and address its first
and second statistical moments. As with MLL, Eq. (4) recov-
ers the expected difference of the averaged initial and final
Hamiltonian. This is true in the TPM scheme only when
the initial state is the mixture resulting from the first energy
measurement. From Eq. (2) one gets

〈�E2〉 = 〈�E2〉P + Tr(H2(tf )�tf [χ ])

− 2 Tr(�tf [χ ]H (tf )) Tr(PH (ti )), (6)

with 〈�E2〉P given by assuming ρi → P . Note that Eq. (6)
coincides with the result of MLL (TPM) only if the initial
state is pure [an eigenstate of H (ti )]. Moreover, if P is a
projector, then 〈�E2〉P = 〈�E2〉TPM, and all the differences
in the second moments are due to coherences in ρi. The latter
are unavoidably destroyed in the TPM protocol.

Characteristic function and physical meaning. The infor-
mation about the statistics of the energy-change distribution
is encoded in the characteristic function G(u) ≡ 〈eiu�E 〉Pcoh =∫

d�E eiu�E Pcoh(�E ), corresponding to the distribution
Pcoh(�E ). As the outcomes {E (k)

f } of the final energy mea-
surement are statistically independent from the initial virtual
ones {E (�)

i }, we have

G(u) = Tr(e−iuH (ti )ρi ) Tr(eiuH (tf )�tf [ρi]), (7)

showing that the fluctuations of �E originate both from the
action of map �t [ρ] on the initial state of S and the uncer-
tainty in its energy at t = ti. We now highlight the deviation
of the EPM-inferred statistics from a standard FT [6,7]. We
consider G(iβ ), where β is a reference inverse temperature
(taken as a free parameter) and introduce the reference equi-
librium states ρ th

i(f) ≡ e−βH (ti(f) )/Zi(f) with Zi(f) ≡ Tr(e−βH (ti(f) ) ).
For ρi = ρ th

i + χ we get

〈e−β(�E−�F )〉=d
[
Tr

(
ρ th

f �tf [ρ
th
i ]

)+Tr
(
ρ th

f �tf [χ ]
)]

, (8)

with �F the free energy difference and d the dimension of
the Hilbert space of S (cf. Ref. [36] for details). Equation (8)
deviates from unity, i.e., from a standard fluctuation theorem,
even for unital channels and due to two terms. The first,
d Tr(ρ th

f �tf [ρ
th
i ]), is the additional uncertainty introduced by

not performing the initial energy measurement and is present
even for χ = 0. The second quantifies the deviation due to
initial quantum coherences and bridges stochastic thermody-
namics and quantum signatures of open dynamics. Equation
(8) is thus one of the main results of this paper.

Experimental results. To illustrate experimentally the
power and versatility of EPM, we make use of the IBMQ
platform. In particular, we perform a series of experiments
based on the use of a two-qubit gate by following the protocol
illustrated in Fig. 1 for the extraction of initial coherence
contributions.

On the IBMQ quantum computer, we implement a two-
qubit circuit with an initial (pure) separable state ρi = ρ th

i +
χ , where ρ th

i = e−β(HA+HB )/Z (with Z = tr[ρ th
i ] and inverse

temperature β) is a thermal state of the local Hamiltonian
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FIG. 2. Top: Circuits implemented in IBMQ. The initial state is
prepared by applying two identical single-qubit gates U (θ0 ) onto |00〉
(we use θ0 = 2 [36]). In TPM, two initial projective measurements
destroy any coherence in the computational basis, while in EPM
such measurements (enclosed in the dashed red box) are absent. We
then implement the controlled gate U (θn ), with θn ≡ nπ/10 and n =
0, . . . , 20, followed by two projective measurements in the computa-
tional basis. The results are stored in four classical registers to allow
the analysis of the energy-change statistics. Bottom: Comparison of
the characteristic functions for EPM and TPM. The lines show the
theoretical predictions, while the points (with their error bars) the
experimental results. Each data point has been obtained from 2048
experimental runs. The solid red line and circles are related to the
results obtained by applying TPM. The dashed blue line and squared
refer to the EPM characteristic function. Finally, the dotted magenta
line and rhombuses (dot-dashed black line and triangles) show the
contribution of the diagonal (off-diagonal) parts of the initial state ρi

in the computational basis. The inverse (physical) temperature of the
diagonal part of the initial state is β = 0.443/ε, where ε ∼ 5 MHz
is the energy gap for the superconducting qubits, as provided by the
IBMQ documentation.

HA + HB = ε(σ (A)
z + σ (B)

z ) of the two qubits (ε ∼ 5 MHz is
the energy gap between the logical states of each supercon-
ducting qubit). Here, ρ th

i is diagonal in the computational
basis, while χ stands for the initial coherence in this basis.
Such an initial state can be easily prepared starting from the
default configuration of the logical qubit of the IBMQ device
by way of properly designed single-qubit gates (cf. Fig. 2 and
Ref. [36]).

The top panel of Fig. 2 shows the circuit implemented
in the IBMQ. After the initialization, the circuit performs a
controlled gate. The difference between EPM and TPM is in
the absence of the first two projective measurements (red box
in the figure) for the former. Then, we repeat the experiments
by varying one of the parameters of the controlled gate. It is
worth noticing that while an “effective” Hamiltonian of the
circuit could be obtained by reverse engineering the imple-

mented unitary evolution, the IBMQ does not enable us to
directly measure it, as only local measurements of σz (and
thus of the qubit local energies) are allowed. Thus, in analogy
with the experiment in Ref. [39], just the statistics of the local
energy fluctuations are taken into account.

In the bottom panel of Fig. 2, we consider the deviation
of 〈e−β(�E−�F )〉 from unity when using the EPM protocol.
In the considered case, the free energy variation vanishes.
Thus we are comparing the characteristic functions, evalu-
ated at u = iβ, of EPM and TPM. The Jarzynski identity
GTPM(iβ ) = 1, stemming from TPM, is nicely recovered from
the experimental data. This is compared to the contributions
in Eq. (8) linked to the diagonal and off-diagonal parts of
the initial state. For the case investigated here, we observe
a non-negligible contribution from the initial coherence χ of
ρi and a clear discrepancy between the TPM result and the
contribution to the EPM characteristic function depending on
the (thermal) diagonal part ρ th

i of ρi. As stressed above, such
a discrepancy originates from the additional uncertainty on
the initial energies introduced by our protocol. Moreover, the
statistics of energy changes in Fig. 2 can be reproduced to a
good approximation by looking at just the first two moments
of the EPM (or TPM) distribution [36]. Therefore an analysis
in linear approximation is able to capture the main features
of the energy fluctuations that pertain to the quantum circuits
under scrutiny.

Conclusions. We have introduced an EPM protocol for the
evaluation of the energy-change fluctuations that takes into ac-
count the presence of quantum coherence in the initial state of
the system. The protocol does not require information on the
dynamics nor special preparations, which casts it apart from
other schemes [25,40,41], and solely relies on the final energy
measurement. The EPM approach could be more conducive
of experimental validation than the notoriously challenging
TPM one, and could thus enlarge the range of systems whose
energy fluctuations could be tested. For instance, quantum
computing platforms present a natural arena in which the
methods developed in this work could find fruitful applica-
tions, as showcased by our analysis of the IBMQ two-qubit
logic circuit. Indeed, the EPM approach not only allows the
effect of the initial coherence to be accounted for but also
resembles the way in which quantum computing algorithms
are actually performed, where only a final measurement is
present. Furthermore, the EPM approach may also come in
handy for systems with degenerate energy levels, as in many-
body physics. Indeed, for initial states involving only levels
within degenerate subspaces and a dynamics that leaves the
latter invariant, the TPM scheme would return vanishing en-
ergy fluctuations. In contrast, our EPM would allow for the
characterization of the energy-change statistics resulting from
the initial coherence alone.
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