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Genuine activation of nonlocality: From locally available to locally hidden information
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Quantum nonlocality has different manifestations that, in general, are revealed by local measurements of
the parts of a composite system. In this paper, we study nonlocality arising from a set of orthogonal states
that cannot be perfectly distinguished by local operations and classical communication (LOCC). Such a set
is deemed nonlocal, for a joint measurement on the whole system is necessary for perfect discrimination of
the states with certainty. On the other hand, a set of orthogonal states that can be perfectly distinguished by
LOCC is believed to be devoid of nonlocal properties. Here, we show that there exist orthogonal sets that are
locally distinguishable but without local redundancy (i.e., they become nonorthogonal on discarding one or more
subsystems) whose nonlocality can be activated by local measurements. In particular, a state chosen from such a
set can be locally converted, with certainty, into another state, the identity of which can now only be ascertained
by global measurement and no longer by LOCC. In other words, a locally distinguishable set without local
redundancy may be locally converted into a locally indistinguishable set with certainty. We also suggest an
application, namely, local hiding of information, that allows us to locally hide locally available information
without losing any part. Once hidden, the information in its entirety can only be retrieved using entanglement.
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Introduction. Quantum systems consisting of two or more
subsystems may have nonlocal properties that, in general,
are revealed by local measurements of the parts. Perhaps
the most well-known manifestation of quantum nonlocality,
viz, Bell nonlocality [1–3] arises from entangled states [4]
through their violation of Bell-type inequalities [5–11]. The
latter implies that the predictions of quantum theory cannot be
explained by any local theory. Bell nonlocality is of particular
importance in quantum foundations [1], quantum information
[1], and applications thereof. For example, Bell nonlocality
tests are routinely used to certify device-independent quantum
protocols [12–16].

Bell nonlocality, however, is not the only kind of nonlo-
cality of interest. In this paper, we focus on the nonlocality
that arises in the task of discrimination of quantum states
by LOCC [17–47]. Recall that LOCC protocols are where
local observers perform quantum operations on their respec-
tive subsystems and communicate via classical channels but
cannot exchange quantum information. Now suppose that two
or more observers share the parts of a quantum system pre-
pared in one of several known orthogonal states, the identity
of which they do not know. Their goal is to determine which
state the system is in without error. But because they are
separated from each other, they can only perform measure-
ments realized by LOCC. So the question here is: Can they
perfectly distinguish the orthogonal states by LOCC as is

*som@jcbose.ac.in, som.s.bandyopadhyay@gmail.com
†saronath.halder@gmail.com

always possible by a joint measurement on the whole system?
The answer, however, turns out to be no in general. While
two orthogonal-pure states can be perfectly distinguished by
LOCC [21], entangled orthogonal bases, such as the Bell
basis, cannot be [23,26,29]. We say that a set of orthogonal
states is locally distinguishable if the constituent states can be
perfectly distinguished with certainty by a LOCC protocol;
otherwise, locally indistinguishable.

A locally indistinguishable set of states is nonlocal in the
sense that a suitable joint measurement on the whole sys-
tem always yields more information about the state of the
system than any sequence of LOCC [19,24,26,47–49]. This
new kind of nonlocality has its own share of counterintuitive
results. For example, entanglement is neither necessary nor
sufficient for local indistinguishability. The former is proved
by the existence of orthogonal product states that are locally
indistinguishable [19,20,35,47,50–63]. They give rise to the
so-called “quantum nonlocality without entanglement” [19]
and the recently discovered stronger version of the same [47].
That entanglement is not sufficient follows from the result that
any two mutually orthogonal pure states are locally distin-
guishable [21].

Besides exhibiting a different kind of nonlocality, locally
indistinguishable states also imply the existence of locally
hidden information: information encoded in locally indis-
tinguishable states cannot be fully accessed by the local
observers, so part of it remains hidden. For example, one can
encode two classical bits in four Bell states, but only one
bit can be extracted locally simply because the Bell states
cannot be perfectly distinguished by LOCC. The only way
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to avail the complete information is by using additional quan-
tum resources such as entanglement. Quantum cryptography
primitives such as data hiding [64–67] and secret sharing [68]
rely on this particular fact.

For the reasons outlined above, it is not surprising why lo-
cally indistinguishable states have received all the attention so
far. That includes finding new classes [20,32,38,40,43,45,46],
extending the formalism to density matrices [39,41], obtaining
new techniques to prove local indistinguishability [23,26,29–
31], understanding the presence of entanglement [31,33] or
lack of it [19,20,25,49], and more recently, finding the entan-
glement cost of distinguishing locally indistinguishable states
[46]. A set of locally distinguishable states, on the other hand,
is generally understood to be neither interesting nor impor-
tant. The reasons being, it is neither nonlocal because the
constituent states can be perfectly distinguished by LOCC nor
useful in ways a locally indistinguishable set can be. In this
paper, however, we will show that this long-held understand-
ing is, at best, incomplete, for there exist orthogonal states
that are locally distinguishable but deserve consideration on
par with their locally indistinguishable cousins.

In this paper, we will consider a specific class of
LOCC measurements, namely, orthogonality-preserving lo-
cal measurements (OPLM) [25,47]. The OPLMs are local
measurements that keep the postmeasurement states mutually
orthogonal, but, on the other hand, they might eliminate one
or more states. Indeed, a LOCC protocol that distinguishes
orthogonal states is a sequence of OPLMs [69]. We will, of
course, leave out the trivial OPLMs, those that do not change
the states and consider only the nontrivial ones, those where
not all the measurement operators are proportional to the
identity.

Let us now consider the following problem. Suppose Alice
and Bob share a state chosen from a known set S of orthogonal
states. They do not know the identity of the state. They now
perform an OPLM M. Then, for a given outcome μ of this
measurement, they end up with a state that belongs to a new
orthogonal set S′

μ whose cardinality |S′
μ| � |S|. Note that the

action of an OPLM does not lead to loss of information [70].
Now, if S is locally indistinguishable, then, by definition, so
is S′

μ for all μ. But if S is locally distinguishable instead, can
S′

μ be locally indistinguishable? We will make this question
more precise in a moment but before we proceed, let us briefly
discuss the issue of local redundancy [71].

We say that local redundancy exists in an orthogonal set
that remains orthogonal if we discard one or more subsystems.
It may be present provided at least one of the local dimensions
is composite. An example would make this clear. Let {|�i〉}4

i=1
and {|�i〉}4

i=1 be the two-qubit Bell basis and the computa-
tional basis respectively. Consider the set

{|�i〉AB ⊗ |�i〉A′B′ : i = 1, . . . , 4},
where A, A′ and B, B′ are the qubit pairs held by Alice and
Bob, respectively. First, note that the above set is locally
distinguishable because one can locally measure A′B′ in the
computational basis and correctly learn about the identity of
the given state. Now observe that if we trace out, for example,
AB or A′B′ the resulting states remain mutually orthogonal.
This is the redundancy we are talking about, which, however,
has consequences. In particular, discarding A′B′ makes the

set locally indistinguishable because Alice and Bob would
then share one of the four Bell states. But, on the other hand,
discarding AB keeps it locally distinguishable. This situation
arises only because of the local redundancy present in the set.
For our analysis, therefore, we will consider orthogonal sets
that do not have this redundancy.

So now we suppose S is locally distinguishable and does
not have local redundancy. As noted earlier, the action of an
OPLM M achieves the following set transformation: S → S′

μ

for the outcome μ, where for every μ it holds that |S′
μ| � |S|.

This brings us to the question that motivated this work: Do
there exist an S and M such that for any outcome μ, S′

μ is
locally indistinguishable? In other words, does there exist an
S such that for any given state chosen from S, Alice and Bob
can convert it, with certainty, into a state, the identity of which
can now only be ascertained by a global measurement and not
by LOCC?

So what we require is the following: For any given input
ρi ∈ S and any outcome μ of an OPLM M, ρi → σi(μ) such
that the orthogonal set S′

μ = {σi(μ)} is locally indistinguish-
able. Note that the requirement cannot be satisfied if Alice and
Bob perform an OPLM that reveals the identity of the input
state (which is possible because the set is locally distinguish-
able), or an OPLM whose every outcome results in a definite
output.

An affirmative answer to our question therefore looks im-
probable and more so because LOCC operations have inherent
limitations [72]. So it seems safe to conjecture that S should
remain locally distinguishable under OPLMs. However, we
will show that this is not the case, in general.

In particular, we present examples of orthogonal sets from
C2 ⊗ C4, C4 ⊗ C4, C5 ⊗ C5, and C5 ⊗ C5 ⊗ C5 with the
following properties:

(i) Locally distinguishable and without local redundancy.
Note that the local redundancy question does not arise in
C5 ⊗ C5.

(ii) There exists an OPLM that converts the set with cer-
tainty into a locally indistinguishable orthogonal set such that
the cardinality remains unchanged.

We will also show that not all orthogonal sets have
the above two properties. Therefore, those that do not are
genuinely local. Our result can be viewed as activation of
nonlocality by local measurements in the scenario of quantum
state discrimination by LOCC. The activation is genuine for
the sets do not suffer from local redundancy.

A simple application of our result is the local hiding
of locally available information. This can be understood as
follows. We know the information encoded in a locally dis-
tinguishable set is always locally available. Now suppose it
exhibits activable nonlocality. Then it can be converted into a
locally indistinguishable orthogonal set of the same cardinal-
ity by LOCC with certainty. So the information is no longer
completely available locally. This local hiding of information
is irreversible, and to retrieve it in its entirety, one must now
use entanglement.

Let us first recall a couple of fundamental results in lo-
cal distinguishability. We will need them frequently in our
proofs.

Theorem 1 [21]. Two multipartite orthogonal pure states
are locally distinguishable.
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The next tells us which sets of orthogonal pure states in
C2 ⊗ C2 are locally distinguishable and which are not.

Theorem 2 [25]. (a) Three orthogonal pure states in C2 ⊗
C2 are locally distinguishable iff at least two of those states
are product states. (b) Four orthogonal states in C2 ⊗ C2 are
locally distinguishable if and only if all of them are product
states.

We begin by considering the simple cases.
Proposition 1. Two multipartite orthogonal pure states |ϕ1〉

and |ϕ2〉 remain locally distinguishable under OPLMs.
By Theorem 1, the states are locally distinguishable.

Therefore, an outcome of an OPLM either distinguishes them
or converts them into another orthogonal set, which must also
contain two pure states in which case Theorem 1 applies.

Next, consider a locally distinguishable set from C2 ⊗ C2.
Proposition 2. Let S be an orthogonal set of locally distin-

guishable states |ϕ1〉, . . . , |ϕn〉 in C2 ⊗ C2, where 2 � n � 4.
Then, under an OPLM, the transformed set remains locally
distinguishable.

Because of Proposition 1, it suffices to consider only the
cases: n = 3, 4. Let n = 3. As the states are locally dis-
tinguishable, at least two of them must be product states
[Theorem 2(a)]. First, suppose that all are product states.
Then, for any given outcome of an OPLM, the new orthog-
onal states must also be product states because LOCC cannot
convert product states into entangled states. Then, according
to Theorem 2(a), they must be locally distinguishable. Now
suppose two are product states, and the other is entangled. By
a similar argument, the new orthogonal set consists of either
two product states and an entangled state, or three product
states. In both cases, Theorem 2(a) tells us they are locally
distinguishable. Now consider n = 4. By Theorem 2(b), all of
them must be product states because they are locally distin-
guishable, and the previous arguments carry over.

The above results suggest that, perhaps, locally distin-
guishable states do not give up their local distinguishability
under OPLMs. Although compelling, this turns out not to be
the case in the higher dimensions.

Orthogonal sets with genuine activable nonlocality. Note
that the cardinality of a set of pure states with activable non-
locality is at least three (follows from Proposition 1). We now
discuss the examples.

Let {|0〉, |1〉, . . . , |d − 1〉} be an orthonormal basis in Cd ,
where d � 2. Then, rank-2 and rank-3 projection operators
(projectors) are defined as

Pi j = |i〉〈i| + | j〉〈 j|, i �= j,

Pi jk = |i〉〈i| + | j〉〈 j| + |k〉〈k|, i �= j �= k,

respectively, where i, j, k ∈ {0, 1, . . . , d − 1}. For example,
P01 = |0〉〈0| + |1〉〈1| and P012 = |0〉〈0| + |1〉〈1| + |2〉〈2|.

Example 1. C2 ⊗ C4: We assume that Alice holds a qubit
and Bob holds a pair of qubits. We represent the orthonormal
basis corresponding to Bob’s state space as follows: |00〉 ≡
|0〉, |01〉 ≡ |1〉, |10〉 ≡ |2〉, and |11〉 ≡ |3〉. Consider the fol-
lowing three orthogonal states (unnormalized):

|ψ1〉 ≡ |00〉 + |02〉 + |11〉 − |13〉,
|ψ2〉 ≡ |00〉 − |02〉 − |11〉 − |13〉, (1)

|ψ3〉 ≡ |01〉 − |12〉 − |10〉 − |03〉.

It is easy to see (and show) that the set does not have local
redundancy. In particular, not all pairs remain orthogonal if we
discard any of Bob’s qubits. To show the states (1) are locally
distinguishable we proceed as follows. First, Alice performs
a measurement on her qubit in the {|0〉, |1〉} basis and tells
Bob the result. Now, each of Alice’s outcome results in a set
of three orthogonal states for Bob to distinguish. If Alice gets
“0”, Bob distinguishes the states |0〉 ± |2〉 and |1〉 − |3〉, and
if Alice gets “1”, Bob distinguishes |1〉 ∓ |3〉 and |0〉 + |2〉.

We now prove the second property. First, Bob performs
a binary measurement defined by the orthogonal projectors
P01and P23 and informs Alice of the outcome. If Bob gets
P01 they are left with one of |00〉 ± |11〉 and |01〉 − |10〉.
Or, if Bob gets P23 they are left with one of |02〉 ∓ |13〉
and |12〉 + |03〉. So, in each case, they are left with one of
three mutually orthogonal pure entangled states that can be
embedded in a C2 ⊗ C2 space. But, according to Theorem
2(a), each set is locally indistinguishable. So the states given
by (1) can always be locally converted into another set of three
orthogonal states that cannot be locally distinguished. This
completes the proof.

The following example is built on the previous one, mutatis
mutandis. But it is interesting in its own right.

Example 2. C4 ⊗ C4: We assume that Alice and Bob each
holds a pair of qubits. The orthonormal basis corresponding
to each local state space is represented as follows: |00〉 ≡ |0〉,
|01〉 ≡ |1〉, |10〉 ≡ |2〉, and |11〉 ≡ |3〉. Now, consider the fol-
lowing orthogonal states (unnormalized):

|ψ1〉 ≡ |00〉 + |02〉 + |31〉 − |33〉,
|ψ2〉 ≡ |00〉 − |02〉 − |31〉 − |33〉,
|ψ3〉 ≡ |01〉 − |32〉 − |30〉 − |03〉.
|ψ4〉 ≡ |10〉 + |12〉 + |21〉 − |23〉,
|ψ5〉 ≡ |10〉 − |12〉 − |21〉 − |23〉,
|ψ6〉 ≡ |11〉 − |22〉 − |20〉 − |13〉.

(2)

It is a tedious but straightforward exercise to show that the
above set does not have local redundancy. We now show that
the states are locally distinguishable. First, Alice performs a
binary measurement defined by the orthogonal projectors P03
and P12 on her qubits. If she gets the first outcome, they end up
with one of the first three states |ψ1〉, |ψ2〉, |ψ3〉. Now, these
three states are in one-to-one correspondence with those given
by (1). This follows by inspection. Hence, |ψ1〉, |ψ2〉|ψ3〉 are
locally distinguishable. Now, if she gets the second outcome,
they end up with one of the three states |ψ4〉, |ψ5〉, |ψ6〉.
Once again, these are in one-to-one correspondence with those
given by (1). Hence they are locally distinguishable. So the
whole set is locally distinguishable.

Now we prove the second property. First, Bob performs
a binary measurement defined by the orthogonal projectors
P01and P23 and informs Alice of the outcome. If Bob gets P01
they are left with one of the six orthogonal states: |00〉 ± |31〉,
|01〉 − |30〉, |10〉 ± |21〉, and |11〉 − |20〉. Or, if Bob gets P23
they are left with one of another six orthogonal states: |02〉 ∓
|33〉, |32〉 + |03〉, |12〉 ∓ |23〉, and |22〉 + |13〉. Now, in each
case, the corresponding set contains locally indistinguishable
triplets. For example, the first set contains the triplets {|00〉 ±
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|31〉, |01〉 − |30〉} and {|10〉 ± |21〉, |11〉 − |20〉}. Each triplet
is locally indistinguishable by Theorem 2(a) as the corre-
sponding states can be embedded in a suitable C2 ⊗ C2 space.
Hence, the whole set must be locally indistinguishable. A
similar argument holds for the second case. So the states given
by (2) can always be locally converted into another set of six
orthogonal states that cannot be perfectly distinguished with
certainty by LOCC. This completes the proof.

By now, the basic idea behind the LOCC protocols proving
the desired properties is clear. In the following example, each
local dimensions is prime and, therefore, there cannot be local
redundancy.

Example 3. C5 ⊗ C5: Consider the set of three orthogonal
states (unnormalized):

|φ1〉 ≡ |00〉 + |11〉 + |22〉 + |33〉 + |44〉,
|φ2〉 ≡ |00〉 − |11〉 − |22〉 − ω|33〉 − ω2|44〉, (3)

|φ3〉 ≡ |01〉 + |23〉,

where ω, ω2 are cubic roots of unity. First we show the
states are locally distinguishable. Alice performs a binary
measurement defined by the orthogonal projectors P02 and
P134 on her system. If she gets the first outcome, they are left
to distinguish |00〉 ± |22〉, |01〉 + |23〉. Now, Bob performs
a binary measurement defined by P02 and P134. If he gets
the first outcome they are left to distinguish the orthogonal
pair |00〉 ± |22〉 that we know can be locally distinguished
(Theorem 1). If he gets the second outcome they are left only
with |01〉 + |23〉, so the task is completed. Now, if Alice gets
the second outcome P134 in the first round, they are left to
distinguish a pair of orthogonal states |11〉 + |33〉 + |44〉 and
|11〉 + ω|33〉 + ω2|44〉 and Theorem 1 applies. So we have
shown that the states (3) are locally distinguishable.

Now we prove the second property. Alice performs a
binary measurement defined by the orthogonal projectors
P01 and P234. There are only two possible outcomes. If
she gets P01 they are left with one the three orthogonal
states |00〉 ± |11〉, |01〉. From Theorem 2(a) it follows that
they are locally indistinguishable. On the other hand, if
she gets P234 they are left with one of the three orthog-
onal states |22〉 + |33〉 + |44〉, |22〉 + ω|33〉 + ω2|44〉, and
|23〉. But we know such a set cannot be perfectly distin-
guished with certainty by LOCC [26]. This completes the
proof.

We now give an example from a multipartite system. Recall
that local (in)distinguishability for a k-partite system, where
k � 3, is defined where all the k parties are separated from
each other. However, if a given set is locally indistinguishable
in some k′-partite configuration, where k′ � 2, it must be
locally indistinguishable. But note that the converse is false.
One can find orthogonal states in a tripartite system ABC that
are locally distinguishable across all the bipartitions A|BC,
B|CA, and C|AB but not in A|B|C [20].

Example 4. C5 ⊗ C5 ⊗ C5: Consider the orthogonal states:

|φ1〉 ≡ |000〉 + |111〉 + |222〉 + |333〉 + |444〉,
|φ2〉 ≡ |000〉 − |111〉 − |222〉 − ω|333〉 − ω2|444〉. (4)

|φ3〉 ≡ |011〉 + |233〉,
The above states are a three-party generalization of those in
Example 3. The proof is similar.

Discussions. The examples that we discussed provide an
idea of constructions in other state spaces. The first and the
second example may be suitably generalized in C2n ⊗ C4n

and C4n ⊗ C4n, respectively, for n � 2. However, proper care
should always be taken to ensure there is no local redundancy
involved when the dimensions of the local subsystems are
composite. The third example could help us to find examples
in other spaces where the local dimensions are prime. How-
ever, we do not know if they could be found in state spaces
such as C2 ⊗ C3 and C3 ⊗ C3. We also showed that sets
with genuine activable nonlocality do not exist in C2 ⊗ C2.
Whether there are other state spaces also where they do not
exist is an interesting question.

Is there an upper bound on the size of sets with genuine
activable nonlocality in a given state space? We do not have
any particularly helpful intuition here. But we believe other
methods for obtaining such sets could help. So how big they
could be in a given state space remains an open question.
Finally, is it possible to have activable nonlocality without
entanglement? In particular, does there exist an orthogonal
product set with genuine activable nonlocality? We suspect
not. In fact, it would be surprising if it does.

Conclusions. In this paper, we showed that quantum non-
locality can be genuinely activated in the scenario of quantum
state discrimination by LOCC. In particular, we considered or-
thogonal sets of pure states that are locally distinguishable and
without local redundancy. We gave several examples where
such a set can be locally converted, with certainty, into another
orthogonal set, which is locally indistinguishable. That is, a
state chosen from an activable set can be locally converted,
with certainty, into another state, the identity of which can be
determined by a global measurement but not by LOCC. We
also discussed a potential application, namely, local hiding
of the entire locally available information. The information,
once hidden, is no longer locally available in full and to access
it, one must use entanglement. We also discussed interesting
open questions.

The notion of activation of quantum nonlocality is known
to hold in the context of Bell nonlocality [73–77]. Our result
shows that activation of nonlocality also appears meaningfully
in local quantum state discrimination. So whether the activa-
tion phenomenon can also be observed in other manifestations
of nonlocality (for example, Ref. [78]) is an intriguing ques-
tion.

We would like to thank Manik Banik, IISER Thiruvanan-
thapuram, for his observations that led us to address the issue
of local redundancy.
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