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Singularities in nearly uniform one-dimensional condensates due to quantum diffusion
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Dissipative systems often exhibit wavelength-dependent loss rates. One prominent example is Rydberg
polaritons formed by electromagnetically induced transparency, which have long been a leading candidate for
studying the physics of interacting photons and also hold promise as a platform for quantum information. In
this system, dissipation is in the form of quantum diffusion, i.e., proportional to k2 (k being the wavevector)
and vanishing at long wavelengths as k → 0. Here, we show that one-dimensional condensates subject to this
type of loss are unstable to long-wavelength density fluctuations in an unusual manner: after a prolonged period
in which the condensate appears to relax to a uniform state, local depleted regions quickly form and spread
ballistically throughout the system. We connect this behavior to the leading-order equation for the nearly uniform
condensate—a dispersive analog to the Kardar-Parisi-Zhang equation—which develops singularities in finite
time. Furthermore, we show that the wavefronts of the depleted regions are described by purely dissipative
solitons within a pair of hydrodynamic equations, with no counterpart in lossless condensates. We close by
discussing conditions under which such singularities and the resulting solitons can be physically realized.
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Dissipative systems are typically described by a constant
dissipation rate, yet many physical platforms are instead sub-
ject to momentum-dependent losses. A prominent example
is Rydberg systems, which have received much interest as a
platform for quantum nonlinear optics [1–3] and quantum in-
formation processing/simulation [4–12]. The polaritons that
form under the condition of electromagnetically induced
transparency (EIT) [13–15] undergo quantum diffusion, i.e., a
one-body loss rate �k ∝ k2 [2]. A similar form of dissipation
occurs in bosonic atoms driven by two coherent laser beams
[14]. This type of loss can be realized in arrays of microwave
resonators as well by coupling the cavity modes to qubits
[16,17].

In a many-body system, momentum-dependent loss can
have drastic consequences, from dissipatively stabilizing con-
densates [18] to producing exotic critical or correlated states
[17,19–21]. These advances notwithstanding, many conse-
quences of momentum-dependent loss remain undiscovered.

In this paper, we investigate a driven-dissipative conden-
sate in one dimension subject to one-body loss �k ∼ λk2. We
show that when perturbed from uniformity, this system ex-
hibits a striking instability, best demonstrated by the example
in Fig. 1. Shown is the density profile of a condensate as
a function of time, obtained by numerical simulation of the
Gross-Pitaevskii equation (details to be explained below). The
condensate initially has a slight localized excess of particles.
The excess density begins to spread throughout the system,
and the condensate appears to relax to a uniform state. How-
ever, after a significant delay, the density quickly drops to zero
in certain regions, forming fronts that move ballistically and
eventually consume the entire condensate.

We show that the onset of instability can be attributed
to the long-wavelength equation for the phase of the nearly
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FIG. 1. Top: Time evolution of a small Gaussian density per-
turbation. Bottom: Snapshots of the density profile (normalized by
the initial density ρ0) at the times indicated by the dashed white
lines in the top panel. Simulation parameters are the dissipation
strength λ = 2.0, the height of the initial Gaussian h = 0.1, its width
w = 15ξ , the spatial discretization �x = 0.2ξ , and the time step
�t = 0.1τ . ξ and τ define the coherence lengthscale and timescale,
respectively.
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uniform condensate. Whereas driven-dissipative condensates
with k-independent loss are typically described by the
Kardar-Parisi-Zhang (KPZ) equation [22–26], a well-known
nonlinear diffusion equation, here we find an analogous non-
linear wave equation, which we refer to as “dispersive KPZ.”
Little is known about the dispersive KPZ equation, at least
in the physics literature, but a surprising feature of the latter
is that generic solutions diverge in finite time [27]. We show
that this singularity corresponds to the sudden depletion of the
condensate.

The dynamics following the formation of the depleted re-
gions can no longer be described by dispersive KPZ, for which
solutions simply do not exist beyond the singularity time. We
thus derive a more general pair of hydrodynamic equations,
and we identify soliton solutions that accurately describe the
shape and motion of the fronts seen in Fig. 1. As will become
clear, these solitons are exclusive to dissipative condensates,
and in fact, their core size diverges in the limit of vanishing
dissipation, λ → 0.

Dissipative Gross-Pitaevskii equation. We consider a one-
dimensional gas of particles with contact interactions and
single-body loss �k ∼ λk2. Formally, the system is described
by the quantum master equation (h̄ = 1)

∂tρ = −i(Ĥeffρ − ρĤ†
eff ) +

∫
dx

λ

m
(∂xψ̂ )ρ(∂xψ̂

†), (1)

Ĥeff =
∫

dx

[
1 − iλ

2m
(∂xψ̂

†)(∂xψ̂ ) + U ψ̂†2ψ̂2

]
, (2)

where ρ is the density matrix of the system, and ψ̂†(x) creates
a bosonic particle at position x. Here m is the mass and U > 0
governs the strength of interactions.

Following the standard procedure, e.g., as in Refs. [28,29],
we first derive the semiclassical equation of motion for
the condensate wavefunction ψ (x), valid at large densities
ρ0 � mU . While it would clearly be ideal to go beyond
this weakly interacting limit, we shall find that the semi-
classical behavior is already quite rich. The equation of
motion is

i∂tψ + 1 − iλ

2m
∂2

x ψ − 2U |ψ |2ψ = 0. (3)

Equation (3) is quite similar to the standard Gross-Pitaevskii
(GP) equation, with the only difference being that the co-
efficient of the kinetic term is complex. Therefore, any
spatial variation of the wavefunction leads to dissipation.
We shall focus on the dynamics of a nearly uniform con-
densate. For concreteness, we use initial conditions of the
form

ψ (x, 0) = √
ρ0

(
1 + he− x2

w2
) 1

2 . (4)

We have confirmed that the conclusions of this paper hold
for other initial conditions as well (sinusoidal perturbations,
random density/phase fluctuations, etc.).

The natural lengthscale of Eq. (3) is the healing length
ξ ≡ √

1/mUρ0, and the natural timescale is τ ≡ mξ 2. The re-
maining dimensionless parameters are the dissipation strength
λ, the magnitude of the density perturbation h, and the width
of the density perturbation w/ξ .

FIG. 2. Demonstration of the scaling form for the singularity
time τsing. The solid line is a power law z−2, drawn for comparison.
τsing is plotted for Gaussian density perturbations of various heights
h and widths w (see the inset), and various dissipation strengths
λ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. System size is L = 10 000ξ .

Figure 1, showcased earlier, displays a representative sim-
ulation of Eq. (3) using the initial profile in Eq. (4). The
behavior is highly nontrivial—a prolonged period during
which the condensate is nearly uniform is followed by the
sudden appearance and subsequent spread of fully depleted
regions. We refer to the sudden depletion as a “singularity.”
While the density profile is strictly analytic as a function of
time, the long-wavelength equation derived below exhibits a
genuine singularity, which acts as a precursor to the conden-
sate depletion.

For concreteness, let us define τsing as the time when
ρ(x, t ) ≡ |ψ (x, t )|2 first drops below ρ0/2 at some position
x, i.e., the first time at which minxρ(x, t ) < ρ0/2. Figure 2
plots τsing for multiple choices of λ and initial conditions. A
clear scaling form is seen:

τsing(λ,w, h)

τ
∼ w

ξ
F

(
λwh

ξ

)
, (5)

where the scaling function appears to fall off as F (z) ∼
z−2 for z � 1. Such algebraic dependence implies that the
underlying instability is fundamentally different from nucle-
ation, where a metastable state tunnels into a true equilibrium
state, for which the decay rate would be exponentially
suppressed at small fluctuations/perturbations. The insta-
bility reported here is governed by a different mechanism
that follows from the long-wavelength description of the
condensate.

Dispersive KPZ equation. To derive the long-wavelength
effective equation for the nearly uniform condensate, starting
from Eq. (3), we (i) write ψ (x, t ) = √

ρ0 + �ρ(x, t )eiθ (x,t ),
assuming �ρ 	 ρ0, and (ii) retain only the terms in the
GP equation that are both lowest-order in �ρ/ρ0 and most
relevant at long wavelengths. The calculation is given in the
supplemental material (SM) [30]. The end result is

1

c2
∂2

t θ = ∂2
x θ + λ(∂xθ )2, (6)
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with c ≡ √
2ξ/τ being a velocity scale that characterizes the

“speed of sound.” The density variation in turn comes out to
be �ρ = −(ρ0τ/2)∂tθ .

Equation (6) is quite similar to the (noiseless) KPZ equa-
tion, which has emerged in generic dissipative condensates
[22–25], except for the second time derivative on the left-hand
side, which results in a wavelike equation with c defining a
causal “light cone” [27]. Being a nonlinear wave equation, we
refer to Eq. (6) as the “dispersive KPZ” equation. Much less
is known about dispersive KPZ than its diffusive counterpart
[31–34], but one established result is that under certain con-
ditions, solutions to the dispersive KPZ equation—as well as
a larger class of nonlinear hyperbolic equations—diverge in
finite time [27]. On physical grounds, this is due to the absence
of any damping term such as ∂tθ , which could counteract the
nonlinear growth. We have confirmed this divergence through
numerical simulation of Eq. (6).

Figure 3 compares the solution of dispersive KPZ to the
solution of the GP equation for a representative example. We
see that (i) the two agree extremely well for as long as �ρ/ρ0

is everywhere small, and (ii) development of the singularity
in dispersive KPZ coincides with the depletion of the con-
densate. For this reason, we equate the singularity time with
τsing [35].

The scaling form of τsing given in Eq. (5) then follows
from the scaling of solutions to dispersive KPZ. Suppose
that, just as in the simulations above, initially θ (x, 0) = 0 and
�ρ(x, 0) = − ρ0τ

2 ∂tθ (x, 0) is of the form

�ρ(x, 0) = ρ0h

2
G
( x

w

)
(7)

for some dimensionless function G(y). Defining y ≡ x/w,
s ≡ tc/w, φ(y, s) ≡ λθ (x, t ), the dispersive KPZ equation to-
gether with the initial conditions can be written as

∂2
s φ = ∂2

y φ + (∂yφ)2,

φ(y, 0) = 0, ∂sφ(y, 0) = −λwh√
2ξ

G(y). (8)

The only dimensionless parameter here is λwh/ξ , hence the
scaling form in Eq. (5). This gives further evidence for the
applicability of dispersive KPZ [36].

Unfortunately, the dispersive KPZ equation does not have
a general analytic solution (although a solvable special case is
given in the SM [30]). Thus let us briefly discuss an analogous
but simpler equation that exhibits similar features:

∂t θ̃ = ∂x θ̃ + λθ̃2, (9)

which, in dimensionless coordinates, describes a left-moving
wave with an additional nonlinear term (with θ̃ roughly
mimicking ∂xθ [37]). It is trivial to solve this equation by
transforming to the frame moving alongside the wave: along
the path x(t ) = x0 − t , Eq. (9) simply becomes d θ̃/dt = λθ̃2.
Thus the general solution is

θ̃ (x0 − t, t ) = θ̃0

1 − λθ̃0t
, (10)

FIG. 3. Comparison of the solution to the GP equation (red lines)
against solutions to approximate equations for time evolution of a
Gaussian density perturbation. Times are indicated in each panel.
Upper three: Comparison to dispersive KPZ, shown in blue. Bottom:
Comparison to the soliton given by Eqs. (13) and (14), shown in
green, with the constant z0 chosen to match the center of the front.
Simulation details: dissipation strength is λ = 0.4, height of the
initial Gaussian is h = 0.05, width is w = 200ξ , spatial step size is
�x = 0.2ξ , temporal step size is �t = 0.1τ .

where θ̃0 ≡ θ̃ (x0, 0). We see that, unless θ̃ (x0, 0) is every-
where negative, θ̃ (x, t ) will diverge in finite time, regardless
of the precise shape of the initial condition. The same
phenomenon occurs in the setting of the dispersive KPZ
equation. Note that this behavior is much more dras-
tic than a linear instability, where the amplitude would
grow exponentially but nonetheless be finite at any finite
time.

Hydrodynamic equations. For times greater than τsing, the
dispersive KPZ equation clearly cannot describe the evolution
of the condensate. Thus we derive a pair of hydrodynamic
equations that no longer assume �ρ 	 ρ0, only requiring
that the relevant lengthscales and timescales still be larger
than ξ and τ , respectively. We follow the standard procedure
for quantum fluids by describing the wavefunction in terms
of the density ρ(x, t ) and velocity field v(x, t ) ≡ ∂xθ (x, t )/m
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[38,39]. The resulting hydrodynamic equations become (see
the SM for details [30])

∂tρ + ∂x(ρv) = −λmρv2, (11)

∂tv + v∂xv = −2U

m
∂xρ. (12)

Equation (11) is the analog of the continuity equation, with
the additional feature that the density is depleted in regions
of nonzero velocity. Equation (12) is the standard Euler equa-
tion for an incompressible fluid, with the pressure given by
P(ρ) = Uρ2 [hence the right-hand side can be written as
−(mρ)−1∂xP(ρ)] [39].

One can confirm by direct substitution that the above equa-
tions admit soliton solutions—ρ(x, t ) = ρ(x − ut ), v(x, t ) =
v(x − ut )—for any velocity u such that |u| � c (c being
defined as before). Supersonic solitons are likely unstable,
therefore we focus on the case u = c, where the soliton moves
rightward at the speed of sound. In terms of z ≡ x − ct , we
obtain [30]

ρ(z)

ρ0
= 1 + v(z)

c
− v(z)2

2c2
,

v(z)

c
= f −1

[√
2λ

3ξ
(z0 − z)

]
,

(13)

where z0 is a constant that fixes the center of the soliton and
f −1 is the inverse of the function

f (y) = ln (−y) − 2
√

3 + 3

6
ln (

√
3 − 1 + y)

+ 2
√

3 − 3

6
ln (

√
3 + 1 − y). (14)

Note that the density ρ approaches ρ0 as z → ∞, while it
vanishes as z → −∞. The fronts observed in our simulations
of the GP equation agree well with Eq. (13) (the left-moving
fronts are easily related to the above by symmetry). A repre-
sentative comparison is shown in the bottom panel of Fig. 3.

These solitons are quite different from those in the
dissipation-free GP equation [ρ ∼ ρ0 tanh2 (z/

√
2ξ )] [38].

Most importantly, the dissipative solitons have a core size
ξ/λ (as opposed to simply ξ ), which diverges in the limit
of vanishing dissipation, λ → 0. This is consistent with the
fact that these solitons originate from an instability that occurs
only in the presence of quantum diffusion.

Physical realizations. Let us briefly comment on potential
physical realizations of this phenomenon. As noted above, one
possible platform is Rydberg polaritons via electromagneti-
cally induced transparency (EIT), formed when an incoming
photon hybridizes with a long-lived Rydberg state through a
lossy intermediate state [4,40,41]. At precisely zero momen-
tum, the polariton is a superposition of Rydberg state and
photon with exactly zero amplitude on the lossy state, and
hence it is essentially lossless. The deviation from resonance
at small but finite k leads to the k2 loss and results in a
diffusionlike term [2]. Furthermore, at low energies, we can
neglect scattering into other modes, leaving Eq. (2) as the
effective many-body Hamiltonian.

While the interaction between polaritons is generically
complex-valued as well, we have confirmed that it is possible
to tune microscopic parameters so that the effective two-
body loss rate vanishes while the one-body (k2) loss remains

significant; see the SM [30]. Thus the instability reported here
may be observable in Rydberg polariton systems, although
the parameter regime in which τsing � τ (where the “singu-
larity” is sharpest) would necessitate a long atomic medium.
Running-wave cavities may provide a feasible alternative to
the long free-space lengths.

An alternate realization could come from a one-
dimensional (1D) cloud of bosonic atoms driven by two
coherent lasers under EIT. With one beam orthogonal to the
atomic gas and the other parallel, detuning (proportional to
the atomic wavevector k) due to the Doppler shift leads to
diffusionlike dynamics [14]. To ensure that the contact inter-
action does not itself cause losses, one would have to properly
choose the states involved and tune interactions, e.g., with a
magnetic field [42]. Finally, microcavity arrays [18,43] pro-
vide another platform where k2 loss can be realized [16,17].
However, it may be challenging to engineer coherent interac-
tions and diffusive terms simultaneously.

Conclusion. We have shown that 1D driven-dissipative
condensates for which quantum diffusion is the dominant
source of dissipation suffer from a peculiar instability to local
density perturbations. The condensate relaxes towards uni-
form density until a time τsing—much larger than the natural
timescale τ—after which certain regions quickly deplete and
form fronts which then spread throughout the condensate. We
have traced this behavior to the long-wavelength effective
equation for the phase of the condensate, a nonlinear wave
equation that we refer to as the “dispersive KPZ” equation.
Solutions to dispersive KPZ can diverge at finite times, and
we have observed that the singularity in the long-wavelength
description coincides with depletion of the condensate. We
have further derived a pair of hydrodynamic equations for the
condensate that accurately describe the dynamics even beyond
the onset of instability. Interestingly, the fronts are described
by nonstandard soliton solutions that emerge solely due to
dissipation.

From a mathematical perspective, it has long been known
that the solutions to nonlinear wave equations can diverge, or
more generally become nonanalytic [44,45]. It is interesting to
note that whereas the divergence is often seen as an unphysi-
cal mathematical pathology, here it corresponds to a genuine
physical phenomenon. Coincidentally, Ref. [27] even makes
the following comment: “there is, to our knowledge, no direct
application of [dispersive KPZ] to a physical problem.” The
situation discussed here—condensates undergoing quantum
diffusion—provides such an application.

Many directions for future work remain. First of all, even
though some steps of our analysis were tailored to the specific
problem at hand (a necessity when studying nonlinear equa-
tions), others can be applied in a variety of contexts. We fully
expect that the underlying phenomenon of rapid instabilities
tied to singularities in the long-wavelength effective equations
can be found in a much wider class of systems. At the very
least, one can derive analogous equations in higher dimen-
sions, and it would be interesting to examine their possible
singularities as well.

Furthermore, whereas the traditional solitons and hydro-
dynamic behavior of condensates have been well-studied
[38,39,46], we have only scratched the surface of the present
equations. For example, it would be interesting to study
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a gas of dissipative solitons similar to their counterpart in
exciton-polariton condensates [47–50]. A pumping mecha-
nism would be required to maintain a nontrivial steady state,
but the resulting physics could be quite rich and is worth
investigating.

It is also desirable to go beyond the semiclassical limit and
investigate the strongly interacting quantum regime. Although
extremely difficult in general, a step in this direction would be
to include noise terms in Eqs. (3) and (6) [28,29]. Most studies
of the traditional KPZ equation do include a noise term, as it
is the competition between noise and nonlinearity that leads
to distinct scaling properties [51,52], and so it is natural to
ask whether dispersive KPZ has its own unique scaling be-
havior. Another motivation comes from the fact that scattering
processes (not included in the semiclassical treatment) can
lead to alternate types of momentum-dependent dissipation,
e.g., Beliaev damping [53,54]. Finally, further scrutiny of
different physical realizations is worthwhile. While we have

intentionally kept our analysis theoretical and abstract, more
systematic investigations are needed to assess the feasibility
of any specific implementation.
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