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The condensation of Cooper pairs, originating from the Fermi-surface instability due to a weakly attractive
interaction between two fermions, opened a new frontier for exploring many-body physics in interdisciplinary
contexts. In this work, we discuss the possible condensation of Cooper triples, which are three-body counterparts
of Cooper pairs for three-component fermions with a three-body attraction. Although each composite trimer-like
state obeys the Fermi-Dirac statistics, its aggregate can form a condensate at zero center-of-mass momentum in
the presence of the internal degrees of freedom associated with the relative momenta of constituent particles of
momenta close to the Fermi surface. Such condensation can be regarded as bosonization in infinite-component
fermions. We propose a variational wave function for the condensate of Cooper triples in analogy with the
Bardeen-Cooper-Schrieffer ground state, and we obtain the ground-state energy.

DOI: 10.1103/PhysRevA.104.L041302

Introduction. A quantum many-body problem is related to
various systems that are encountered not only in condensed
matter physics but also in nuclear and particle physics. On top
of interactions between constituents, the degrees of freedom
such as spin, isospin, and flavor play an important role in
characterizing a variety of strongly correlated systems. One
of the most striking examples is conventional superconduc-
tivity, which is triggered by the formation of a Cooper pair,
i.e., a pairing state of two electrons with spin up and down
in the presence of the Fermi sphere. The Bardeen-Cooper-
Schrieffer (BCS) theory [1], which successfully explains the
microscopic mechanism of superconducting phase transition
in terms of condensation of Cooper pairs, has developed a
fundamental basis for the description of superfluid states in
cold atoms [2,3] as well as dense matter [4,5].

Most of the quantum many-body effects in spin-1/2
fermions (e.g., electrons, neutrons) have been studied in terms
of two-body interactions as in the BCS theory [1]. Three-body
(or even more) interactions between particles with internal
multiple degrees of freedom, on the other hand, have attracted
a lot of attention [6]. In a three-component fermionic system,
the formation of Cooper triples, which correspond to a three-
body version of Cooper pairs, has been studied in the presence
of two-body and three-body interactions [7–10]. If Cooper
triples actually occur, however, what kind of state the system
would end up with is not known even qualitatively. It is also
under investigation how medium corrections affect properties
of Efimov trimers [11–18]. In addition, an in-medium cluster
state consisting of more than three particles such as a Cooper
quartet has also been pointed out [19,20]. Similarly, the α-
particle condensation in nuclear matter has been investigated
by generalizing the BCS ground state [21–24].

Although more than two-body interactions are generally
weak and are often treated as small perturbations in binding
energies dominated by two-body interactions [6], such multi-

body interactions are inherent to composite particles [25] and
sometimes are needed to clarify the properties of in-medium
cluster states. From this perspective, ultracold atoms provide
a valuable opportunity to manipulate multibody interactions
in a systematic manner [26]. In particular, by reducing the
two-body interaction to zero, one can realize a unique system
that is governed by the three-body interaction hidden behind
the two-body interaction [8,9,27–38]. The effects of the three-
body interaction have been studied extensively in theories of,
e.g., pair superfluidity of bosons [39–42], three-component
Fermi gases [43–45], quantum bound states [46], and Efimov
states [13,15].

In this work, we theoretically predict that Cooper triples
can condense in a three-component Fermi system. Although
each Cooper triple obeys the Fermi-Dirac statistics, a macro-
scopic number of triple states can occupy an effective single
state of zero center-of-mass momentum in the presence of
various sets of three particles having different species and
different momenta on a spherical surface close to the Fermi
surface, as shown in Fig. 1. This exotic condensation can
be regarded as bosonization in infinite-component fermions
associated with relative momenta. For an attractive three-body
force, which has been discussed extensively in cold-atom
physics [6], we propose a variational wave function for the
Cooper triple condensation in analogy with the BCS ground
state. We obtain the ground-state energy in a three-component
fermionic system with a three-body interspecies attraction to
show that the Cooper triple state is energetically more favor-
able than the normal state. In what follows, we take the system
volume to be unity and units in which h̄ = kB = 1.

Model. We consider nonrelativistic three-component (r,g,b)
fermions of equal mass m with the three-body attractive in-
teraction. Various systems with three-body interaction have
been discussed in ultracold atoms [27–38]. Moreover, we later
propose a way to realize an attractive three-body interaction
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FIG. 1. (a) Momentum-space configurations of three fermions of
different species on a spherical surface that have zero center-of-mass
momentum. The momenta k and k′ of one of the three fermions can
take on various directions. (b) The corresponding in-plane configu-
ration of the three fermions of momenta k, R̂k, and R̂2k. The angle
between any pair of momenta is 2π/3.

induced by a background medium gas [47–51] in multicom-
ponent ultracold atomic gases (e.g., 6Li, 173Yb). In this work,
we assume that the two-body interaction is vanishing for
simplicity, while the weakly attractive three-body interaction
ignored in the previous work [7] is present. It is noteworthy
that even in the presence of the two-body attractive interaction
alone among the three components, the Cooper triple state
is predicted to be dominant over the Cooper pairing state at
least above a threshold strength [7]. We also consider the
system in which the chemical potentials are the same, i.e.,
μr = μg = μb ≡ μ.

At sufficiently low temperature and weak coupling, the
Fermi degeneracy is expected and therefore the available
momentum space of fermions undergoing zero center-of-
mass-momentum three-body scattering is restricted to around
the Fermi surface. In such a case, the system can be described
by the following effective Hamiltonian in the momentum
space:

Ĥeff =
∑

γ

∑
k

ξkn̂k,γ +
∑
k,R̂

∑
k′,R̂′

Uk,k′ F̂ †
k′,R̂′ F̂k,R̂. (1)

Here ξk = |k|2/(2m) − μ is the kinetic energy of a fermion
with momentum k measured from μ, and n̂k,γ = ĉ†

k,γ
ĉk,γ

is the single-particle number operator with the annihilation
(creation) operator ĉ(†)

k,γ
for fermions of momentum k and com-

ponent γ . The second term in Eq. (1) denotes the three-body
interaction with a contact-type coupling constant U , taken
to be negative here. F̂ (†)

k,R̂
is the trimer annihilation (creation)

operator defined in terms of ĉk,γ as

F̂ †
k,R̂

= ĉ†
k,r ĉ

†
R̂k,g

ĉ†
R̂2k,b

, F̂k,R̂ = ĉR̂2k,bĉR̂k,gĉk,r, (2)

where R̂ is the operator that represents a 2π/3 rotation in
a given momentum plane and hence ensures zero center-
of-mass momentum (k + R̂k + R̂2k = 0). These operators
satisfy the anticommutation relations

{F̂k,R̂, F̂k′,R̂′ } = {F̂ †
k,R̂

, F̂ †
k′,R̂′ } = 0̂, (3)

{F̂k,R̂, F̂ †
k′,R̂′ } = δk,k′δR̂k,R̂′k′δ

R̂2k,R̂′2k′ [(1̂ − n̂k,r )(1̂ − n̂R̂k,g)

× (1̂ − n̂R̂2k,b) + n̂k,rn̂R̂k,gn̂R̂2k,b]. (4)

Physically, the two terms on the right side of Eq. (4) represent
a deviation from the usual fermionic anticommutation relation
due to a composite nature of three holes and three particles;
for the normal state at zero temperature, such a deviation
vanishes.

Possible condensation of Cooper triples. Let us proceed
to ask how condensation of Cooper triples can occur by
considering a three-fermion configuration among different
components as shown in Fig. 1. For three such fermions
near the Fermi surface, the absolute values of the respective
momenta |k|, |R̂k|, and |R̂2k| are around the Fermi momen-
tum kF, while the center-of-mass momentum remains zero. In
momentum space, as depicted in this figure, k, R̂k, and R̂2k
are located on the same plane in such a way that the angles
between two of them are 2π/3. When k and the plane are
fixed, therefore, the other two, R̂k and R̂2k, are automatically
determined.

From the anticommutation relation associated with ĉk,γ ,
one finds

F̂ †
k,R̂

F̂ †
k′,R̂′ |0〉 �= 0 (k �= k′, R̂k �= R̂′k′, R̂2k �= R̂′2k′), (5)

where |0〉 is the normalized vacuum state. This indicates that
two trimers with zero center-of-mass momentum can coexist
unless the two momenta of a given component happen to be
the same. Since k can be taken in countless ways, one can find
a countless number of configurations of the three fermions
with zero center-of-mass momentum in the presence of the
Fermi surface. It looks as if bosonization occurred in infinite-
component fermions [52]. Indeed, it is similar to the case
of a three-dimensional gas of SU(N) fermions in which the
internal spin degrees of freedom of composite particles arise
from the spin of constituent particles. Therefore, the Cooper
triples can condense by occupying the zero-momentum state
macroscopically regardless of their Fermi-Dirac statistics.

Generalized Cooper problem. Before addressing whether
Cooper triples actually condense, we have to confirm that a
single Cooper triple appears as a bound state in the presence of
the Fermi sea. To this end, we generalize the Cooper problem
[53] to the present three-component case.

First, we assume that a trial wave function of a single three-
body state above the Fermi surface is given by

|ψ ′〉 =
∑

|p|�kF

�pF̂ †
p,R̂

|ψFS〉, (6)

where |ψFS〉 denotes the ground state of noninteracting
fermions that corresponds to the Fermi sphere of radius kF,
and R̂ is fixed. Variation of the expectation value 〈ψ ′|Ĥeff |ψ ′〉
with respect to �∗

p under 〈ψ ′|ψ ′〉 = 1 leads to a Schrödinger-
like equation,(

3p2

2m
− E − 3EF

)
�p = −

∑
|p′|�kF

Up′,p�p′ , (7)

where EF = k2
F

2m is the Fermi energy.
As in the case of the usual Cooper problem, the existence

of the E < 0 solution to Eq. (7) indicates that the three-body
state is bound due to the Fermi surface effect. In the present
case, we assume

Uk,k′ = −U0θ (
 − |ξk|)θ (
 − |ξk′ |), (8)
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FIG. 2. Schematic phase diagram in the plane of the two-body
coupling constant G and three-body coupling constant U0 (in arbi-
trary units). The solid line shows the threshold for the transition
between a Cooper pair (CP) and a Cooper triple (CT) state as ob-
tained within the generalized Cooper problem in the weak-coupling
limit. GC is the critical two-body coupling constant for the transition
between CP and CT in the absence of U0 [7]. We also plot an
eye-guide (dashed line) for the upper bound of CP starting from
(G,U0 ) = (GC, 0). In this work, we consider the weak-coupling
region where the Cooper triple formation is dominant, as indicated
below the dotted line.

where U0 is the positive constant. In the presence of the Fermi
surface common to the three components, we introduce an
energy cutoff 
 such that the interaction works only for three
fermions of momenta close to the Fermi surface. We note that

 corresponds to the Debye frequency in a conventional BCS
superconductor with phonon-mediated interaction [1]. In the
case of the fermion-mediated three-body interaction, as will
be explained later, 
 is associated with the Fermi energy of
medium fermions [54]. By incorporating Eq. (8) into Eq. (7),
one can obtain the equation for the three-body energy E as

1 = U0

∑
|p|�kF

θ (
 − |ξp|)
3p2

2m − E − 3EF

. (9)

In the weak-coupling limit, one arrives at E =
−3
 exp

( − 3
ρ(0)U0

)
< 0, where ρ(0) is the density of

states at the Fermi level. In this way, one can conclude that
the unperturbed ground state is unstable with respect to
the formation of a Cooper triple. We emphasize that this
instability originates from the Fermi surface effect since there
are no bound states in vacuum in the case of an infinitesimal
small three-body coupling. Indeed, by following a line of
argument of Ref. [10], the threshold for the occurrence of
a three-body bound state is found to be nonzero. Although
these in-vacuum quantities, together with the in-medium
ones, may be renormalized by physical quantities such as
the three-body scattering amplitude if one goes beyond the
weak-coupling analysis, in this work we specifically focus on
the weak-coupling limit.

Let us now show where the situation of interest here is
located in the space of the two-body and three-body coupling
constants. Figure 2 exhibits a schematic phase diagram based
on weak-coupling analyses of the Cooper problem in the pres-
ence of the two-body attractive interaction also. In such a case,

a Cooper pair can be formed in the unperturbed ground state.
The binding energy of such a Cooper pair is given by E2 =
−2
 exp

( − 2
ρ(0)G

)
, where G � 0 is the attractive two-body

coupling constant (for simplicity, we take the same cutoff 
 as
the three-body case). We can thus conclude from comparison
between the in-medium two-body and three-body binding en-
ergies that the transition between a Cooper pair and a Cooper
triple state occurs at G = 2

3U0 in the weak-coupling limit. In
this work, we focus on the weak-coupling region where the
Cooper triple formation is dominant due to U0 � G (indicated
by the region below the dotted line in Fig. 2). We note that
the transition from the Cooper pair to the Cooper triple state
in the absence of the three-body attraction requires a finite
strength of the two-body attraction [7,8], which corresponds
to the critical coupling GC in Fig. 2. The upper bound of the
Cooper pair state at finite U0 (eye-guide denoted by the dashed
line) can be complicated by the coexistence or competition of
two-body and three-body correlations and hence it is beyond
the scope of this paper.

Variational wave function for the Cooper triple conden-
sation. Since the generalized Cooper problem as discussed
above suggests the new ground state involving many Cooper
triples, we propose a gauge fixed variational wave function for
the Cooper triples, in analogy with the BCS ground state, as

|ψT 〉 =
∏

k

(
uk + vkF̂ †

k,R̂0

)|0〉, (10)

where uk and vk are complex variational parameters as func-
tions of k alone. We note that the state (10) breaks the U (1)
gauge symmetry via the superposition of Cooper triples. This
fact is in sharp contrast to the case of bosonized SU(N)
fermions [52], where the phase coherence is absent since the
lowest energy level is simply occupied by each hyperfine state.
Here, we set R̂0 in such a way that if the momentum k of
component r is in the direction of

e1 =
⎛
⎝0

0
1

⎞
⎠,

the momentum R̂0k of component g and the momentum R̂2
0k

of component b are in the direction of

e2 =
⎛
⎝

√
3/2
0

−1/2

⎞
⎠ and e3 =

⎛
⎝−√

3/2
0

−1/2

⎞
⎠,

respectively; otherwise, k, R̂0k, and R̂2
0k are in the direction of

V e1, V e2, and V e3, respectively, with an appropriate rotation
matrix V . This choice of R̂0, leading to a specific orientation
in momentum space, ensures that the state (10) can have any
momentum of each component picked up only once from the
vacuum. Note that one can consider another R̂0 by setting

e2 =
⎛
⎝

√
3 cos θ/2√
3 sin θ/2
−1/2

⎞
⎠ and e3 =

⎛
⎝−√

3 cos θ/2
−√

3 sin θ/2
−1/2

⎞
⎠

with θ �= 0, i.e., by rotating the momentum plane on which a
Cooper triple with k in the direction of e1 resides by θ with
respect to e1. The resultant state is degenerate with the orig-
inal state. Such degeneracy is similar to the case of different
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gauge orientations, which allows us to regard the variational
parameters as independent of the choice of R̂0 as well as the
gauge. Note also that in the BCS case, k just corresponds to
the relative momentum of a Cooper pair, whereas in the state
(10) not only k but also R̂0 characterizes the relative momenta
of two fermions in a Cooper triple: (1 − R̂0)k, (R̂0 − R̂2

0)k,
and (R̂2

0 − 1)k.
One may consider a more sophisticated variational wave

function that involves the superposition of the states given
by Eq. (10) with various R0’s. Since the variational param-
eter space is enlarged by considering such superposition, the
ground-state energy in this wave function would be lower than
that of the state (10). For our purpose, however, it is enough
to show that the ground-state energy is lowered compared to
the normal state by the Cooper triple formation considered in
Eq. (10). Since we consider the infinitesimally weak three-
body attraction in Eq. (1), moreover, a zero center-of-mass
momentum configuration of Cooper triples is restricted to
(k, r), (R̂0k, g), and (R̂2

0k, b) on the Fermi surface. For finite
coupling, it is possible to construct a variational wave function
composed of the creation operator F̂ † of a different kind of
three-fermion configuration with zero total momentum, but
we have difficulty in finding a variational wave function that
can describe not only a condensed state but also the Fermi
sphere common to the three components. This is because once
for F̂ † one chooses a specific triangle that has a center of mass
at the origin but has different lengths from the origin among
the three components in momentum space, then one would
fail to describe the Fermi sphere and hence a second-order
transition to a condensed state.

Under 〈ψT |ψT 〉 = 1, the normalization condition of uk

and vk reads |uk|2 + |vk|2 = 1, where |uk|2 and |vk|2 physi-
cally represent the unoccupied and occupied probabilities of a
Cooper triple with (k, r), (R̂0k, g), and (R̂2

0k, b), respectively.
Then, using Eqs. (3) and (4), one can evaluate the ground-state
energy E0 = 〈ψT |Ĥeff |ψT 〉 as

E0 =
∑

k

3ξk|vk|2 +
∑

k

∑
k′

Uk,k′v∗
kvk′u∗

k′uk. (11)

Minimization of E0 with respect to the variational parameters

leads to uk= 1√
2

(
1 + ξk√

ξ 2
k +�2

k

)1/2
, vk= 1√

2

(
1 − ξk√

ξ 2
k +�2

k

)1/2
,

where �k ≡ − 2
3

∑
k′ Uk,k′uk′vk′ is the order parameter char-

acterizing the Cooper triple condensation. This is because �k

can be written as

�k = −2

3

∑
k′

Uk,k′
〈
ĉ†

k′,r ĉ
†
R̂0k′,g

ĉ†

R̂0
2
k′,b

〉
. (12)

�k is the expectation value of the fermionic operator, which
is in sharp contrast to the BCS superconducting gap [1].

Before calculating the order parameter, we consider the
noninteracting case by setting �k → 0. In such a case, we
obtain uk = θ (kF − |k|) and vk = θ (|k| − kF), where θ (x) is
the step function. This result indicates that Eq. (10) reproduces
the wave function corresponding to the filled Fermi sphere,
which is given by

|ψFS〉 =
∏

|k|�kF

F̂ †
k,R̂0

|0〉 ≡
∏
γ

∏
|k|�kF

ĉ†
k,γ

|0〉. (13)

Let us move on to the weakly interacting case. From
Eq. (11), we obtain

E0 = 3

2

∑
k

ξk

⎛
⎝1 − ξk√

ξ 2
k + �2

k

⎞
⎠

+ 1

4

∑
k

∑
k′

Uk,k′
�k√

ξ 2
k + �2

k

�k′√
ξ 2

k′ + �2
k′

. (14)

Substituting Eq. (8) to Eq. (12), we obtain �k = �θ (
 −
|ξk|), where � is the amplitude of the order parameter. In the
weak-coupling limit (� � 
), as in the BCS theory, � can
be analytically obtained as

� ≈ 2
 exp

(
− 3

2ρ(0)U0

)
, (15)

where ρ(ω) = 1
(2π )2 (2m)3/2(ω + μ)1/2 is the density of states

as a function of the single-particle energy ω in an ideal Fermi
gas. By combining Eqs. (8) and (14), we can express the
ground-state energy as

E0  EFS
0 + 3

2

∑
|ξk|�


|ξk|
⎛
⎝1 − |ξk|√

ξ 2
k + �2

⎞
⎠ − 9

4

�2

U0
, (16)

where we split the summation in Eq. (14) as
∑

k =∑
|ξk|>
 +∑

|ξk|�
. While the former gives a large part of
the Fermi-gas energy EFS

0 since Uk,k′ = 0 there, the latter
is responsible for the interaction effect near the Fermi sur-
face. Under the assumption of � � 
, the difference in the
ground-state energy between the Cooper triple and Fermi
degenerate states is given by

E0 − EFS
0 ≈ −3

4
ρ(0)�2

≈ −3ρ(0)
2 exp

(
− 3

ρ(0)U0

)
< 0. (17)

Whenever U0 is nonzero, therefore, the ground-state energy of
the Cooper triple state is lower than that of the normal Fermi
gas. In addition, Eq. (17) can be regarded as the condensation
energy of the Cooper triple state as in the BCS ground state
with Cooper pairs [1].

Mediated two- and three-body interactions. We discuss
the possibility of realizing a mediated three-body attractive
interaction in multicomponent quantum gases. We consider
three-component fermions immersed in a medium atomic
gas, which can be realized in four-component mixtures. The
candidates could be a three-component mixture of 6Li or
173Yb immersed in a background majority gas that consists
of another hyperfine state or atomic species. Although either
bosons or fermions will do for medium atoms, we consider a
fermionic medium for the sake of the stability of the system.

Since Cooper triples can occur even if the three-body
attraction is infinitesimally weak, we determine the me-
diated two- and three-body interactions U eff

γ γ ′ and V eff
rgb

within the weak-coupling perturbation with respect to the
fermion-medium coupling Uγ 4 [48]. In the low-energy and
low-momentum limit at zero temperature, the effective
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two-body interaction U eff
γ γ ′ reads

U eff
γ γ ′ = Uγ γ ′ − Uγ 4Uγ ′4

m4kF,4

2π2
, (18)

where Uγ γ ′ is the direct interaction between γ and γ ′ compo-
nents. In Eq. (18), kF,4 and m4 are the Fermi momentum and
mass of medium atoms, respectively. As in the case of polaron
problems, the backaction from the gas of three-component
fermions to the medium can be neglected in the presence of
the large population imbalance [48]. The second term on the
right side of Eq. (18) is consistent with the recent experiment
[49]. U eff

γ γ ′ becomes zero when the direct repulsive and the in-
duced attractive interactions cancel each other. Note, however,
that the vanishing two-body interaction is not the necessary
condition for the emergence of Cooper triples [7]. We also
remark that we ignore the higher partial-wave components,
which are negligible at low temperature.

Next, we consider the mediated three-body interaction V eff
rgb

up to leading order in Uγ 4. At zero temperature, we obtain

V eff
rgb = Ur4Ug4Ub4

m2
4

2π2kF,4
. (19)

The sign of V eff
rgb depends on Uγ 4 in such a way that V eff

rgb
becomes negative when each or only one of the three Uγ 4’s
is negative. For instance, in the case of Ur4 > 0, Ug4 > 0,
and Ub4 < 0, we do obtain the attractive three-body interac-
tion, i.e., V eff

rgb < 0. We note that Eq. (19) is consistent with
the path integral result for a Bose-Fermi mixture [50,51]. In
this way, one can realize the mediated three-body attraction
by tuning the bare two-body interactions in an appropriate
way.

As shown in Ref. [54], 
 in the fermion-mediated inter-
action is of the order of the medium Fermi energy EF,4 =

k2
F,4/(2m4). Therefore, EF,4 plays a crucial role in determining

the critical temperature Tc of the Cooper triple condensation.
On the other hand, the estimation of Tc is nontrivial com-
pared to the conventional BCS case because the mean-field
Hamiltonian for the Cooper triple condensate cannot be diag-
onalized. Nevertheless, by analogy with the BCS case, it may
be reasonable to estimate Tc ∼ 
 exp

( − 1
ρ(0)U0

)
. Also, the

Gorkov-Melik-Barkhudanov-like correction would likewise
suppress Tc [55]. By combining these expectations, we finally
estimate Tc ∼ 10−2EF,4, which will be able to be addressed in
future experiments.

Conclusion and outlook. In conclusion, we have elucidated
how the Cooper triple condensation can occur in a three-
component Fermi gas within the variational approach inspired
by the BCS ground state for two-component fermions. We
have found that the Cooper triples can condense at zero
center-of-mass momentum in the presence of a weak three-
body attractive force among different components as well
as the Fermi surface common to the three components. The
condensed state is predicted to have nontrivial degeneracy
associated with the gauge and momentum orientations, which
may induce interesting topological properties. Moreover, it is
worth examining properties of excited Cooper triples, bound
trimers in the strong-coupling regime, lower dimensions, the
influence of population imbalance, and possible competition
or coexistence between Cooper pairs and triples. It is also
interesting to consider superfluidity of the Cooper triple con-
densed state because the circulation of a singly quantized
vortex would be different from the case of the Cooper pair
condensed state by a factor of 2/3.
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