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Quest for vortices in photon condensates
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We predict that a photon condensate inside a dye-filled microcavity forms long-lived spatial structures that
resemble vortices when incoherently excited by a focused pump orbiting around the cavity axis. The finely
structured density of the condensates have a discrete rotational symmetry that is controlled by the orbital
frequency of the pump spot and is phase coherent over its full spatial extent, despite the absence of any effective
photon-photon interactions.
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Introduction. Vortices are a ubiquitous phenomenon oc-
curring in a broad range of many-body systems, wherein a
robust topological defect prevents a phase singularity at the
middle of a circulating pattern. They appear in fluid turbulence
[1], magnetic structures in thin films [2], superconductors
[3], and atomic condensates [4]. Formation of vortices in a
Bose-Einstein condensate (BEC) is ultimately related to su-
perfluidity [5,6], which is a hallmark of phase coherence in
quantum systems that arises from interactions between the
particles. While quantum coherence is an integral part of
conservative quantum systems, the existence of superfluidity
and vortices in driven-dissipative systems such as polariton
condensates [7,8] is remarkable. It demonstrates that long-
range coherence persists beyond typical loss time scales of
the system due to the macroscopic nature of condensation [9].
Vortices in BECs may be generated either by flowing the fluid
past a static obstacle [8], colliding two condensates [10], or
by stirring the potential landscape [11].

In recent years a key development in condensate physics
has been the creation of driven-dissipative Bose-Einstein con-
densates (BECs) of photons in microcavities filled with a
fluorescent dye [12–14]. In contrast to conservative and po-
laritonic BECs, no superfluidity has so far been observed in
photon condensates, because there is no significant photon-
photon interaction [15,16]. Similar to thermalization, which
is achieved through interaction with the dye molecules, co-
herence in the condensed light builds up only on account of
the emission from the dye molecules [17]. While this mecha-
nism is sufficient to result in the establishment of long-range
phase coherence in a photon BEC [18–20], clear signatures of
superfluidity such as the formation of vortices have remained
elusive.

Our main goal is to theoretically explore to what extent
a transient photon BEC can exhibit macroscopic coherence
resembling that of a vortex. Rather than rotationally deform-
ing the trapping potential, the dynamics in the condensate is
driven by an orbiting pump spot. Stirring is thus achieved by
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an incoherent and not a coherent mechanism. The resulting
dynamical features share striking similarities with vortices in
conservative BECs, which arise from superfluidity, but with
some fundamental differences. For instance, the condensate
forms a rigid spatial structure that rotates with the orbital
frequency of the pump spot and has a high degree of phase
coherence. However, in contrast to vortices in conservative
condensates that have a density with continuous rotational
symmetry, the photon BEC adopts a finely structured density
with only a discrete rotational symmetry and an order that is
determined by the orbital frequency of the pump spot.

In a typical setup, the photon gas inside the microcavity is
restricted to a single longitudinal mode, denoted by the cavity
cutoff frequency ω0, while the mirror curvature imposes a
harmonic potential on the two-dimensional (2D) transverse
plane. The energy and wave function of the transverse cavity
mode k is given by ωk and ψk (r). Now, an incoherent external
pump with rate �↑ and focused on a fixed region or spot
on the transverse plane produces a nonequilibrium distribu-
tion of excited dye molecules. The subsequent behavior of
the emitted photons is dependent on the system properties,
such as rate of absorption Ak and emission Ek , and photon
loss rate κ , as illustrated in Fig. 1(a). Importantly, the ther-
malization of photons is directly related to the total number
of absorptions per unit photon loss, while the condensation
transition is controlled by the pump rate. For an off-center
pump, a transient photon wave packet is formed close to the
pump spot [see Fig. 1(b)]. Under conditions for good ther-
malization, the photon wave packet collapses to the center to
form a near-equilibrium Bose-Einstein condensate, whereas
for poor thermalization, the stimulated light oscillates inside
the harmonic trap imposed by the cavity mirrors. The forma-
tion and kinetics of a nonequilibrium, mode-locked photon
wave packet in an effective one-dimensional space has been
experimentally demonstrated using a pulsed pump [21]. Such
transient behavior of light inside the cavity can be closely
simulated using a microscopic, nonequilibrium model of pho-
ton condensation [22,23], which provides us the necessary
theoretical tools for the study.
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FIG. 1. (a) An illustration of a dye-filled microcavity, showing
the first few nondegenerate cavity mode intensities, |ψk (r)|2, on the
2D transverse plane. The absorption and emission rates for cavity
mode k are given by Ak and Ek , and κ is the rate of photon loss. �↑ is
the pump rate and �↓ is the rate at which molecular excitation is lost
to noncavity modes. (b) The spatially resolved photon wave packet,
�(r), oscillating on the transverse xy plane, across the vertical cavity
axis z, for an external pump focused at r. (c) A qualitative picture of
peaks forming during the time evolution of �(r, t ) due to periodic
coming together of the oscillating wave packet in the harmonic trap
and the orbiting pump.

Formation of structures. Photon emission with more en-
riched spatial features begin to appear in the transient
dynamics when the focused pump spot is no longer static
but orbiting in the transverse plane, as shown in Fig. 1(c).
The dye molecules located within an annulus of radius r and
width w determined by the orbit and width of the pump spot
are initially excited. The optical modes that overlap with the
annular region compete for these excitations and interfere to
produce an initial displaced packet of light through stimulated
emission (a nonequilibrium condensate). The evolution of the
emitted photons is also dependent on the thermalization con-
dition. Specifically, the low thermalization regime (absorption
is slow compared to other processes), where nonequilibrium
effects dominate, is favorable for the formation of spatial
structures that exhibit phase coherence.

Shortly after the start of illumination, the photons begin
to form a ring-shaped structure, which underlines the stim-
ulated emission along the annular region traversed by the
pump. This structure subsequently deforms and more complex
spatial structures in the photon density begin to emerge. If
the orbital frequency ν of the pump spot is a fraction of the
frequency ωT of the harmonic potential that traps the photon
gas, i.e., ν = ωT/z, where z is a positive integer, the photon
density evolves towards a polygon pattern with a discrete
rotational symmetry. Depending on whether z is odd or even,
the polygon has z or 2z vertices, respectively, and the structure
rotates with the orbital frequency ν of the pump spot. As the
system evolves, the edges of the polygon disappear and a rigid
structure with discrete peaks at the vertices is formed, with
interference between the peaks. Such spatial structures, for
both odd and even values of z, are shown in Fig. 2 in terms
of the photon density I (r, t ) = ∑

k,k′ �k,k′ (r) nk,k′ (t ) on the
transverse plane of the cavity. Here �k,k′ (r) = ψ∗

k (r)ψk′ (r)
and nk,k′ = 〈â†

k âk′ 〉 are the mode overlap function and the
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FIG. 2. Photon density I (r) in the transverse plane of the cavity.
The figure exhibits a snapshot of the photon emission when the
dye-filled cavity is driven by an incoherent pump, focused at distance
r away from the cavity center and circulating around this center
with frequency ν = ωT/z, where (a) z = 2, (b) z = 3, (c) z = 4, and
(d) z = 5. All the axes are in units of harmonic oscillator length, 	HO.

photon correlation, respectively. Once the spatial structure is
formed it is robust and long-lived and becomes a characteristic
feature of the condensate. For instance, for ν = ωT/2, the
intensity of the peaks and symmetric structure are visible even
after more than 100 orbital periods have passed since the
formation of the condensate. Further snapshots of the photon
density at various moments during the evolution are given in
the Supplemental Material [24].

The formation of the polygon structure and the discrete
peaks can be qualitatively explained in terms of the motion
of the photon wave packet arising from oscillations inside
the harmonic trap and the motion of the focused pump spot.
Once a wave packet is created as result of the pump, it
will start oscillating in the trapping potential with a maximal
displacement given by the radius r of the pump orbit. Due
to dissipation, any such wave packet can persist only if it
encounters the pump spot regularly, and the condition for this
to happen is understood more easily by following the sys-
tem dynamics in the frame corotating with the pump. In this
frame, a wave packet follows curved trajectories as depicted
in Fig. 1(c), and regular encounters with the pump spot are
possible only if this curved trajectory forms a periodic orbit.
The angle of rotation of the trajectory between instances of
maximal displacement is given by π (1 − 1/z), comprised of
a contribution of π of the wave packet in the lab frame and
a contribution of π/z of the pump. Thus the angular rotation
of the wave packet after z instances of maximal displacement
is given by π (z − 1), which, in the case of odd z, is an
integer multiple of 2π . In this case, the rosetta-shaped orbit
of the wave packet is closed [as sketched in Fig. 1(c)], and it
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FIG. 3. First-order correlation function and phase relation in the condensed light. Subfigures (a) and (b) show G(1)(r1, r2) between a
reference point r1 (shown by a dark dot) and any other spatial point r2, corresponding to orbital pump frequency ν = ωT/2 [inset (a)] and
ν = ωT/5 [inset (b)] in the corotating frame. The color intensity (dark to bright) indicates the modulus of G(1), while the phase relation given
by the argument is described by the color variation (color bar). Subfigures (c) and (d) show the unwrapped phase difference between the
reference peak at r1 and the neighboring peaks numbered clockwise as 1–3 [in inset (c)] for structures with fourfold symmetry and numbered
1–4 [in inset (d)] for those with fivefold symmetry. An offset of −2π and 2π is added to peaks 1 and 4, respectively, for ease of viewing. All
the axes in (a) and (b) are in units of harmonic oscillator length 	HO, whereas for (c) and (d) the x axis is the scaled time νt and the y axis is in
radians.

contains z points of maximal displacement, resulting in a
z-fold symmetry. In the case of even z, on the other hand, it
takes 2z instances of maximal displacement before the orbit
closes and its symmetry is 2z-fold. As such the complex struc-
tures result from the interplay between the nonequilibrium and
driving mechanisms acting upon the photon gas.

Equations of motion. The transient photon density is nu-
merically estimated from a set of nonlinear rate equations
that not only describe the dynamics of the photons and the
molecules (see Ref. [24] for details) but also provide a more
quantitative approach to understand the spatial structures. The
equation of motion for the photon correlation matrix n with
elements nk,k′ = 〈â†

k âk′ 〉 is given by

ṅ =
(

i� − κ

2

)
n + ρ0{f E(n + I) + (f − I)A†n} + H.c.,

(1)
where f is the molecular excitation matrix with elements
fk,k′ = ∑

i �k,k′ (ri)〈σ+
i σ−

i 〉 and ρ0 is the molecular density.
The absorption and emission matrices are given by Ek,k′ =
Ekδk,k′ and Ak,k′ = Akδk,k′ , respectively. Moreover, �k,k′ =
ωkδk,k′ , where ωk is the energy of the cavity mode k and
I is the identity matrix. The equation of motion for the
molecular excitation vector m, with elements mj = ∑

i δ(rj −
ri)〈σ+

i σ−
i 〉, is given by

ṁ = −{�↓ + 2Eeff}m + {�↑(r) + 2Aeff}(1 − m), (2)

where Eeff = Tr[ψ (r)E(n + I)] and Aeff = Tr[ψ (r)nA].
Analytical model. The motion of the photon wave packet

and the formation of the condensate can be explained in
terms of the nonequilibrium dynamics of the system. A sim-

plified picture can be constructed by rewriting Eq. (1), as
ṅ = F (0) + iF (1), where F (0) is the nonoscillatory compo-
nent and F (1) oscillates with �k,k′ . In the absence of F (1),
the rate equation for the photon correlation is ṅk,k′ = F (0)

k,k′ .
For a constant pump at r and after a long time τ , the
photons condense to form a localized wave packet �(r, τ ),
which is the steady state, i.e., n̄k,k′ (τ ) = Tr[â†

k âk′�(r, τ )]
is the steady solution for ˙̄nk,k′ = F (0)

k,k′ = 0. To approximate
the oscillatory dynamics, the term F (1) is introduced at
t > τ to obtain a new equation of motion ṅk,k′ = i(ωk −
ωk′ ) n̄k,k′ , with solution n̄k,k′ (t ) = n̄k,k′ (τ ) exp[i�ωk,k′t]. Here
�ωk,k′ =ωk − ωk′ is the gap between neighboring energy
modes of the cavity. The photon density is then given by
I (r) = ∑

k,k′ �k,k′ n̄k,k′ (τ ) exp[i�ωk,k′t].
Now, for 2D harmonic oscillators, the frequency of mode

k is given by ωk = ω0 + (qx + qy)ωT, corresponding to the
quantum numbers {qx, qy} and the cutoff frequency ω0. Since
the pump spot is focused at r, the condensed light is mostly
found in the annular domain of radius r. The highly populated
modes thus have a maximum amplitude around this domain.
These modes are characterized by the condition qx + qy =
q, q ± 1, where q is the integer closest to r2/(2	2

HO), and 	HO

is the harmonic oscillator length [24]. Since degenerate modes
do not contribute to the oscillation, as �ωk,k′ = 0, the oscil-
lation comes from nondegenerate modes with q and q ± 1,
for which �k,k′ (r) = ψ∗

k (r)ψk′ (r) is an odd function. At t =
nπ/ωT, the density is given by I (r) = ∑

k,k′ �k,k±1(r)n̄k,k±1,
for even n, and by I (−r) = −∑

k,k′ �k,k±1(r)n̄k,k±1, for odd
n. Therefore the wave packet �(r, τ ) oscillates between the
positions r and −r in the cavity plane with frequency ωT. The
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transient spatial structure then arises due to the interference
between the wave functions of the dominant modes with q
and q ± 1.

The discrete rotational symmetry with the odd-even di-
chotomy, as discussed earlier, results from �(r, τ ) being
influenced by the two competing frequencies, viz. the har-
monic trap frequency ωT and the pump orbital frequency ν.
The constructive interference or beats occur with frequency
1
2 (ωT − ν) and yields a factor of 1

2 (1 − 1/z) in the angular
rotation, which ultimately gives rise to the z- or 2z-fold an-
gular symmetry, as discussed earlier. The discrete symmetry
is robust to deviations of z from integer values, but for osten-
sibly noncommensurate values of the frequencies, the light is
spread along the annular region surrounding the pump orbit
with no clear spatial structure [25].

Phase coherence. The transient structures of the pho-
ton density depicted in Fig. 2 are consistent with phase
coherence in the system, and the explanations given so
far are based on the assumption of at least partially
coherent dynamics. However, unambiguous evidence of
phase coherence, cannot be obtained from density pro-
files alone. A proper verification of phase coherence needs
to be obtained in terms of the first-order correlation be-
tween photons at different points in the cavity plane.
By introducing the field operators ξ̂ (r) = ∑

k ψk (r)âk and
its conjugate ξ̂ †(r) = ∑

k ψ∗
k (r)â†

k , the first-order correla-
tion function is defined as G(1)(r1, r2, t ) = 〈ξ̂ †(r1)ξ̂ (r2)〉 =∑

k,k′ ψ∗
k (r1)ψk′ (r2) nk,k′ (t ). Figures 3(a) and 3(b) show the

correlation function G(1)(r1, r2) in the corotating frame be-
tween a fixed reference point r1 (shown by a dark dot) and any
other point r2 in the transverse plane. The figures correspond
to the orbital pump frequencies ν = ωT/z for z = 2 in inset
(a) and z = 5 in inset (b). The color intensity (dark to bright)
denotes the modulus of G(1)(r1, r2), which exhibits either
a four- or fivefold rotational symmetry, consistent with the
photon density of the condensed light for odd and even z.
The color map highlights the argument of G(1)(r1, r2), which
gives us the phase resulting from the interference between the
modes. Despite the detailed structure of the photon density
with several minima (in black), one can see a clear closed
phase evolution for radii of about 3lHO winding around the
center. Similar vortexlike phase windings are also observed
on a smaller scale.

The phase has a fixed relation in the corotating frame,
as seen in Figs. 3(c)–3(d), where the phase difference be-
tween the spatial points corresponding to the different photon

density peaks is depicted as a function of time. For z = 2
there are four peaks (numbered 0–3, clockwise), and in the
ideal case it is expected that the phase difference between a
reference peak 0 at r1 and its neighboring peaks 1 and 3 is ±π ,
while it is in phase (2π ) with the diametrically opposite peak
2. This is because for z = 2, the beat phenomenon results in
all the peaks being formed in a single pump cycle. Figure 3(c)
shows that the phase correlations converge to these values
with time. The situation is more complicated for z = 5, where
the five peaks (numbered 0–4, clockwise) are formed over two
pump cycles. Hence, taking a reference peak 0 at r1, the phase
difference with the neighboring peak 1 and 4 changes between
∓π/5 and ±3π/5, respectively, and for the distant peaks 2
and 3 between ±π/5 and ±3π/5, respectively, as seen in
Fig. 3(d).

Discussion and outlook. Experimental realization of the
spatial structures identified here requires an orbiting pump
spot in an otherwise standard room-temperature photon BEC
experiment [26]. Since this can be implemented by inter-
fering two Laguerre-Gaussian beams of different order and
frequency, experimental observation of these structures would
provide very compelling evidence of well-defined coherence
properties that can be established despite the absence of any
effective particle interaction. The present results thus not only
indicate a pathway towards the observation of vortexlike phe-
nomena in photon BECs, but they also support the expectation
that features like superfluidity that are common in atomic and
quasiparticle BECs can also be extended to photons if suitable
driving mechanisms are identified.

While the present analysis applies to a regime of large
photon numbers, the interference mechanisms resulting in
the formation of coherent spatial structures exist for light
of any level of intensity, right down to the few-photon
regime. Since the photon number in a BEC can be controlled
in terms of mirror curvature [27,28], the ability to create
well-designed states of light through temporally tuned driv-
ing is thus applicable to a broad range of regimes. Given
the notorious difficulty in preparing nonclassical few-photon
states of light and their potential for quantum-technological
applications, the present work thus may inspire an un-
conventional handle on the control of quantum states of
light.
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