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Topological edge states of Kekulé-type photonic crystals induced
by a synchronized rotation of unit cells
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Generating and manipulating Dirac points in artificial atomic crystals has received attention, especially in
photonic systems due to their ease of implementation. In this Letter, we propose a two-dimensional photonic
crystal made of a Kekulé lattice of pure dielectrics, where the internal rotation of cylindrical pillars induces
optical Dirac-degeneracy breaking. Our calculated dispersion reveals that the synchronized rotation reverses
bands and switches parity as well so as to induce a topological phase transition. Our simulation demonstrates that
such topologically protected edge states can achieve robust transmission in defect waveguides under deformation,
and therefore provides a pragmatically tunable scheme to achieve reconfigurable topological phases.

DOI: 10.1103/PhysRevA.104.L031502

I. INTRODUCTION

In the past decades, topological photonics has become a
rapidly developing research field that aims to explore the
wave physics of topological phases of matter in analog.
The concept of topological insulators in condensed matter
physics has been used in many wave physics fields [1,2].
Haldane and Raghu [3,4] first brought the quantum Hall effect
(QHE) to the field of photonics and theoretically proved the
photonic quantum Hall effect (PQHE), which opened new av-
enues for topologically protected optical transmission devices
(such as topological lasers, waveguides, and quantum circuits)
[5,6]. The topological edge states generated on the interface
between different topological phases promise fascinating fea-
tures such as robust transmission, backscattering suppression,
and defect immunity. Topological photonic devices enabling
edge state transmission have brought unprecedented opportu-
nities in controlling the electromagnetic (EM) waves at the
microwave and optical frequency bands [3,5,7].

The first realization of a photonic topological state was
based on the microwave platform of gyromagnetic photonic
crystals by applying a magnetic field to break the time-
reversal (TR) symmetry of the system [8,9]. However, a
weak gyromagnetic effect hinders their extension towards
higher-frequency bands and more manipulative scenarios. To
sidestep this issue, all-dielectric photonic crystals (PCs) with
judiciously designed unit cells have been proposed [3,10] to
achieve topological phases through adjusting the geometrical
structures in the primitive cell of all-dielectric PCs with C6

symmetry [11–14]. Floquet insulators, the valley Hall effect,
and the photonic quantum spin Hall effect (PQSHE) have
been realized both in theory and in experiment [3,15–17].
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The PCs with C6 symmetry including circular pillars
(dielectric cylinders or pores), core shells (circular rings), and
elliptical dielectric cylinder clusters were proposed to achieve
quantum spin Hall (QSH) effects [3,15,18]. At the interface
between different topological phases, the helical edge states
are sandwiched which lead to unidirectional nonscattering
propagation. This unique robust feature can be used to realize
band-gap devices such as topology lasers, integrated optical
circuits, etc. [15,19–21].

In this Letter, we propose an internal rotating mechanism
to achieve topological edge states via sandwiching two dis-
tinct topological phases, on a two-dimensional PC made of
a Kekulé lattice in dielectrics [3,15,16,22]. This proposal
provides a flexible way to achieve optical topological phase
transitions. The physical principle is, by the internal rotation,
that a crystal lattice with C6v symmetry (representing sixfold
rotational symmetry and mirror symmetry in six different
directions) becomes C6 [23]. Destruction of the mirror sym-
metry of the lattice causes the Dirac point � to break its
degeneracy. The generation and breaking of the Dirac degen-
eracy result in the occurrence of topological phase transitions
[22]. At the interface of different topological phases gener-
ated in this manner, we observe in simulation the edge states
protected by the pseudo-time-reversal (TR) [23,24] symmetry
accompanied by C6 symmetry. As a merit of that, we also
design a bent waveguide and a defected one and observe in
simulation that even in the presence of sharp turns or defects,
these edge states still propagate robustly.

II. THEORY AND MODEL

The structure of the proposed artificial meta-atom in a
Kekulé lattice is shown in Fig. 1(a), where the black solid
hexagons embedding six cylindrical pillars in dark blue are
the original units of a Kekulé lattice. An odd parity for spatial
inversion exists at the Brillouin zone � point of the Kekulé
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FIG. 1. Schematic diagram of a two-dimensional (2D) Kekulé
lattice with a lattice constant of a0. (a) The arrangement of the lattice
unit marked by the black solid line and the lattice red vectors. (b) Unit
cell before rotation. (c) Unit cell under a rotation angle α = 9.4◦.

unit, and also double-degenerate Dirac cones occur [3,23].
Therefore, with the hexagon in the composition of the tri-
angular lattice, a0 is the lattice constant and a1 and a2 are
unit vectors. The geometric parameters used in the model
throughout this Letter are a0 = 1, a0/R = 2.92, d = 0.11a0

unless otherwise stated. The outstanding pillars are made of
yttrium iron garnet (YIG) material (εd = 11.7) and the back-
ground media is set as air. In the enlarged view in Fig. 1(b)
of the hexagonal cluster, R is the length from the center of the
hexagon to the center of the cylinder, and d is the diameter of
the cylindrical pillars. For the rotation mechanism, Fig. 1(c)
shows the diagram of the supercell when the cylindrical pillars
rotate simultaneously for an angle of α = 9.4◦, clockwise
around the center of the hexagon.

In order to facilitate the description of the topological
phase transition mechanism, we consider the behavior of the
transverse magnetic (TM) mode in a Kekulé PC with C6 sym-
metry [8]. According to Maxwell’s equation, the propagation
of time-harmonic TM waves in PC can be described by [3][

1

ε(r)
∇ × ∇×

]
Ez(r)ẑ = ω2

c2
Ez(r)ẑ, (1)

where ε(r) is the dielectric parameter and c the speed of light.
When ε(r) is periodic, the Bloch theorem applies in the form
of EM waves.

For the representations of the Ez field at the � point, arti-
ficial atoms carry orbitals px (py) and dxy (dx2−y2 ), in analogy
to the electron orbitals for a periodic array of atoms in a solid.
Since a direct counterpart of the spins does not occur naturally,
two eigenvectors E1 and E2 can be constructed as [p+, p−]
and [d+, d−] (cf. Sec. I of Supplemental Material [25]), in
which

p± = px ± ipy√
2

, d± = dx2−y2 ± idxy√
2

. (2)

Here, the antiunitary operator T = UK is proposed where
U = −iσy, and K is a complex conjugate operator [3,15,18].
Since U 2 = −1 guarantees T 2 = −1, T can be used as
a pseudo-TR operator in our photonic system. Under the
action of the T operator, [p+, p−] has the following
transformations [18],

T 2 p± = −p±. (3)

Obviously, this pseudo-TR resulting from the crystal sym-
metry [3,23,26] plays the central role in our analog QSHE.

In other words, since pseudo-TR symmetry and pseudo-spin
depend on C6 symmetry, photons with pseudo-spins in the C6

system will produce Kramer’s degeneracy. It is worth clarify-
ing that C6 plus time-reversal symmetry is a true combination
of protection degeneracy, and the TR operator is not the main
basis for providing the system Kramer’s degeneracy.

In an analog electronic system [23], the two eigenstates
of odd parity in the photonic system can be represented by
p+ and p− corresponding to the p-band pseudo-spin-up and
pseudo-spin-down states. Similarly, the two states of even
parity in d± can be mapped as the pseudo-spin-up and pseudo-
spin-down states for the d band.

According to the k · p theory [27], an effective
photonic Hamiltonian under the representation of
[p+, d+, p−, d−]T is (cf. Sec. II of Supplemental
Material [25])

H0 =

⎡
⎢⎢⎣

ω2
p/c2 Ak+ 0 0

A∗k− ω2
d/c2 0 0

0 0 ω2
p/c2 A∗k−

0 0 Ak+ ω2
d/c2

⎤
⎥⎥⎦. (4)

In Eq. (4), k± = kx ± iky, A is the coupling coefficient be-
tween the p and d states, and ωp and ωd the eigenfrequencies
of the p band and d band, respectively. Note that in a C6

symmetric system, only p states (d states) with the same
spin direction can be coupled and Eq. (4) is similar to the
electronic Hamiltonian in the Bernevig-Hughes-Zhang (BHZ)
model [28–30], where the two block matrices correspond to
the massive Dirac equations with pseudo-spin-up and pseudo-
spin-down, respectively. This pair of pseudo-spin pairs are
interconnected by an inversion symmetry operation, along
with their disparate parities which ensures that the entire sys-
tem satisfies pseudo-TR symmetry. If the p band is compared
to the valence band and the d band to the conduction band
[cf. Fig. 2(c)] analogous to the BHZ model in the electronic
system, Eq. (4) serves as a Hamiltonian matrix of PQSHE.
Then the topological state of our system should be determined
as follows [24]. When ωp > ωd, the system corresponds to
topological nontrivial states; when ωp < ωd, the system has
parity inversion at the � point, which directly indicates the
topological trivial state; when ωp = ωd, at the � point there
occurs a band of fourfold degeneracy, corresponding to the
double Dirac point which marks the transition point of topo-
logical phases [11].

III. RESULTS AND DISCUSSION

In this work, COMSOL software based on the finite-element
method is used to calculate the PC dispersion and the electric
field diagram. Considering the TM mode (Ez, Hx, and Hy

components only), the band degeneracy and its breaking at
the � point are achieved by adjusting the rotation angle of
hexagons in every unit [31,32]. As show in Fig. 2, when
the rotation angle is 12◦, the two degenerate bands split in
proximity of the � point.

Based on the above theory, two degenerate band eigen-
states are analogous to the quantum electron wave functions
for the p band (blue solid line) and d band (red dotted line)
[3,33]. According to the Ez fields in Figs. 2(d) and 2(e), we
recognize that the dipole electric field belongs to the p band
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FIG. 2. TM mode dispersion diagrams (a)–(c) and eigenstate
distribution (d) when the PC unit cells rotate for different angles.
(a) Rotation angle α = 0◦. (b) α = 9.4◦ where band inversion (red
dotted line and blue solid line represent the d band and p band)
occurs to generate an accidental Dirac point. (c) α = 12◦. (d) Ez field
of the p band and d band in (a). (e) Ez field of the d band and p band
in (c). The black dashed lines in (b) and (c) indicate the unrotated unit
cell. (f) Working frequency for rotation angle α with a0/R = 2.92.
The two regions I and II represent two different topological states of
PC: I is the topological nontrivial phase, and II the trivial one. The
shaded region represent the band-gap width. (g) Phase diagram with
rotation angle α and lattice constant a0/R (inset: the first Brillouin
zone of the Kekulé lattice).

and the quadrupole one to the d band [34]. Therefore, the type
of energy band can be determined according to the Ez fields.
In Fig. 2(a), when the pillars are unrotated α = 0, there are
two degenerate points in each band. By observing the eigen-
frequencies of the Ez fields, we find that the p band goes above
the d band across the band gap. Here, in Fig. 2(a) our system is
initially in a topological nontrivial state (ωp > ωd, represented
by phase I). When the unit cell is rotated counterclockwise
by 9.4◦ (α = 9.4◦), the eigenfrequency ωp = ωd at the Dirac
point � in Fig. 2(b) [11]. When we continue to adjust the
rotation angle to α = 12◦, as shown in Fig. 2(c), the fourfold
degeneracy point at the � point reopens. We then realize the
band degeneracy and its breaking via a simple rotation of the
unit cell. Figure 2(c) also indicates that the p band goes under
the d band in contrast with Fig. 2(a) where the p and d bands
are reversed at the � point, reducing it to a topologically trivial
state (ωp < ωd, represented by phase II). The physical reason
for topological phase switching results both from the band

inversion due to broken spatial inversion symmetry and also
from the parity inversion [4,23].

The eigenfrequencies of the p and d bands within a pe-
riod for 60◦ changes along with rotation angle α, as shown
in Fig. 2(f). We find that the p and d bands reverse twice
in one period of α, which occurs at both α = 9.4◦ and
50.4◦ as the topological phase transition points. Moreover,
the complete band gap produced by the rotation mechanism
increases to a peak at α = 13◦ and then becomes narrow along
with an increasing rotation angle, and eventually vanishes
for 30◦. Furthermore, the first topological phase transition
angle monotonically decreases with the relative lattice con-
stant a0/R, shown as the solid curve in Fig. 2(g). When a0/R
reaches 2.6, the neighboring atoms become tangent, which
hinders designers to tune a0/R further. In short, the rule of
thumb for setting up parameters to achieve a topological phase
indicates a range of a0/R = 2.6–3, when the rotation angle of
the unit cell can be tuned to close and open the topological
band gap resulting from band inversion. It is worth noting that
for a0/R > 3.0 in the trivial phase II, any angle of rotation
will not cause phase switching though a topologically trivial
band gap still occurs near � point. Note that the rotation
mechanism preserves the pseudo-TR of the system (cf. Sec.
III of Supplemental Material [25]), and eases the method to
generate the topological band gap without using magnetic
experimental setups [3,15,35].

The hallmark of topological bands is the scattering-free
boundary states propagating on the interfaces between dis-
tinct topological matters [3,15,35]. To reveal the edge states
explicitly in our QSHE system, we plot the projected band
dispersion and electric field Ez in a ribbon-shaped super-
cell composed of two distinct PCs, respectively α = 0◦ and
α = 12◦ in Fig. 3. As the dispersion diagram in Fig. 3(a)
shows, a pair of edge modes (represented by the red dot A
and blue dot B) are observed within the band gap. This pair
of edge states is topologically protected by pseudo-TR sym-
metry, which can be identified as the spin-up and spin-down
modes. Actually, there is a tiny gap at the � point in Fig. 3(a)
[unnoticeable in the present scale] due to the symmetry of C6

being damaged to a certain extent at the interface between
the two crystals. However, compared to the large size of the
two crystals, C6 symmetry could be taken as approximately
kept and our topological properties maintained (cf. Sec. IV
of Supplemental Material [25]). In the left panel of Fig. 3(b)
we plot that the electric fields of the edge state for points A
and B at kx are ±0.02 in units of 2π/a0 in Fig. 3(a). The
field maps indicate the robust topologically protected edge
states along the interface. In the two zoom-ins in the right
panel of Fig. 3(b), the two circular arrows (red and blue
for clockwise and counterclockwise rotation) indicate time-
averaged power flow directions of S = Re[E × H∗]/2 for the
edge states duo [36]. It demonstrates the helical edge states
under spin-momentum locking explicitly.

To further validate the robust one-way propagation of topo-
logical helical edge states subject to PC defects [10,16], we
use the helicity feature, i.e., the direction of the pseudo-spins,
of the edge states to control the propagation of electromag-
netic waves. The pseudo-spin-up (pseudo-spin-down) mode
is selectively excited by using a positive (negative) circular
polarization excitation source S+ (S−) [3]. On the interface
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FIG. 3. (a) Projected band diagram of a one-dimensional super-
cell, composed of both a topologically nontrivial phase I (α = 0◦)
and topologically trivial phase region II (α = 12◦). A (red dot) and B
(blue dot) correspond to the clockwise spiral and counterclockwise
helical edge states, respectively. (b) Left panel: Electric field distri-
bution Ez(x, y) around the edge. Right panel: Zoom-ins for electric
field Ez. The arrows represent the average Poynting vector directions
and the magnitude corresponding to points A and B for kx is ±0.02,
in units of 2π/a0, and circular thick arrows in red and blue are guides
for the eyes.

of two kinds of photonic crystals with distinct topological
phases, we observe the EM propagation mostly along the
edge. In the waveguide design, we make use of the wider com-
mon band gap to excite the topological edge state selectively.
For the topological nontrivial (I) part the parameters are kept
the same as Fig. 3, while for the trivial phase (II) part, the pa-
rameters a0/R = 3, α = 12◦ are chosen with other parameters
unchanged. When the working frequency is chosen as 0.52
in units of c/a0, the in-line waveguide excites EM waves by
the pseudo-spin source S+. Simulation shows that these edge
states can transmit EM waves well in the selected rightward
direction as shown in Fig. 4(a). To verify the defect immunity
characteristics of the topological edge state, an in-line waveg-
uide with defects is designed as shown in Fig. 4(b). Simulation
also verifies that EM waves are still able to transmit around
the disordered region to localize at the topological interface.
Furthermore, to validate the backscattering immunity charac-
teristics of the edge states, a Z-shaped waveguide with sharp
bends is shown in Fig. 4(c). The EM wave excited from S+
propagating along the Z-shaped interface between the topo-
logical distinct phases (II/I) can travel around the geometric
bends without significant loss. In order to represent the energy
flow in the waveguide excited by different chiral excitation
sources, a Poynting vector distribution of the in-line waveg-
uide and the defective waveguide are plotted in Figs. 4(d)
and 4(e), which is distributed in a one-way transverse vortex
during its propagation. By calculating the transmission effi-
ciency of the three waveguides in Figs. 4(a)–4(c), as shown
in Fig. 4(f), we confirm that the energy transmission of the
waveguides around the band gaps I and II has negligible
loss. In order to further verify the topological feature of the

FIG. 4. A defect waveguide along the interface between two
types of PCs (I: α = 0◦ and II: α = 12◦, a0/R = 3). The positive
(negative) circular polarization excitation source S+ (S−) represents
the pseudo-spin-up (pseudo-spin-down) mode with frequency of 0.52
in units of c/a0. (a) Electric field of the edge state is excited by
the pseudo-spin-up mode S+, showing that the EM wave propagates
unidirectionally to the right. (b) In the presence of defects, the crystal
lattice appears disordered on the interface between I and II and the
spin-down mode is still able to excite reflectionless transmission.
(c) On an interface with a sharp angle, EM waves can also steer
around geometric bends without backscattering. (d) Poynting vec-
tor distribution of an in-line waveguide excited by the S+ source.
(e) Poynting vector distribution of the S− source excited in a bent
waveguide. (f) Transmission spectra measured around band gaps in
gray I and II [lines with red squares, black triangles, and blue circles
respectively represent the corresponding waveguides in (a)–(c)].

edge-state propagation, two boundary types of waveguides are
designed, in which the zigzag boundary is used in Fig. 3 and
the armchair-type boundary state also demonstrates backscat-
tering suppression and null-interference properties (cf.
Sec. V of Supplemental Material [25]). Our results confirm
that the boundary states induced by our rotation-induced
phase transition are a true analog of QSHE states, which
are robust one-way reflectionless traveling eigenwaves against
defects [3,15].

IV. CONCLUSIONS

In summary, based on the pure-dielectric Kekulé lattice,
we use the synchronized rotation of the unit cells to induce a
topological phase transition on a PC platform. The pseudo-TR
symmetry is constructed based on the C6 symmetry of the
Kekulé lattice in design, and the topological phase transition
in the rotation mechanism maintains the pseudo-TR inver-
sion. Our model exploits the rotational freedom of the pillars
to break the mirror symmetry of the crystal lattice, thereby
reducing the manufacturing requirements to manipulate the
Dirac points. The synchronized rotation of unit cells directly
opens the band gap, providing an additional degree of freedom
for the generation of a topological gap without magnetic ex-
perimental setups. Electromagnetic wave simulation verifies
that topological edge states emerge within a band gap due to
the synchronized rotation of unit cells. Other than the already-
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known platforms [24,37–40], we hope that this work provides
a design possibility for scrutinizing optical QSHE systems.
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