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Improving force sensitivity by amplitude measurements of light reflected
from a detuned optomechanical cavity
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The measurement of weak continuous forces exerted on a mechanical oscillator is a fundamental problem
in various physical experiments. It is fundamentally impeded by quantum back-action from the meter used to
sense the displacement of the oscillator. In the context of interferometric displacement measurements, we here
propose and demonstrate the working principle of a scheme for coherent back-action cancellation. By measuring
the amplitude quadrature of the light reflected from a detuned optomechanical cavity inside which a stiff optical
spring is generated, back-action can be canceled in a narrow band of frequencies. This method provides a simple
way to improve the sensitivity in experiments limited by quantum back-action without injection of squeezed
light or stable homodyne readout.
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I. INTRODUCTION

Precise mechanical sensing of forces has a long history, and
a rich future. In the past, that pursuit has been exemplified by
tests of Newtonian gravity [1–5], nanomechanics-based force
microscopy [6,7], and gravitational-wave detection using
kilogram-scale test masses [8,9]. The integration of nanoscale
mechanical oscillators with optical cavities—within the field
of cavity optomechanics [10,11]—has opened the possibil-
ity of addressing a new set of questions through precision
mechanical sensing. Examples include tests of gravitational
effects in quantum mechanics [12–16], tests of fundamental
decoherence phenomena [17–22], and dark matter detection
[23–27]. The common denominator in all these quests is the
precise measurement of forces acting on mechanical oscilla-
tors.

The estimation of weak continuous forces is fundamentally
limited by quantum noise. When optical fields are used to
measure the displacement of a mechanical force transducer,
vacuum fluctuations in the former produce a fluctuating back-
action force that can obscure an external force [28]. Such
quantum back-action can be reduced by injection of light
whose quadratures are squeezed in a frequency-dependent
fashion [29–34], or by employing ponderomotively generated
squeezed light [35–38]. In the context of force detection, the
standard quantum limit (SQL) in the free-mass regime [39]
SSQL

F (ω) = 2h̄mω2 decreases with decreasing frequency. Yet
the opportunity for high precision force sensing is thwarted
by the inability to generate squeezed light at low frequencies
and/or phase noise in homodyne detection (as required for
schemes that rely on ponderomotive squeezed light).

In this Letter, we theoretically describe and experimentally
demonstrate the principle of a technique that can circumvent
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both these technical problems. In particular, we show that
direct amplitude detection of the light reflected from a detuned
optomechanical system can realize quantum noise cancella-
tion around the optical spring frequency. Working in reflection
has the fundamental advantage of the better sensitivity with
an overcoupled cavity and beating the SQL, in contrast to
similar schemes that operate in transmission [40]. Our scheme
also does not require squeezed light or phase-stable homodyne
detection to produce force sensitivities beyond the SQL. We
also demonstrate the principle behind this scheme by showing
that classical intensity noise in the laser used to probe the
optomechanical system is suppressed in a manner consistent
with theory.

II. PRINCIPLE OF QUANTUM NOISE CANCELLATION
IN AMPLITUDE READOUT

We consider a Fabry-Perot cavity with a mechanically
compliant end mirror of transmissivity tout and reflectivity
rout =

√
1 − t2

out, and a fixed input mirror of transmissivity tin
and reflectivity rin =

√
1 − t2

in. All optical loss in the system
is modeled as being due to the nonzero transmissivity of the
end mirror. Adopting the two-photon formalism [41,42], we
consider each optical field in the inset in Fig. 1 as being
composed of a pair of quadratures; e.g., a = (a1 a2)t , where
a1 (a2) is an amplitude (phase) quadrature of the intracavity
light. Other fields are defined as shown in the inset: b (c) is
going into (out from) the input mirror, and d (e) is going into
(out from) the end mirror. The displacement caused by the
external force can be read out by c or e with the carrier. The
cavity amplification matrix between the amplitude and phase
of the light is given by

G = c

2L

1

(κ − iω)2 + �2

(
κ − iω −�

� κ − iω

)
, (1)

2469-9926/2021/104(3)/L031501(5) L031501-1 ©2021 American Physical Society

https://orcid.org/0000-0002-4092-9602
https://orcid.org/0000-0001-5839-1700
https://orcid.org/0000-0002-3820-2172
https://orcid.org/0000-0001-6426-7079
https://orcid.org/0000-0002-2218-4002
https://orcid.org/0000-0002-8865-9998
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.L031501&domain=pdf&date_stamp=2021-09-02
https://doi.org/10.1103/PhysRevA.104.L031501


KENTARO KOMORI et al. PHYSICAL REVIEW A 104, L031501 (2021)

FIG. 1. Amplitude spectra of amplitude and phase fluctuations
in reflection and transmission measurement. The definition of the
optical fields are described in the inset with the cavity matrix and
the mechanical susceptibility. Contributions of the input amplitude
fluctuation at the reflection (Sref

b1
), the input phase fluctuation (Sb2 ),

and the vacuum from the output (Sd ) are shown as red (sharp dip),
blue (right bottom), and green lines (lower gentle dip), respectively.
Total sensitivities at the reflection (Sref

tot ) is represented as a black
(top) solid line. The input amplitude (Sref

b1
) and the total (Stra

tot ) at
the transmission are plotted by red (lower) and black (upper) dotted
lines.

where L is the cavity length, κ = (t2
in + t2

out )c/(4L) is the
total cavity decay rate, � is the cavity detuning, and c is the
speed of light. In this Letter we define the sign of the cavity
detuning with positive restoring force (blue detuning) as plus.
Unlike the usual treatment in nano-optomechanics [43], we
specialize to the case of macroscopic optomechanical systems
where the mirror’s motional frequency is so low that its utility
as a force transducer necessitates measurement frequencies
above its resonance. In this case the mirror motion is in the
free-mass regime, i.e., its displacement response to a force is
χm � −1/(mω2), where m is the effective mass of the mirror.

Here we focus on measurement of the amplitude quadra-
tures at reflection and transmission, in other words c1 and
e1. The sensitivity on these amplitude measurements of the
reflection and transmission normalized by the SQL can be
separated by the contributions of b and d as

Sref
tot = ε1Sref

b1
+ ε2Sb2 + Sd , (2)

Stra
tot = ε1Stra

b1
+ ε2Sb2 + Sd , (3)

where ε1 and ε2 are relative shot noise levels of the amplitude
and phase of the input light. These spectra are given by [44]

Sref
b1

= (κ2 + �2){�ι − [(κ − 2κin )2 + �2]ω2}2

16ικin(κ − κin )2�2ω2
, (4)

Stra
b1

= κin(κ2 + �2)ω2

ι�2
, (5)

Sb2 = κinω
4

ι(κ2 + �2)
, (6)

Sd = [�ι − (κ2 + �2 − 2κκout )ω2]
2

4ικout�2ω2
+ κoutω

2

ι
, (7)

where

ι = 4Pk0

mL
(8)

shows the optomechanical coupling strength with the intra-
cavity power P and the wave number of light k0 = 2π/λ.
The input and output coupler are given by κin = t2

inκ/(t2
in +

t2
out ) and κout = κ − κin respectively. The amplitude spectra,

normalized by the SQL, from the input fluctuation and the
vacuum from the output port are plotted in Fig. 1 with the
total ones. Here we assume that the input fluctuation is at
the vacuum level, ε1 = ε2 = 1. Parameters are as follows:
the laser wave length λ = 1064 nm, L = 10 cm, m = 10 mg,
κ/(2π ) = 0.25 MHz, κin/κ = 0.8, � = κ/

√
3, and P = 1 W.

The sensitivity at the reflection reaches below unity, which
means beating the SQL, due to the dip in Sref

b1
. This noise

reduction occurs at the frequency where the amplitude fluctu-
ation of the direct reflection and that of the cavity leakage are
canceled each other. The latter is dominant in the overcoupled
cavity at high frequencies, while the former is larger at low
frequencies because of the optical spring. The dip frequency
is given by

ωdip =
√

�ι

(κ − 2κin )2 + �2
, (9)

and it is always larger than the resonant frequency of the
optical spring. As for the input phase fluctuation shown by
the blue line in Fig. 1, the contribution to the total noise
is much smaller than the others so that it is negligible. In
this Letter, we demonstrate the dip-shaped spectrum of the
amplitude fluctuation, which is the most critical to the better
force sensitivity at the quantum level.

We discuss difference between the reflection and transmis-
sion measurement. As shown by the dotted lines in Fig. 1, the
noise from the input amplitude fluctuation at the transmission
is smaller than that at the reflection (Stra

b1
< Sref

b1
), resulting in

slightly better total sensitivity at low frequencies. This type
of back action evasion was experimentally demonstrated by
the previous work [40]. Comparing with the transmission
measurement, the reflection measurement has an advantage
of achieving better force sensitivity ultimately. The sensitivity
of the typical overcoupled cavity is better at the dip frequency
in the reflection measurement than at low frequencies in the
transmission measurement. In addition, beating the SQL is a
unique benefit of the reflection measurement.

III. EXPERIMENTAL PROOF OF PRINCIPLE

We demonstrate the proof-of-principle of the technique
mentioned above in the experiment depicted in Fig. 2. A
11-cm linear cavity consists of an 8-mg end mirror (0.5 mm
thick with a diameter 3 mm) suspended by a single carbon
fiber (6 μm thick and 2 cm long), and a much heavier (60 g)
input mirror. The test mass consists of the double suspension
to isolate it from the seismic motion. The intrinsic Q value of
a single pendulum only with the carbon fiber and the mirror
is measured to be Q ∼ 8×104 at the intrinsic mechanical
resonant frequency ωm/(2π ) ∼ 3 Hz.

The radii of curvature of the mirrors are 10 cm, shorter
than the cavity length of 11 cm; this autonomously stabilizes
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FIG. 2. Schematic overview of the experimental setup. The test
mass mirror made of fused silica shown by the photograph is the
lowest part of the double suspension. We use the output of a 1064-nm
laser. Reflected light from the main cavity is split and detected by
a polarizing beam splitter (PBS), a quarter wave plate (QWP), and
a DC photodiode. The error signal controls the cavity length with
the feedback to the input mirror with the coil-magnet actuator. The
classical radiation pressure and intensity noises are excited by the
injection of the white noise to an acousto-optic modulator (AOM).
The transmission of the cavity is monitored to estimate the cavity de-
tuning during the measurement. An electro-optic modulator (EOM)
generates the phase modulation for the frequency stabilization with
a reference cavity and a Pound-Drever-Hall (PDH) error signal.

the cavity against radiation-pressure torque instabilities [45].
In order to realize the optical spring, the laser is blue-detuned
from cavity resonance. The required error signal to stabilize
the detuning is derived from the power reflected from the
cavity away from resonance. The error signal is compared
against a DC reference, which is then fed back to actuate on
coil-magnet actuators on the input mirror that controls the
cavity length. By changing the DC reference, we measure
several sensitivities to the external force acting on the test
mass with different detunings. The transmission of the cavity
is monitored to estimate the detuning during the measurement.
The cavity is driven by the input power Pin � 4.7 mW of
1064-nm light from a Nd:YAG laser derived at a beam splitter.
The finesse is measured to be F = (3.0 ± 0.3)×103, resulting
in the intracavity power P ∼ 5 W.

The system is not in a regime where quantum radiation
pressure fluctuations dominate the motion of the end mir-
ror. Nevertheless, the principle underlying coherent radiation
pressure noise cancellation can be demonstrated on calibrated
classical radiation pressure noise impressed on the input light.
The injection is performed by adding the white noise to
an acousto-optic modulator (AOM) the input light passes
through, so that the mg-scale test mass is driven by the clas-
sical radiation pressure noise. It is confirmed by coherence
between the error signal and the intensity noise, which is taken
by the photodetector for the light picked off just before the
cavity. The injected noise is so large [

√
ε1 ∼ O(103)] that the

coherence is measured to be almost unity at all frequencies.
In order to observe the classical radiation pressure fluctu-

ation with better signal-to-noise ratio, the laser frequency is

FIG. 3. Demonstration of the dip-shaped spectrum from the
amplitude fluctuation of the input light. The amplitude spectrum
normalized by the SQL is shown at the upper panel, and the open
loop transfer function is shown at the middle and bottom panels. The
experiment is performed in four different detunings, and the results
(blue solid curves and points) are fitted by the modeled curves (red
dotted lines). The estimated normalized detunings (δ ≡ �/κ) are
written along the measured spectra.

stabilized by a reference cavity (4.4 cm long, with a finesse
6.4×104). The reflected light from the reference cavity, whose
phase is modulated by an electro-optic modulator (EOM), is
used as the Pound-Drever-Hall (PDH) error signal. Produced
feedback signal actuates a laser piezoelectric transducer and
stabilizes the frequency noise. The reference cavity is colo-
cated with the experimental cavity, on a vacuum vibration
isolation platform. The pressure is kept around 100 Pa to avoid
the coupling of acoustic noise and simultaneously make the
cavity locked more easily due to the residual gas damping.
This pressure introduces the additional viscous thermal noise,
while it is still much smaller than the noise caused by the
intensity fluctuation.

IV. RESULT AND DISCUSSION

Our experiments are performed with four different detun-
ings keeping the constant input power. The result of the four
measurements is shown in Fig. 3. At the upper panel, the
measured spectra normalized by the SQL are plotted with the
modeled curves and detunings estimated by the transmission
monitor. Those are calibrated from the error signal to the force
sensitivity by the transfer function of the open loop and the
filter for the length control. The gains and phases of the open
loop transfer function are plotted at the middle and bottom
panels with the modeled curves. At the resonant frequency,
the phase is advanced (delayed) in the two measurements with
higher (lower) intracavity power, since the negative damping
of the optical spring does (not) overwhelm the residual gas
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FIG. 4. Ratios between optical spring frequencies and dip fre-
quencies. The four blue dots with errors represent the results with the
different detunings. Each colored dot corresponds to the estimation
from the same colored spectrum in Fig. 3. The red line shows the
modeled curve fitted to the measured data.

damping. The negative damping is compensated by the elec-
trical feedback loop.

In the case of the conventional phase measurement in
this setup, we should see the flat force sensitivity without
the normalization because of the classical radiation pressure
noise. In our experiment, the dip-shaped reduction of the
noise is clearly observed by the amplitude measurement of the
reflection. Without the detuning fluctuation during the mea-
surement, the sensitivity with injection of the white intensity
noise has the spectrum of√

Sref
b1

(ωdip,m ) ∝
∣∣ω2

dip,m − ω2
∣∣

ω2
dip,m

, (10)

where ωdip,m is the measured dip frequency. In practice,
the detuning is changing so that the dip gets thicker. In
order to estimate the dip frequency with the error, we as-
sume that the dip frequency distributes as Gaussian where
the central frequency is ωdip,m with the standard devia-
tion of δω. The modeled curve is generated by averaging
the two distributed spectra because of the Gaussianity,√

[Sref
b1

(ωdip,m + δω) + Sref
b1

(ωdip,m − δω)]/2, and the fitting is

performed by the two parameters and the overall factor. In
this way, for instance, we estimate the dip frequency in the
measurement with the highest power as ωdip/(2π ) = 1180 ±
70 Hz.

In Fig. 4, we show ratios between optical spring frequen-
cies and dip frequencies at the four different detunings. The
ratio is a solid indicator to evaluate the system since it is not
affected by uncertainty of the intracavity power. The mean
values and errors of the ratio are calculated from the modeling
of the measured spectra in the previous paragraph. The detun-
ings are estimated by comparing the transmission of the cavity
during the measurement with the maximum output in the

cavity scan. The errors of the detunings come from the resid-
ual fluctuations of the transmission power. When we make the
modeled curve of the ratio, the effect of the mode mismatch
between the cavity TEM00 mode and the input beam must be
taken into account. The mismatched light is directly reflected
from the cavity, and contributes as the sensing noise which has
a dip at the optical spring frequency [44]. Due to this effect,
the measured dip frequency is smaller than that in the perfect
mode matching. The mode matching ratio is measured to be
η = 92%. The transmission of the input mirror is estimated to
be κin/κ = 0.81 by the fitting.

At the end of this Letter, we discuss future prospect of the
experiment. In order to realize the dip-shaped reduction of
the intensity noise at the quantum level beyond the SQL, we
need a suspended mirror with the higher Q-value pendulum
resulting in the lower thermal noise to open the SQL win-
dow. The required Q value is roughly 106, which has been
already achieved by the similar mg-scale pendulum using the
monolithic 1-μm silica fiber attached to the silica mirror [46].
Besides, the ng-scale cantilever [47] has observed the quan-
tum radiation pressure fluctuation in broadband frequencies
so that the demonstration can be performed immediately at
the quantum level. Improving the thermal noise is required to
beat the SQL as well by increasing the mechanical Q value or
operating the system at cryogenic temperature.

V. CONCLUSION

The optomechanical cavity can be used for the precise
measurement of forces acting on mechanical oscillators, such
as the quantum decoherence phenomena and the dark mat-
ter interaction, while the sensitivity is fundamentally limited
by the quantum noise. We theoretically show that the force
sensitivity of the test mass trapped by the optical spring can
be improved as the dip by measuring the amplitude of the
light reflected from the overcoupled detuned cavity. We ex-
perimentally demonstrate the dip-shaped improvement with
the mg-scale suspended mirror by adding the intensity mod-
ulation to the light. This method does not require additional
setup for the squeezed light or homodyne measurement. We
conclude that the amplitude measurement of the reflection
gives a simple way to improve the sensitivity even beyond the
quantum limit.
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