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We study the system of strongly interacting spinor bosons in a square lattice subject to the isotropic Rashba
spin-orbit coupling α = β. It supports a collinear spin-bond correlated magnetic Y-x phase, a gapped coplanar
in-commensurate (IC) XY-y phase, and a noncoplanar commensurate (C) 3 × 3 Skyrmion crystal phase. The
state at the Abelian point α = β = π/2 is just a ferromagnetic state in a rotated basis. Slightly away from the
point, we identify a spurious U(1) symmetry, develop a nonperturbative method to calculate not only the gap
but also the excitation spectrum due to the order from quantum disorder (OFQD) mechanism. We construct a
symmetry-based effective action to investigate the quantum Lifshitz transition from the Y-x state to the IC XY-y
state and establish the connection between the phenomenological parameters in the effective action and those
evaluated by the microscopic nonperturbative OFQD analysis in the large S limits. Experimental implications on
cold atoms and some 4d or 5d Kitaev materials are discussed.
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I. INTRODUCTION

It is well-known that geometric frustrations lead to fan-
tastic quantum, topological phases and phase transitions in
quantum spin systems [1–4]. Frustrated phenomena in some
typical quantum compass models such as the Kitaev honey-
comb lattice model [5], 120◦ honeycomb lattice model [6–8],
and Heisenberg-Kitaev model [9] have also been studied. On
the other forefront, Rashba spin-orbit coupling (SOC) is ubiq-
uitous in various 2D or layered noncentrosymmetric magnetic
insulators, semiconductor systems, metals, and superconduc-
tors [10–17]. There have also been experimental advances
in generating various kinds of 2D SOC for charge neutral
cold atoms in both continuum and optical lattices [18–21].
New experimental schemes [22–26] were successfully imple-
mented to create a long-lived SOC gas of quantum degenerate
atoms. These cold atom experiments set up a very promising
platform to observe many-body phenomena due to the inter-
play between Rashba SOC and interaction in optical lattices.
It becomes important to investigate what could be the new
quantum or topological phenomena due to such an interplay.

In this paper, we address this outstanding problem by
studying a system of strongly interacting spinor bosons in a
square lattice subject to the 2D Rashba SOC. We find that the
Rashba SOC provides an alternative class of frustrated sources
which leads to rich quantum phenomena even in a square
lattice summarized in the abstract and Fig. 1. Our results can
be applied to ongoing and near-future cold atom experiments
as soon as the heating issues can be overcame in the strong
coupling limit. They may also shed considerable light on the
unconventional magnetic ordered states or putative quantum
spin liquid states in some 4d or 5d Kitaev materials [3,4].

The tight-binding Hamiltonian of (pseudo)spin 1/2
bosons(fermions) hopping in a two-dimensional square lattice
subject to any combination of Rashba and Dresselhaus SOC
is [27–30]

HB = −t
∑
〈i j〉

(
b†

iσU σσ ′
i j b jσ ′ + H.c.

) + U

2

∑
i

(ni − n)2, (1)

where t is the hopping amplitude along the nearest neighbors
〈i j〉, n is taken to be an integer filling, Uii+x̂ = eiασx , Uii+ŷ =
eiβσy are the non-Abelian gauge fields put on the two links in
a square lattice. U > 0 is the Hubbard on-site interaction.

In the strong coupling limit U/t � 1, to the order O(t2/U ),
we obtain the effective spin s = n/2 rotated ferromagnetic
Heisenberg model (RFHM) [30],

HR = −J
∑

i

[SiR(x̂, 2α)Si+x̂ + SiR(ŷ, 2β )Si+ŷ], (2)

with J = ±4t2/U for bosons/fermions, the R(x̂, 2α),
R(ŷ, 2β ) are the two SO(3) rotation matrices around the X and
Y spin axis by angle 2α, 2β putting on the two bonds along x̂,
ŷ respectively. Expanding Ui,i+x̂ = cos α + i sin ασx,Ui,i+ŷ =
cos β + i sin βσy in Eq. (1), one can see that at the Abelian
point α = β = π/2, the standard hopping terms vanish,
only the spin-flip hopping term (SOC) survives. As shown
in Ref. [30], at the Abelian point, Eq. (2) is simply the
ferromagnetic (FM) Heisenberg model in the rotated ˜̃SU(2)
basis H = −J

∑
〈i j〉

˜̃Si · ˜̃S j where ˜̃Si = R(x̂, π ix )R(ŷ, π iy)Si.
Both Eqs. (1) and (2) at a generic (α, β ) have the transla-

tional, the time reversal T , the three spin-orbital coupled Z2

symmetries Px,Py,Pz symmetries [30]. Along the isotropic
Rashba limit α = β, the Pz symmetry is enlarged to the
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FIG. 1. The phase diagram of Eq. (2) when α = β+. The state at
α = β = π/2 is just an AFM state in ˜̃SU(2) basis. When αin < α <

π/2, there is a gap opening in the collinear Y-x phase generated by the
order from quantum disorder (OFQD) mechanism. There is a second-
order quantum Lifshitz transition (QLT) at α = αin with the dynamic
exponent z = 1, from the Y-x phase to the coplanar IC XY-y phase
[32], then a second one to the commensurate noncoplanar 3 × 3 SkX
phase at α = α33. The relevant numbers are α0

in ∼ 0.3611π, αin ∼
0.3526π, α33 ∼ 0.3402π, α−

33 ∼ 0.295π and the ordering wave vec-
tor in the IC XY-y is π − q0

y with qIC ∼ 0.18π < q0
y < 0.24π . When

α = β−. All the phases become their corresponding imaging phases
related by the [C4 × C4]D transformation except the 3 × 3 SkX phase
is its own image. So, the two corresponding imaging phases can
coexist with any ratio along α = β.

spin-orbital coupled [C4 × C4]D symmetry around the z axis.
In this paper, we focus on spinor bosons with the isotropic
Rashba SOC α = β. The generic case α �= β is presented in a
separate publication [31].

II. THE ORDER FROM QUANTUM DISORDERS:
SELECTION OF THE QUANTUM GROUND STATE

It was shown that the 2 × 1(Y-x) state [30,32] is the ex-
act quantum ground state along the anisotropic line (α =
π/2, α < β ). Now we investigate the physics along the di-
agonal line α = β near the Abelian point α = β = π/2. At
the classical level, the 2 × 1 Y-x state Sy = (−1)x [Fig. 2(a)]
is degenerate with the 1 × 2 X-y state Sx = (−1)y. In
fact, due to a spurious U(1) symmetry, there is a fam-
ily of states called 2 × 2 vortex states in Fig. 2(c): Si =
((−1)iy cos φ, (−1)ix sin φ, 0), which are degenerate at the
classical level. The order from quantum disorder (OFQD)
mechanism is needed to find the unique quantum ground
state up to the [C4 × C4]D symmetry in this regime. Af-
ter making suitable rotations to align the spin quantization

Sz

Sy

A B

D C

Sx

Sy

Sz

(a) (b) (c) (d)

FIG. 2. The Collinear, spiral, vortex, and noncoplanar states in
Fig. 1. (a) The 2 × 1(Y-x) state Sy = (−1)x . (b) The spin direction
at the lattice sites x = 1, 2, 3, 4 of the 4 × 1 spiral state. The in-
set shows the spin axis for the collinear and spiral states. (c) The
classically degenerate family of (two in, two out) 2 × 2 vortex state.
(d) The 3 × 3 noncoplanar skyrmion crystal (SkX) state with non-
vanishing skyrmion density 	Si · 	Sj × 	Sk �= 0 happens near α = β =
π/3, which is the most frustrated regime in the Wilson loop [30]. The
inset shows the spin axis for the 2 × 2 vortex and 3 × 3 SkX states.

axis along the Z axis, we introduce four Holstein-Primakoff
(HP) bosons a, b, c, d corresponding to the four sublattice
structures A, B,C, D shown in Fig. 2(c) to perform a system-
atic 1/S spin wave expansion [33–35] for a generic (α, β ):

H = E0 + 2JS[H2 + ( 1√
S

)H3 + ( 1√
S

)
2
H4 + · · · ], where E0 =

−2NJS2(1 − cos 2α sin2 φ − cos 2β cos2 φ) is the classical
ground-state energy, Hn denotes the nth polynomial of the
boson operators. H2 can be diagonalized by a unitary trans-
formation, followed by a Bogoliubov transformation as

H2 = E2 + 2
∑
n,k

ωn(k)α†
n,kαn,k, (3)

where n = 1, 2, 3, 4 is the sum over the four branches
[due to the four sublattices A, B,C, D in Fig. 2(c)]
of spin wave spectrum in the reduced Brillouin zone
(BZ) −π/2 < kx, ky < π/2 and E2(φ) = ∑

k,n[ωn(k) − (1 −
cos 2α sin2 φ − cos 2β cos2 φ)/2] is the 1/S quantum correc-
tion to the ground-state energy.

We first look at E0 near the Abelian point α = β = π/2.
If α > β, it picks the Y-x state [30] with φ = π/2. If α <

β, it picks the X-y state with φ = 0. Setting α = β, E0 =
−2NJS2(1 − cos 2α) becomes φ independent, indicating the
classical degenerate family of states characterized by the angle
φ along the whole diagonal line α = β. Fortunately, the quan-
tum correction E2(φ) = ∑

k,n[ωn(k, φ) − sin2 α] does depend
on φ. As shown in Fig. 3(a), E2(φ) reaches its minimum at
φ = 0 (X-y state) or φ = π/2(Y-x state), which are related
to each other by the [C4 × C4]D symmetry. Expanding E2(φ)
around one of its minima φ = 0,

E2(φ) = E0
2 + 1

2 Bφ2 + κφ4 + · · · , (4)

where one can identify the coefficient B(α) plotted in
Fig. 3(b). The OFQD selection of the Y-x or X-y state at α = β

shows that there is a direct first-order transition from the Y-x
state to the X-y state, so at α = β, there is any mixture of the
Y-x and X-y state in Fig. 1.

Taking the Y-x state as the ground state, plugging φ =
π/2 into Eq. (3), we find it supports the Cπ magnons
[30,32] at k = (0, π ) + q. They condense along the diagonal
line arccos(1/

√
6) � α � π/2 with the gapless relativistic

dispersion,

ω−0(q) =
√

v2
x q2

x + v2
y q2

y , (5)

where vx = cos(α)/2, vy = cos(α)
√

1 − 6 cos2(α)/2. Obvi-
ously, both velocities vanish at the Abelian point α = β =
π/2 dictated by the hidden ˜̃SU(2) symmetry. Moving away
from the Abelian point, vx keeps increasing but vy increases
first, reaches a maximum, then decreases, vanishes at α0

IC =
arccos(1/

√
6) ∼ 0.36614π , indicating a possible quantum

Lifshitz transition (QLT). As to be shown below, the gapless
magnon mode in Eq. (5) is just a spurious Goldstone mode due
to the spontaneous breaking of the spurious U(1) symmetry.

III. ORDER FROM QUANTUM DISORDER: THE GAP
OPENING AND THE SPECTRUM

By using the spin coherent state path integral formulation
[1,2,33], we will evaluate the gap at the minimum (0, π ) of
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FIG. 3. The order from the quantum disorder (OFQD) and the gap opening on the spurious gapless mode in the Y-x state in Fig. 1. (a) The
quantum correction E2(φ) to the ground-state energy picks up Y-x at φ = 0 or X-y at φ = π/2 as the ground state which is related to each other
by the [C4 × C4]D symmetry. (b) The classical coefficient A(α)/J labeled by the left axis(the green line on the left) and the quantum one B(α)/J
labeled by the right axis(the red line on the right). Both vanish at the Abelian point α = β = π/2 as ∼ (π/2 − α)2 and are monotonically
increasing function when moving away from the Abelian point. The Dashed line is located at α0

in ∼ 0.3661π where the Y-x state becomes
unstable at the linear spin wave order. After incorporating the gap opening, the α0

in is shifted to a smaller value αin ∼ 0.3526π . The gap 	B in
Eq. (7) keeps increasing when moving away from the Abelian point α = β = π/2.

the Cπ magnons in the ˜̃SU(2) basis [30]. A general uniform
state at 	q = 0 in the ˜̃SU(2) basis can be taken as a FM
state with the polar angle (θ, φ). After transforming back to
the original basis by using ˜̃S1 = Rz(π )S1,

˜̃S2 = Ry(π )S2,
˜̃S3 =

Rx(π )S3,
˜̃S4 = S4, it leads to a 2 × 2 state characterized by the

two angles θ and φ. Along the diagonal line, its classical en-
ergy becomes H0 = J[−2 sin2 α − 2 cos2 α sin2 θ ] which is,
as expected, φ independent. Any deviation from the Abelian
point picks up the XY plane with θ = π/2. So it reduces to the
2 × 2 vortex state shown in Fig. 2(c). Expanding around the
minimum H0 = J[−2 sin2 α + 2 cos2 α(θ − π

2 )2 + · · · ] gives
the stiffness A = 2J cos2 α shown in Fig. 3(b). Using the spin
coherent state analysis, we can write down the quantum spin
action at 	q = 0,

L(	q = 0) = iS cos θ∂τφ + 1
2 S2A(θ − π/2)2 + 1

2 SBφ2, (6)

where we put back the spin S, the first term is the spin
Berry phase term, A ∼ (π/2 − α)2 and B ∼ (π/2 − α)2 are
from the classical analysis and the OFQD analysis Eq. (4),
respectively. Equation (6) leads to the gap

	B =
√

SAB ∝
√

S, (7)

which is beyond any 1/S expansion, so nonperturbative. In
fact, there are also corrections from the cubic H3 and quartic
H4 terms in the spin wave expansion listed above Eq. (3), but
they only contribute to the order of 1 which is subleading
to the

√
S order in the 1/S expansion [33–35]. As shown in

Fig. 3(b), both A and B are monotonically increasing along
the diagonal line, so the gap also increases. Plugging their
values at α = α0

in = arccos(1/
√

6), taking A/J = 1/3, B/J ≈
8 × 10−3 and S = 1/2, we find the maximum gap near the
quantum Lifshitz transition 	B/J ∼ 0.036.

In the SM1 [36], we develop a systematic nonperturbative
scheme to evaluate not only the mass gap Eq. (7), but also the
whole spectrum:

ω−(qx, qy) =
√

	2
B + v2

x q2
x + v2

y q2
y + u2q4

y + · · · (8)

where v2
y = a(α0

in − α) changes sign at α = α0
in. From the gap

vanishing condition [37] (see also Eq. (10)] at the IC wave-
vectors qIC = ±(	B/u)1/2, one can see the QLT is shifted to
αIC = α0

in − 2u	B/a. Plugging in the values of 	B and u, we
find qIC ∼ 0.18π . The shift is so small that αic ∼ 0.3526π

remains larger than α33 ∼ 0.3402π (to be defined in Sec. V)
shown in Fig. 1. So, there must be an IC phase intervening
between the Y-x state and the 3 × 3 state when α33 < α < αIC

in Fig. 1.

IV. THE QUANTUM LIFSHITZ TRANSITION FROM THE
Y-x PHASE TO IC XY-y PHASE

Here we construct an effective action in terms of the
pseudo-Goldstone mode φ to describe the QLT. This is a
symmetry-based phenomenological approach which is inde-
pendent of the 1/S expansion in the previous sections. Inside
the Y-x phase along the diagonal line α = β, after integrat-
ing out the massive conjugate variable θ − π/2, we reach
the following effective Ginzburg-Landau (GL) action in the
continuum limit, consistent with all the symmetries of the
microscopic Hamiltonian Eq. (2):

LY −x[φ] = 1

2A
(∂τφ)2 + v2

x (∂xφ)2 + v2
y (∂yφ)2 + u2(∂2

y φ)2

+ 1

2
Bφ2 + κφ4 + · · · . (9)

In general, it is difficult to evaluate the values of the phe-
nomenological parameters in Eq. (9). However, in the large S
limit and away from the QLT point, they can be evaluated by
the microscopic calculations in the previous sections. Indeed,
by contrasting Eq. (9) with Eqs. (6)–(8), one can see A is from
a classical contribution, B and κ are the effective potential
Eq. (4) generated from the OFQD mechanism. Notably, the
coefficient v2

y = a(α − α0
in) tuned by the SOC changes sign at

α = α0
in. These matches between the microscopic calculations

in a large S limit and the symmetry-based effective action
ensures the nonperturbative OFQD calculation in Sec. III is
indeed correct.
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It is physically more transparent to rewrite Eq. (9) in the
momentum space,

L[φ]Y −x,D

= φ(−ωn,−qx,−qy )
[
ω2

n/A + v2
x q2

x + u2
(
q2

y − q2
IC

)2 + 	
]

×φ(ωn, qx, qy) + κφ4 + · · · , (10)

where 	 = 	2
B − a2

4u2 (α − α0
in)2 is the tuning parameter of the

QLT.
The spin can be expressed in terms of the order parameter

φ when using the shift φ → φ + π/2 and setting φ small:

Si ∼ (−(−1)iyφ, (−1)ix , 0). (11)

So, we conclude that when 	 > 0, 〈φ〉 = 0, it is inside the
Y-x phase. When 	 < 0, then

〈φ〉 = P0 cos(qICy + φ0), (12)

where P0, φ0 need to be fixed by the fourth-order κ term.
Substituting it into Eq. (11) shows that the system is in the IC
XY-y phase [32]. The smallness of 〈φ〉 justifies the expansion
in Eq. (4). The transition from the Y-x to the IC state is a QLT
with the dynamic exponent z = 1. All the quantum critical
scalings will be evaluated in Ref. [31] by 1/N expansion and
4 − ε expansion with ε = 1.

V. THE 3 × 3 NONCOPLANAR SkX PHASE

Near α = β = π/3, it is natural to take a 3 × 3 ansatz,
S(ix,iy ) = S(ix+3m,iy+3n), with m, n ∈ Z. We estimate its classical
ground-state energy by minimizing E3×3({φi, θi}0�i�9) over
its 18 variables. Along the diagonal line (α = β), as long as
α is not too small, the minimization of E3×3 always leads
to the 3 × 3 Skyrmion crystal (SkX) state which respects the
[C4 × C4]D symmetry [Fig. 2(d)]. The total spin in the 3 × 3
unit cell is Sunit = ∑

i Si = (0, 0, 4 × 10−3) which has exact
vanishing Sx, Sy components, but still a small nonvanishing Sz

component.
Comparing the classical ground energy of the 3 × 3 SkX

with that of the Y-x state EY −x = −2J sin2 α leads to a pu-
tative first-order transition between the two states at α33 ≈
0.340188π , which is smaller than αIC ∼ 0.3526π (Fig. 1).
So a putative direct first-order transition between the Y-
x state and the 3 × 3 SkX splits into two second-order
QLTs with z = 1 with the IC XY-y phase intervening be-
tween them in Fig. 1. When approaching α = β from the
anisotropic line (α = π/2, β ) from the right [31], we find α =
α33 lies on the constant contour line of the commensurate-
incommensurate magnons (0, k0

y ) at k0
y ∼ π − 0.24π . So,

0.18π < q0
y < 0.24π in the IC- XY-y phase α33 < α < αin

(Fig. 1).

VI. POSSIBLE EXPERIMENTAL IMPLICATIONS

The heating issue has been well under control in the weak
coupling limit in recent cold atom experiments [18–20,22–
26,38]. So, various exotic magnetic superfluid phenomena
can be observed in current cold atom experiments, however,
it gets worse as the coupling increases. The RFHM Eq. (2)
can only be reached in the strong coupling limit. So, the

rich magnetic Mott phenomena discovered in this paper can
be observed only after the heating issue can be resolved in
the strong coupling limit. Now, we turn its qualitative ap-
plications in the strongly correlated 4d or 5d materials with
strong SOC.

Naively, due to its microscopic bosonic nature, the
RFHM Eq. (2) may not be useful in describing the mag-
netism in various materials with SOC. However, the RFHM
can be expanded [30] as Heisenberg-Kitaev (or compass)
Dzyaloshinskii-Moriya (DM) [39] form

HR =
∑
〈i j〉

JH 	Si · 	S j +
∑
〈i j〉a

JK Sa
i Sa

j +
∑
〈i j〉a

JDâ · 	Si × 	S j, (13)

where â = x̂, ŷ and JH = cos 2α, JK = 2 sin2 α, JD = sin 2α.
One can estimate their separate numerical values near the in-
commensurate phase (IC XY-y) α = α0

in = arccos 1√
6

in Fig. 1:
the Heisenberg term JH ∼ −2/3 is AFM, the Kitaev term
JK ∼ 5/3 is FM, the DM term JD ∼ √

5/3. So, the model
becomes a dominant FM Kitaev term plus a small AFM
Heisenberg term and a small DM term. This is indeed the
case in so-called 5d Kitaev materials such as A2IrO3 with
A = Na, Li or more recent 4d materials α − RuCl3. So far,
only a zigzag phase or an IC phase were observed experimen-
tally [40,41]; no quantum spin liquids [5,9] have been found.

VII. DISCUSSIONS

It is instructive to contrast the quantum phenomena
achieved here by the analytic perturbative and nonperturba-
tive methods with those results achieved by classical Monte-
Carlo simulations in two earlier works [28,29]. The authors in
Refs. [28,29] did classical Monte Carlo simulations using the
representation Eq. (13) on a small finite-size system. These
two numerical papers did not have the concepts of the frustra-
tions due to the Rashba SOC. The authors of Ref. [28] found
the classical 2 × 1, 3 × 3 SkX, and 4 × 1 states in Fig. 1. They
also found a FM state near the origin α = β = 0. The authors
of Ref. [29] found the classical 2 × 2 vortex, 3 × 3 SkX, and
4 × 1 states in Fig. 1. Our paper studies the quantum effects on
the RFHM Eq. (2) analytically . In Sec. II, we found the 2 × 2
vortex is classically degenerate with the Y-x and X-y state, but
the OFQD mechanism picks up either the Y-x or X-y state as
the quantum ground state. In Sec. III, we also evaluated the
excitation spectrums corrected by the mechanism. This analy-
sis also leads to the instability of the Y-x (or X-y) state to the IC
SkX phase. In Sec. IV, we constructed an effective action to
describe the QLT with the dynamic exponent z = 1 in Fig. 1
and also identified the spin-orbital structure of the IC SkX
phase. Of course, it would be impossible to detect the quantum
IC SkX phase by any classical Monte Carlo simulations at any
finite-size system, let alone to study the QLT. Only by the
controlled, nonperturabative analytical calculations, can one
show there must be an in-commensurate phase intervening be-
tween the collinear Y-x phase and the noncoplanar 3 × 3 SkX
phase. Of course, the quantum model Eq. (2) presents very
serious sign problem to quantum Monte Carlo simulation.
So, the classical classical Monte-Carlo simulations used in
Refs. [28,29] cannot be extended to study the novel quantum
and topological phenomena addressed in this paper.
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As we alerted above, the second term in Eq. (13) is a
quantum compass model in a square lattice instead of the
Kitaev model in a honeycomb lattice. To have quantitative
impacts on 3D or 4D Kitaev materials [40,41], it is important
to extend the results achieved here in a square lattice to a
honeycomb lattice with three SOC parameters α, β, γ .
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