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Dynamical preparation of stripe states in spin-orbit-coupled gases
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In spinor Bose-Einstein condensates, spin-changing collisions are a remarkable proxy to coherently realize
macroscopic many-body quantum states. These processes have been, e.g., exploited to generate entanglement,
to study dynamical quantum phase transitions, and proposed for realizing nematic phases in atomic condensates.
In the same systems dressed by Raman beams, the coupling between spin and momentum induces a spin depen-
dence in the scattering processes taking place in the gas. Here we show that, at weak couplings, such modulation
of the collisions leads to an effective Hamiltonian which is equivalent to the one of an artificial spinor gas with
spin-changing collisions that are tunable with the Raman intensity. By exploiting this dressed-basis description,
we propose a robust protocol to coherently drive the spin-orbit-coupled condensate into the ferromagnetic stripe
phase via crossing a quantum phase transition of the effective low-energy model in an excited state.
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Introduction. Artificial spin-orbit coupling (SOC) in
ultracold-atom gases offers an excellent platform for studying
quantum many-body physics [1-3]. The interplay between
light dressing induced by Raman coupling [4] and atom-atom
interactions can lead, for instance, to high-order synthetic
partial waves [5], to chiral interactions and density-dependent
gauge fields [6], or to the formation of stripe phases [7].
The latter have gained significant attention over the past
decade [8—13], in great part due to its supersolidlike properties
[14-16], that is, its simultaneous spontaneous breaking of
translational invariance and of U(1) (global) phase symmetry,
resulting in a crystalline structure that maintains off-diagonal
long-range order.

Accessing the stripe regime of ultracold gases with SOC
remains experimentally challenging, since its stability relies
on the asymmetry between intra- and interspin interactions,
typically small in a common spinor Bose-Einstein condensate
(BEC). The predicted spatial density modulations have only
been unambiguously observed in [17], using orbital states in
a superlattice as pseudospin states, and very recently also in
metastable states of a 3’Rb spinor gas [18] (for its realization
in dipolar gases, see [19-21]). While sharing many proper-
ties with conventional supersolids, the nature of the stripe
phases in gases with SOC is still debated [22], with current
proposals focusing on probing its excitation spectrum. So far,
most protocols to enhance the accessibility of the phase and
the contrast of the stripes pursue an effective decrease of the
intraspin interactions [23,24]. Alternatively, here we propose
an approach to access the stripe regime of a spin-1 gas with
largely symmetric spin interactions, based on the coherent
spin-mixing dynamics induced by Raman dressing.

Several authors have suggested a connection between
spinor gases with spin-changing collisions and SOC BECs
[12,25-31]. In this work, we show analytically that the
Raman-dressed spin-1 SOC gas at low energy is equiva-
lent, for weak Raman coupling and interactions, and zero
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total magnetization, to an artificial spin-1 gas with tunable
spin-changing collisions. Under these conditions, the sys-
tem is well described by a one-axis-twisting Hamiltonian
[32,33]. Such a Hamiltonian explains several quantum many-
body phenomena in spinor condensates [34,35], including
the generation of macroscopic entanglement [36—49], with
potential metrological applications [50], and the observation
of nonequilibrium phenomena such as the formation of spin
domains and topological defects [51-61]. Recently, dynami-
cal [62] and excited-state [63] quantum phase transitions have
been theoretically [64,65] and experimentally [66,67] studied
in spin-1 BECs with spin-changing collisions. Here we exploit
this map to provide a many-body protocol to access the ferro-
magnetic stripe phase of the SOC gas via crossing a quantum
phase transition of the low-energy Hamiltonian in an excited
state. This preparation enhances the accessibility of the phase,
which has as the ground-state phase a very narrow region of
stability [68].

System. We consider a spin-1 Raman-dressed Bose gas
held in an isotropic harmonic potential V; = %ma)tzr2 with the
atoms interacting via two-body s-wave collisions. In a frame
corotating and comoving with the laser beams, the system

is described by the Hamiltonian H = f dr[fﬁ‘ (7:lk + Vt)'?f +
PR+ 2 G E) with = (o, o, 1) the
spinor field operator and {/Fy, lej") RE.} the spin-1 matrices.
Here gy = 4nh2(ao + 2a3)/3m and g, = 4nh2(a2 —ap)/3m,
with ay and a, the scattering lengths inthe F =0 and F = 2
channels, respectively. The dressed kinetic Hamiltonian reads
Hy = 2%(k — 2k F.e.)? + %I:} +8F, + EFZZ, where 2 is the
Raman coupling strength, § is the Raman detuning, and €
is the effective quadrupole tensor field strength. The latter
term can be controlled independently of § by employing two
different Raman couplings between the two Zeeman pairs
{|1,1),1,0)} and {|1,0), |1, —1)} and simultaneously ad-
justing the Raman frequency differences [69]. We label the
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FIG. 1. Pseudospin dynamics in SOC BECs. (a) Dispersion
bands of the dressed Hamiltonian # with = 0.65E,, § = 0, and
€ = Q2/16E,. The color texture indicates the expected value of the
spin of the dressed states. Dashed lines show the undressed dis-
persion bands. (b) Schematic representation of resonant collisions
mediated by Raman transitions (represented by wavy lines) which
act as effective spin-changing collisions. For weak Raman coupling
and interactions, the dressed-state dynamics can be captured by the
pseudospin Hamiltonian (4). (c i) Phase diagram of (4), as a function
of the Raman Rabi frequency 2 and effective quadratic Zeeman
shift €, for ¥Rb at n = 7.5 x 10'> cm~=>. The polar (P), twin-Fock
(TF), and broken-axisymmetry (BA) phases meet at the tricritical
point Cr (black dot). (c ii) Corresponding phase diagram for the
highest-excited eigenstate. The upper panel in the inset shows the
energy gap between the two most excited eigenstates along the red
dashed segment for N = 1000. The lower panel shows the expected
value of the collective pseudospin £? (red dash-dotted line) and
tensor magnetization L. (blue solid line).

Raman single-photon recoil energy and momentum as E, =
R
2m

lowest dispersion band of i presents a triple-well shape
along the direction of the momentum transfer, which we ar-
bitrarily set along the Z axis. Spin texture is present in the
band, with the spin mixture being the largest at the vicinity of
the avoided crossings [see Fig. 1(a)]. While much smaller, the
spin overlap between states located at the vicinity of adjacent
minima is nonzero and increases linearly with €2. This overlap
allows collision processes that exchange large momentum at
low energies. These Raman-mediated processes act as spin-
changing collisions, as illustrated in Fig. 1(b).

Low-energy effective theory. We now consider the regime
where &, €, hiwy, and the interaction energy per particle are all
much smaller than the recoil energy E,. Such a low-energy
landscape is well captured by an effective theory in which
all the dynamics involves only the lowest band modes around
each band minimum k; ~ 2 jk.e., with j € {—1, 0, 1}. Under
these considerations, we reexpress the spinor field ¥ in terms
of the lowest-band dressed fields at the vicinity of each k;,
which we label as ¢;, and set a cutoff A < /ik, to the momen-
tum spread p around them. With this notation, we can identify

- and %k, , respectively. In the weakly coupled regime, the

the operators acting in the separated regions as a pseudospinor
field = (@_1, @o. @1)7, with [p:(p), §(P)] = 3(p — 3.

By using perturbation theory up to second order in €2, the
low-energy Hamiltonian can be written as A ~ Hs + Hy (see
the Supplemental Material for more details [70]). Here Hs
and H, include the pseudospin-symmetric and nonsymmetric
contributions, respectively, given by

/dr[z (—+vt)<pl+ Z@,ijm} )

and

+ 2107 @o@o + He) + @' (8, +Eﬁf)¢], 2)

with g, = go%. The coefficient € includes the correction to

€, with& =€ + %. In (2) we have excluded the terms pro-

portional to g,Q?, since typically |g2| < go. Notice that, even
in the case of SU(3)-symmetric interactions (i.e., go = 0), Hi
includes SOC-induced spin-changing collision processes with
a spin-mixing rate g,.

Three-mode model. We now restrict ourselves to the case
in which H, can be treated as a perturbation over the sym-
metric part As. We assume that the dynamics is then well
described by a three-mode model. It includes three eigen-
modes of Hs, labeled as |¢_1), |¢o), and |¢;), which have a
quasimomentum distribution centered in the vicinity of k_j,
ko, and k1, respectively. By introducing the associated bosonic
operators lALl, l;(), and 131, we truncate the field operators to
(0; @r) ~ ¢>l-*(r)13j. We call the three modes |¢;) pseudospin
states. Finally, dropping the terms that only depend on the
total number of particles N, we obtain the one-axis-twisting
Hamiltonian

Asy A—gomn

T

where we introduce the collective pseudospin operators

Leye=12,,b] b (., 7),“,19 and L., = > b (F )vby. Here
A=(g+ gz)n where 7 is the mean density of the gas.!

Since [He“, z] = 0, the total magnetization is preserved

by H.¢. Within the zero magnetization subspace (where f,z =

0), the effective Hamiltonian (4) reduces to

== [+ 8L, + &L, 3)

. i? .
Hy = xﬁ +el,.. 4)

The Hamiltonian (4) describes the nonlinear coherent spin
dynamics in a spin-1 BEC, in which the density-dependent
spin-symmetric interaction dominates [33]. In the SOC-based
realization of (4) we propose here, we can control the spin-
mixing parameter A independently of the density of the gas

!Since the spinor modes |¢;) are determined through the symmetric
Hamiltonian (1), we have that |¢;(r)| = |¢;(r)| foralli, j = —1,0, 1.
Thus, within the subspace spanned by these three modes, the mean
density of the gas is simply given by n = N [ dr|¢o(r)|*.

L031305-2



DYNAMICAL PREPARATION OF STRIPE STATES IN ...

PHYSICAL REVIEW A 104, L031305 (2021)

by adjusting €2. That is, SOC BECs provide an alternative
platform for designing entanglement protocols and studying
dynamical phase transitions.

Dynamical preparation of stripe states. The phase dia-
gram of the Hamiltonian (4) in the 2-€ plane is shown in
Fig. I(c 1), where we use the expressions for A(£2) and €(£2, €).
We consider 8’Rb, with g2/80 = —0.0047 [35] and density
n=7.5x 10" cm™. We now use this effective description
to design a protocol to prepare dynamically the stripe phase
of the dressed gas, which we later test numerically. For Q2 >
Q. = 4E../|g21/80, the diagram is equivalent to that of an
antiferromagnetic spinor gas without SOC, A > 0. The ground
state is then either in a polar (P) phase, where all the atoms
occupy the |¢y) state, or in a twin-Fock (TF) phase, in which
the ground state approximates the spin-% balanced Dicke state
m(ﬁil)’m(ﬂ)’wz |0). The phase transition between the
two phases is found along €(2) = 0. At Q = ., the effective
and the intrinsic spin-mixing dynamics mutually compensate,
with g, = —g», yielding A = 0. For Q < Q,, the effective
spin dynamics is ferromagnetic, A < 0. Then dressed spin
interactions tend to maximize the total spin, resulting in a
ground state with a nonvanishing transverse magnetization.
This spontaneous breaking of the SO(2) symmetry of the
system [52] gives rise to the so-called broken-axisymmetry
(BA) phase [71] in between the P and TF phases. The two
transitions take place at € = £2A in the thermodynamic limit.
The three phases meet at the tricritical point Cr, at Q =
4E;+/1821/80 and € = g2/go.

Remarkably, the BA phase of the effective model corre-
sponds to the supersolidlike ferromagnetic stripe (FS) phase
of the spin-1 SOC gas diagram, described in detail in [68]. The
FS phase is characterized by the presence of spatial density
modulations that are proportional to 2. When |g,| is small, as
in 3Rb, such phase is only favored in a very narrow region
in parameter space, which makes its experimental realization
challenging. Alternatively, the ferromagnetic landscape can
be probed in the most excited manifold of Hj in the antifer-
romagnetic regime, given that Ho(r, &) = —Hy(—2, —&). In
Fig. 1(c ii) we show the phase diagram for the most excited
state of Hy. It displays the same phases as the ground state, but
with the phase boundaries redefined. In the excited-state dia-
gram, the predicted BA phase occurs for a much broader range
of parameters. Notably, at the P-BA and BA-TF transitions,
the energy gap between the two most excited states scales
weakly with the total number of particles as proportional to
AN~!3_ This facilitates the quasiadiabatic driving through
both phase transitions in workable timescales even when the
number of particles is large. This feature was exploited in
[45,46] to generate macroscopic TF and BA states, respec-
tively, in small 3’Rb spinor condensates.

Following the dressed-spinor description, we propose to
prepare the FS phase in the most excited phase diagram of the
effective model by driving an initially polarized state across
the P-BA quantum phase transition therein. The loading can
be easily achieved from an undressed condensate in the m; =
0 spin state by adiabatically turning up 2 while setting € <
—2. The excited phase diagram can then be probed by vary-
ing € and 2. Since here the stripe phase occurs at larger €2,
it exhibits a larger contrast of the density modulations when
compared to its ground-state counterpart.
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FIG. 2. Crossing quantum phase transitions in an excited state.
(a) Plot of L.. (blue solid line) and L? (red dashed line) as a function
of  for a state initially prepared at by, = /30 and by = /N — 100,
with N(0) = 10* and fiw, = 2 x 140 Hz. The state is evolved under
the GPE while driving € from —3X to 3A, keeping 2 = 0.65E,,
following the red dashed path in Fig. 1(c ii). The total drive time is set
to 7; = 8h/A. The corresponding results obtained with simulations
of the three-mode model (4) are shown in light colors. (b) Quasi-
momentum density |¥(p.)|* of the driven state at € = 0 (dark green
solid line) and € = 3\ (light green dashed line). (c) Corresponding
density profiles at € = O (purple solid line) and € = 3A (pink dashed
line).

To derive our protocol, we assume the validity of the
three-mode truncation that leads to the Hamiltonian (4). To
assess the extent of such truncation, which is equivalent to
the single-spatial-mode approximation in spinor condensates
[72], we simulate the protocol with the Gross-Pitaevskii equa-
tion (GPE) for the full dressed gas, ifiyr; = 8 /8¢*, with £ =
¥+ VOU + L191 + £ 3§ F;9)%, using the XMDs2
library [73] (see the Supplemental Material [70] for more
details). We label the three self-consistent modes around k;
as ¢;, which are calculated via imaginary-time evolution of
the GPE, and define b; = f dr(bjf(r) -¥(r). As a reference,
we consider conditions similar to those described in [46],
with small 3Rb condensates in the F = 1 hyperfine mani-
foldatn ~ 7.5 x 10'* cm™3, and take E, /i = 27 x 3680 Hz,
k, =7.95 x 10° m~!, and gokf = 1.066E,. Note that in the
proposed protocol, the state is initially prepared in the Fock
state ﬁ(ﬁg)N |0). In these conditions, the dynamics is dom-

inated by quantum fluctuations [74,75] and the mean field
description is expected to be inaccurate. Instead, we set the
initial state to a coherent state with 0 < by < N.

In Fig. 2 we show the results for a drive along the
red dashed path drawn in the excited-state diagram from
Fig. 1(c ii). The drive is obtained with § =0, w, = 27 X
140 Hz, and N = 10*. We set = 0.65E, and the initial
state to by, = V50 and by = /N — 100. In Fig. 2(a) we plot
the collective pseudospin L?> =Y DI b’;b(l’:“j),wbv]2 and
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the tensor magnetization L,; = ) w D (Ii2 )b, as a function
of €/X. The state is time evolved following the linear ramp
() =3r2t/ty — 1), with t; = 8h/A, which crosses both
transitions at &€ ~ +2A. In the BA phase, the tensor magnetiza-
tion L. increases homogeneously with & /|| and the total spin
L peaks at & = 0, in agreement with the effective model [see
Fig. 1(c)]. For comparison, the results obtained from the direct
simulation of the three-mode Hamiltonian (4) are shown in
light colors. In Fig. 2(b) we plot the momentum-space density
at the middle and at the end of the drive, in which the state
approaches a BA state and a TF state, respectively. The corre-
sponding density profiles are shown in Fig. 2(c). As expected,
the excited BA phase exhibits large density modulations along
the direction of the Raman beams.

Experimental considerations. Finally, we assess the ro-
bustness of the preparation by incorporating atom loss and
heating mechanisms into the simulations of the GPE. We
naively model the noise in 6 and ¢ with sinusoidal signals
of frequency 50 Hz and amplitudes 300 and 2.5 Hz, respec-
tively. We consider 2 to be stable during the drive, but to
have a calibration uncertainty of 125 Hz in each realization.
These amplitudes are compatible with a magnetic bias field
instability of approximately 0.5 mG and a relative uncertainty
of 5% in 2, within the stabilities reached in experiments
with 8Rb [7,69,76]. At the same time we consider a 10%
uncertainty in the number of atoms initially in the condensate
and the population to decay as N(t) = N(0) exp(—yt), with
y = 3.33 s7!, which is compatible with the lifetime of spin-1
Raman-dressed BECs for Q2 < E, [69,77].

In these conditions, we simulate a drive following the blue
dash-dotted path drawn in the excited-state diagram from
Fig. 1(c ii). Along the path, € is kept fixed while 2 is linearly
ramped up. In this way, A is increased as € approaches 0. Such
tunability of the SOC-mediated spin mixing allows one to
reduce the preparation time while retaining a high robustness.
At the same time, at larger €2, the contrast of the stripes
is further enhanced. In Fig. 3(a) we plot L., L2, and the
fraction of atoms that remain within the three-mode subspace,
fam = # > i |b j|2, averaged over 20 of drives. The P-BA
transition is well captured, with f3y ~ 0.99 by the end of the
drives. Finally, in Fig. 3(b) we plot the longitudinal density
|¥|2, the spin density F, = ¢*F,¥, and the nematic density
Ny = 1//*(% — Ff)rﬁ at € = 0 for a single realization of the
drive. As predicted by the effective model, the prepared state
exhibits the characteristic properties of FS states, with large
spatial modulations along the direction of the Raman beams.
The FS phase can be distinguished from antiferromagnetic
stripe phases from the periodicity of the modulations, with
the particle density and the spin densities having periodic-
ity 27 /|ky| and the nematic densities containing harmonic
components both with period 27 /|ky| and 7 /|ky|. As a fi-
nal remark, we note that the preparation could be optimized
further by employing reinforcement learning techniques, as
recently demonstrated in [78].

Conclusion. In summary, we have shown that, for weak Ra-
man coupling and interactions, a Raman-dressed spin-1 BEC
is equivalent to an artificial spinor BEC with tunable non-
symmetric spin interactions. A ferromagnetic gas like 8’Rb
can be turned to antiferromagnetic by light dressing, and the
stability of the FS phase is understood in these terms. We have

L.:/N— L?/N%--- fay - )|/ N— Fis/N-- - Nio/N---

1

0 50 100 150 -2 -1 0 1 2
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FIG. 3. Robust preparation of FS states. (a) Plot of L, (blue
solid line), L? (red dashed line), and fsy (green dash-dotted line)
as a function of time for a state initially prepared at by, = +/10 and
by = /N — 20, with N(0) = 10* and /iw, = 27 x 140 Hz. The state
is evolved under the GPE while driving € from —3X to O by linearly
increasing €2 from 0.65E, to 0.767E,, following the blue dash-dotted
path in Fig. 1(c ii). The parameters of the GPE are subject to ran-
dom fluctuations that simulate experimental noise, as described in
the text, and the values depicted are averaged over 20 realizations.
The shadowed regions indicate the associated standard deviations.
(b) Longitudinal density |#|? (blue solid line), spin density F, (red
dashed line), and nematic density N, (green dash-dotted line) at
t = 150 ms from a single realization of the drive.

used such insight to propose the preparation of FS phases by
driving an initially polarized state through a quantum phase
transition in an excited state of the Raman-dressed gas. In the
excited-state phase diagram, the FS phase is broader and both
the energy gap and the density modulation contrast are larger.
These features enable a robust preparation of the state and ease
the detection of its supersolid properties, e.g., by probing its
spectrum of excitations [11,24].

Our dressed-base description of Raman-coupled spinor
gases suggests different directions for probing nonequilibrium
phenomena, as in [57,61], with light-dressed spinor gases of
alkali-metal and non-alkali-metal [79] atoms. Remarkably, the
FS phase corresponds to the BA entangled phase of the artifi-
cial spinor gas: Its preparation may thus lead to the generation
of macroscopic entanglement in momentum space (cf. [80]).
Likewise, the map introduces SOC gases as an alternative
platform to study dynamical and excited-state quantum phase
transitions. The FS phase of the spin-1 gas can be understood
as an excited-state quantum phase through its connection with
undressed collisional spin dynamics [65]. This precise con-
nection will be explored elsewhere [81].
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