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Steering of circular dichroism in biharmonic ionization of atoms
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Circular dichroism in photoelectron angular distributions of general biharmonic (i.e., nω + mω) atomic
ionization is analyzed theoretically and given along with “experimental guidelines” on how it can be steered
towards its maximum. It is shown that such a maximum circular dichroism can always be achieved for the
ionization of an arbitrary atom and for any incident fundamental photon energy by fine control of only two
experimental parameters: the relative flux and phase difference of the two components of the radiation field. In
this Letter, we provide a simple analytical description of the circular dichroism as well as a set of rules which
enables full control over its magnitude. Our findings are demonstrated explicitly for the ionization of helium
with a two-color field composing a fundamental beam and its second harmonic.
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Circular dichroism in atomic photoionization is known
to be nonzero only if the atoms are initially polarized or
if the photoelectron spin orientation is detected [1,2]. This
holds true for one-, two-, or generally multiphoton ionization
by monochromatic light [3]. However, for atoms irradiated
by a two-color field, dependence on the helicity of the two
beam components may arise. Dichroic phenomena in two-
color multiphoton ionization of atoms have therefore attracted
a great deal of experimental as well as theoretical atten-
tion. Typical dichroism measurements comprise an atomic
target ionized by a beam consisting of circularly polarized
extreme ultraviolet (XUV) and either co- or counterrotating
infrared (IR) pulses [4–12]. The circular dichroism for such
pump-probe experiments refers to the change in the helicity
of the IR pulse and vanishes if the helicities of both IR
and XUV are reversed. The origin of the circular dichroism
has a straightforward physical explanation. The XUV pulse
pumps the atomic system with a well-defined projection of
angular momentum, while the IR beam subsequently already
interacts with an already polarized target, which leads to
dichroic behavior.

In this work, we consider a different kind of circular
dichroism, one which remains after reversing the handedness
of all particles in the initial state. Particularly, we investigate
the ionization of atoms by circularly polarized biharmonic
beams, i.e., two-color copropagating beams consisting of
two commensurable nω + mω frequencies. Atoms exposed to
such biharmonic fields undergo n-photon (with mω) and m-
photon (with nω) ionization, where both ionization processes
lead to final photoelectron states with identical energy [13,14].
Figure 1 shows a schematic representation of the process,
together with co- and counterrotating examples of electric
fields of biharmonic beams. In strong contrast to the two-color
(XUV + IR) ionization, the circular dichroism in biharmonic

ionization has a fundamentally different origin. Rather than
arising from the prior polarization (of the magnetic substate)
of the target, the circular dichroism in biharmonic ionization
has a pure interference nature. Actually, neither of the (n- or
m-photon) ionization processes alone causes dichroic behav-
ior, but the interference between the two ionization pathways
leads to photoelectron angular distributions, which are sensi-
tive to the handedness of the light field.

Biharmonic ionization of atoms has been dominantly in-
vestigated in the so-called strong-field regime at optical or
infrared photon wavelengths [15–20]. In this low-frequency
interaction regime, the interaction of atoms with biharmonic
fields was applied to create and control, for example, electron
vortices [21–23] or to generate circularly polarized high-
harmonic fields [24]. At free-electron laser facilities, the
generation of biharmonic beams with XUV energies became
possible only recently and triggered both theoretical [25–27]
and experimental [28–30] efforts. In contrast to the low-
frequency regime, the ionization of atoms with biharmonic
XUV beams allows one to study the interaction from a dif-
ferent perspective, where the atomic Coulomb field dominates
over the light field. The first pioneering experiments [28–30]
performed the ionization of helium and neon atoms by funda-
mental frequency and its second harmonic. These experiments
demonstrated that the photoelectron angular distribution can
be controlled by variation of the relative phase between the
two beam components and their relative flux. Here, we show
that the circular dichroism in the photoelectron angular dis-
tribution from the n ⊕ m-photon biharmonic below-threshold
ionization of s electrons can be fully controlled by just two
experimental parameters (Fig. 1). Moreover, we demonstrate
that maximum circular dichroism �CD = ±1 can be obtained
for biharmonic ionization of any atom independent of the
choice of the fundamental photon frequency.
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FIG. 1. Schematic representation of biharmonic ionization of atoms. Left: Energy scheme for the ionization of atoms by a circularly
polarized mω + nω biharmonic beam which leads to n- and m-photon ionization. The photoelectron wave function consists of the individual
contributions of the two processes as well as their interference. Middle: Electric fields of biharmonic beams that consist of a fundamental
frequency and its second (top) or third (bottom) harmonic. The shape of the electric field also depends on whether the two components are
counter- (left) or corotating (right). Right: Sketch of the biharmonic ionization process. Just two experimental parameters (relative flux μ and
phase � between the two colors of the field) are sufficient to control the circular dichroism. Their effect on an example photoelectron angular
distribution is shown.

The electric field of circularly polarized biharmonic light
beams consists of two copropagating co- or counterrotating
circularly polarized components with frequencies which are
integer multiples (n and m) of a fundamental frequency ω.
This electric field can be written as

E(t ) = i

2
(Enελn e−inωt + Emελm e−imωt+i�) + c.c., (1)

where the amplitude of the electric field of each component
is represented by En,m and the phase shift between them is
represented by �. This (phase) shift determines the orienta-
tion of maxima of the electric field within the polarization
plane, while the rotation direction of the electric field of each
component is given by its helicity λn,m. The middle plot of
Fig. 1 shows four examples of the electric field of biharmonic
beams with different harmonic orders and polarization states.
The top row shows the electric field for a beam consisting of
a fundamental frequency and its second harmonic (ω + 2ω),
while the bottom row shows a beam of fundamental frequency
and its third harmonic (ω + 3ω). Beams of both counterrotat-
ing (left) and corotating (right) components are presented.

As seen from Fig. 1, the interaction of atoms with fields
of nω and mω frequencies will, accordingly, lead to m- and
n-photon ionizations. More generally, additional ionization
pathways arise if n and m share a common divider due to the
absorption of photons from both beam components. However,
we will restrict our analysis to the case where n and m have
no common divider and the ionization process proceeds only
through n- or m-photon ionization pathways. Furthermore, it
was shown before [30–32] that ionization of atoms by long
pulses, as they are often produced by the current free-electron
laser facilities, can be well described by assumption of in-
finitely long pulses. Since we focus on ionization at such
facilities, we will adopt the long-pulse approximation.

Biharmonic n- and m-photon ionizations of s electrons by
circularly polarized light lead to the angular part of the photo-
electron wave function with only two dominant nonrelativistic
partial waves, given by

ψnm
λmλn

(θ, φ) = cnm(λm)Yn,λmn + cmn(λn)ei�Ym,λnm. (2)

The angular dependence of this wave function is determined
by two spherical harmonics, Yl,±l = Yl,±l (θ, φ), in terms of
the polar and azimuthal angles θ and φ, with the angular
momentum directly determined by the order of the two ion-
ization processes as well as the helicities of the incident beam
components. The magnitude of each partial wave is given by
the amplitudes cnm (cmn), which take the form

cnm(λm) =
√

4π (−2λm)nn!

(2n + 1)!

(−9παF (mω)

nω

)n/2

eiδnUn, (3)

where δn is the partial-wave phase of the photoelec-
tron and F (mω) = E2

m/(mω) is the flux of the beam and
the intensity I (mω) = mωF (mω). Moreover, we consider
here below-threshold ionization so that (n − 1)ω < Eb and
(m − 1)ω < Eb, with Eb being the electron binding energy.
To minimize the number of parameters needed to describe
biharmonic ionization, we introduce a relative flux param-
eter μ = √

F m(nω)/F n(mω) with units of (L−2T −1)(m−n)/2,
which enables us to obtain the photoelectron angular distribu-
tions of the ionization process without having to set specific
intensities of the beam components explicitly. Each of the
nth- or mth-order ionization processes proceeds through a
single nonrelativistic ionization pathway. For n-photon ion-
ization, the corresponding radial transition amplitudes Un can
be found explicitly, for example, in Ref. [33]. The expression
of the angle-differential rate of biharmonic (n- and m-photon)
ionization can be simply obtained from the square of the wave
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FIG. 2. Steering of circular dichroism in photoelectron angular distributions of biharmonic ionization. Ionization of helium by a coun-
terrotating circularly polarized beam consisting of fundamental frequency and its second harmonic was chosen in order to demonstrate how
the maximum circular dichroism (color-coded ring around the curves) can be obtained experimentally. Transition rates dW 1 2

1 −1 (solid black
line) and dW 1 2

−1 1 (dashed green line) were calculated using ω = 14.3 eV. The dichroism is given by the normalized difference of these rates
at particular relative flux μ and phase difference �. The leftmost plot shows photoelectron angular distributions as generally expected in
biharmonic ionization measurements [using μ = 2000 natural units (n.u.) and � = π/3]. The distributions and circular dichroism, shown in
the middle plot, are obtained if the relative flux is chosen to be μ = 11 000 n.u. If the phase difference between the beam components is tuned
to its optimal value � = 11π/15, the distributions are rotated with respect to each other and give rise to the rightmost plot, where the maximum
possible circular dichroism can be measured in six directions. The total ionization yields associated with these plots are W = 3.6 × 1012 s−1

for the left plot and W = 6.2 × 1012 s−1 for the middle and right ones.

function (2),

dW nm
λmλn

≡ dW nm
λmλn

d�
= ∣∣ψnm

λmλn
(θ, φ)

∣∣2

= F n(mω)|Un|2
{

ζ n

(mω)n
+ μ2ζ m|Um/Un|2

(nω)m

+ 2μζ (n+m)/2

(nω)m/2(mω)n/2
Re

[
Um/Un(λm)n(λn)m

× i(nλm−mλn )ei(δm−δn )ei(mλn−nλm )φe−i�
]}

, (4)

where ζ = 9πα sin2 θ . From expression (1), we can easily
deduce the rotational symmetry of the electric field, which is
subsequently imprinted in the photoelectron angular distribu-
tion (4) [18,34]. The distributions in the polarization plane
will possess |nλm − mλn| “lobes” and hence also express
(|nλm − mλn|)-fold rotational symmetry in this plane.

Expression (4) can be readily used to obtain the circu-
lar dichroism in the photoelectron angular distributions. The
dichroism is defined at a particular angle as the normal-
ized difference of the ionization rates with opposite helicities
(dW nm

λmλn
and dW nm

−λm−λn
)

�CD = dW nm
λmλn

− dW nm
−λm−λn

dW nm
λmλn

+ dW nm
−λm−λn

(5)

and takes values in the range −1 � �CD � 1. Here, we aim to
find the conditions for the experimental parameters of relative
flux and phase of the biharmonic beam components which
ensure the maximum circular dichroism �CD = ±1.

All (atomic) interaction processes are characterized by a
set of (complex) amplitudes, including real values and phases.

For biharmonic ionization of s electrons, the photoelectron
angular distribution can be fully described by the amplitude
ratio Um/Un, the difference in partial wave phases δm − δn, and
the relative flux μ and phase � of the two beam components
[see Eq. (4)]. While the former two are “atomic” properties,
the latter two are determined by the experimental setup. It has
been demonstrated that both experimental parameters can be
controlled [28–30]. From expression (4), moreover, it can be
seen that the flux ratio enters in the same power as the am-
plitude ratio Um/Un. Similarly, the phase difference between
the beam components appears only in the interference term
and in the same way as the phases of the partial waves of
the photoelectron. By varying the relative flux μ and phase
� between the two beam components, one can effectively
control the contributions of the transition amplitudes as well
as the phase of the ionization process and hence gain complete
control over the photoelectron angular distributions. The right
side of Fig. 1 displays the control of photoelectron angular
distribution in the polarization plane. For instance, a change
in the flux ratio μ affects immediately the relative magnitude
of the two ionization processes and their interference. Clearly,
this enables one to control the magnitude of all |mλn − nλm|
minima of the distribution. The relative phase of the two
beam components determines the orientation of these minima
(and the whole distribution) within the polarization plane. A
change in the phase � rotates the electric field of the bihar-
monic field by an angle between zero and 2π/|mλn − nλm|.
The electric-field rotation is subsequently projected into the
photoelectron distribution, with the dominant emission direc-
tion following the maxima of the electric field.

This control of circular dichroism in biharmonic ionization
is shown in Fig. 2, where the photoelectron angular distribu-
tions are displayed for biharmonic ionization of helium by
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counterrotating circularly polarized biharmonic beams with
energies of 14.3 and 28.6 eV. All distributions were calculated
within the lowest-order perturbation theory and using the in-
dependent particle approximation; see [35,36] for a detailed
description. This example follows recent experiments on the
ionization of helium atoms by a beam consisting of a funda-
mental frequency and its second harmonic [30] as observed
at the Free Electron laser Radiation for Multidisciplinary In-
vestigations (FERMI) free-electron laser. While only linearly
polarized biharmonic beams were used before [30], circularly
polarized beams can be generated at the FERMI free-electron
laser [9,11,28]. The left panel in Fig. 2 shows photoelectron
angular distributions in the polarization plane for biharmonic
ionization of neutral helium atoms by a circularly polarized
beam that comprises counterrotating fundamental frequency
(ω = 14.3 eV) with intensity I (ω) = 1014 W/cm2 and its
second harmonic with intensity I (2ω) = 3.3 × 1010 W/cm2,
with � = π/3 phase between the two components. The green
dashed line refers to biharmonic ionization with a beam con-
sisting of right-circularly polarized fundamental frequency
and a left-circularly polarized second harmonic, while the
solid black line represents the ionization distribution with
the helicities of both field components reversed. The circular
dichroism is given by the normalized difference of the ion-
ization rates dW nm

λmλn
and dW nm

−λm−λn
, while all other parameters

remain unchanged [see Eq. (5)]. As seen directly from these
distributions or, alternatively, from the color-coded plot of cir-
cular dichroism (ring around the distributions), the dichroism
parameter is very low. To increase the circular dichroism, the
intensity of the second harmonic must be increased. If the
intensity is increased to I (2ω) = 1012 W/cm2, the minima of
the photoelectron angular distributions go to zero, and hence,
a strong circular dichroism is expected. The corresponding
distributions and circular dichroism are shown in the middle
plot in Fig. 2. Furthermore, the relative phase between the
two beam components can be increased to an optimal value of
� = 11π/15, for which the minima coincide with the maxima
in photoelectron angular distribution due to the ionization by
opposite helicities. With the optimal phase between the beam
components, the maximum possible circular dichroism can be
detected, as shown in the right plot in Fig. 2.

Circular dichroism can be readily controlled for the pho-
toelectron angular distribution of biharmonic ionization of s
electrons of any atom. The possibility to control the dichro-
ism arises from the angular momentum properties associated
with the process and the fact that biharmonic ionization is
determined by just two ionization pathways. Moreover, since
the flux and phase difference of the two components of the
incident beam effectively modify the conditions of the ion-
ization process, the control of circular dichroism can also be
achieved for any (fundamental) frequency. This is shown in
Fig. 3 for biharmonic ionization of helium by a circularly
polarized beam that consists of circularly polarized compo-
nents with fundamental frequency ω and its second harmonic.
Figure 3 shows the two experimental parameters, the flux ratio
μ (top) and the phase difference � between the two beam
components (bottom) which are necessary to achieve maxi-
mum circular dichroism in the photoelectron angular distribu-
tion. The results presented in Fig. 3 lead to maximum circular
dichroism for ionization of helium by both co- and counterro-
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FIG. 3. Biharmonic ionization of neutral helium by a coun-
terrotating circularly polarized beam consisting of a fundamental
frequency ω and its second harmonic. The total ionization yield (top),
relative flux in natural units (middle), and phase (bottom) of the
two biharmonic beam components are calculated as a function of
the fundamental frequency in order to obtain the maximum circular
dichroism. The inset in the bottom panel shows the photoelectron an-
gular distributions in the polarization plane for biharmonic ionization
of helium by a beam with co- and counterrotating components which
are obtained by choosing any pair of μ and � at given energy ω.

tating components of the incident beam (see the inset for the
corresponding distributions). Apparently, the energy depen-
dence of the values of these two experimental parameters,
which lead to the maximum dichroism, closely follows the
atomic parameters that determine the ionization process. The
flux ratio varies slowly (with increasing photon energy) from
the ionization threshold up to a photon energy which trig-
gers the 1s2 → 1s2p resonant transition. Near this resonance
energy, the two-photon ionization cross section increases
rapidly, which needs to be compensated by reducing the in-
tensity of the fundamental frequency component of the beam.
If the incident photon energy is further increased, the Cooper
minimum in two-photon ionization is approached [35–38].
At this energy, the cross section of the two-photon ioniza-
tion reaches its local minimum, which has to be balanced
by an increase in the intensity of the fundamental beam
component. This demand for varying the intensity ratio μ

repeats at higher photon energies, which are near 1s2 → 1snp
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FIG. 4. β parameters as a function of � + φ0. The markers rep-
resent β parameters extracted from Ref. [30]. Curves represent the β

parameters as calculated in this work. The difference in parameters
β1 − 2β3/3 is represented by the blue curve and triangles, β2 is
represented by the black curve and circles, β3 is represented by the
green curve and inverted triangles, and β4 is represented by the red
curve and squares.

resonant transitions. The phase difference between the two
beam components, which leads to the maximum circular
dichroism in the photoelectron angular distribution of bihar-
monic ionization, has a less sensitive energy dependence and
is not affected by intermediate resonances.

To benchmark our calculations for helium atoms, we
performed a comparison with two experiments. In the first
experiment [39] the photoelectron angular distribution is mea-
sured after a two-photon ionization of helium by linearly
polarized light with energies between ω = 20.3 eV and ω =
24.3 eV. A comparison of angular distributions was presented
in our previous paper [35]; therefore, we do not repeat it
here and draw only the conclusion that the experimental re-
sults perfectly agree with our calculations. However, such
a comparison checks only one of the channels in Eq. (4).
To evaluate the validity of our theoretical approach for
biharmonic ω + 2ω ionization, we compared our calcula-
tions with the experimentally obtained results for biharmonic
(ω + 2ω) ionization of helium by linearly polarized light [30].

The authors of Ref. [30] presented their photoelectron angu-
lar distributions in terms of asymmetry parameters βl from
the expansion dW = W

4π
[1 + ∑

l βlPl (cos θ )] with Legendre
polynomials Pl (cos θ ). A comparison of the asymmetry pa-
rameters for the ionization of the ground state of helium
with a beam with the fundamental frequency ω = 14.3 eV
and its second harmonic is presented in Fig. 4. The curves
show the β parameters as calculated with our methodology,
where blue triangle, black circle, green inverted triangle, and
red square markers correspond to β1 − 2β3/3, β2, β3, and
β4, respectively. The values of the decoherence parameter
h = 0.262 and the phase offset φ0 = 5.07 rad were used in
accordance with Ref. [30]. See [30] for a further description of
the experiment and the extracted parameters. The agreement
between our calculations and the experimental data supports
the validity of our theoretical approach for the ionization of
helium (and generally closed-shell) atoms in the limits of the
perturbation theory.

In conclusion, we showed that maximum circular dichro-
ism in photoelectron angular distributions of general bihar-
monic ionization (simultaneous n- and m-photon ionizations)
can always be achieved by the control of only two exper-
imental parameters. Such control of circular dichroism can
be obtained for biharmonic ionization of s electrons for any
atom and any incident photon energy. The main motivation
of this Letter was to stimulate experimental efforts at current
free-electron laser facilities; however, the control scheme can
also be achieved at lower energies with tabletop lasers. The
control of circular dichroism could also be used as a tool
for precise extraction of physical parameters such as tran-
sition amplitudes and photoelectron phases of multiphoton
ionization processes [30], as a tool in electron spectroscopy
[40–42], or even for analyzing the purity of the XUV beam
polarization.
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