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Quantum interference in strong-field ionization by a linearly polarized laser pulse
and its relevance to tunnel exit time and momentum
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We investigate the liberation of an atomic electron by a linearly polarized single-cycle near-infrared laser
pulse having a peak intensity that ensures tunneling. Based on phase space analysis and energy distribution in
the instantaneous potential, we reveal the importance of quantum interference between tunneling and over-the-
barrier pathways of escape. Tunneling is blurred both in space and time, and the contribution of tunneling at the
mean energy is almost negligible. We suggest and justify improved initial conditions for a classical particle
approximation of strong-field ionization, based on the quantum momentum function, and we show how to
reconstruct them from the detected momentum of an escaped electron.
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Strong-field ionization of atoms plays a fundamental role
in attosecond physics [1,2]: a suitably strong laser pulse
enables an electron to escape from its atomic bound state
into the continuum, usually assumed to happen by tunneling,
which is the first step of the very successful three-step model
underlying much of our understanding in this area [3–7].
Currently, the problems of tunneling time and exit momen-
tum are of outstanding importance regarding both quantum
theory and attosecond metrology [8–12]. Several research
groups published relevant experimental results [13–24], and
some of these indicate a nonzero longitudinal exit momen-
tum [13,16,18–21,24], either based on the attoclock method
which relies on nearly circularly polarized pulses [14,16,25],
or using linearly polarized pulses, sometimes along with weak
auxiliary fields. For most of the established methods to gen-
erate attosecond pulses [26–30], laser pulse polarization is
linear (at least in the middle of the pulse) and the Keldysh
parameter γ [31] is close to 1, i.e., it is beyond the validity
range of well-known theories [32]. Recent theoretical approx-
imations of strong-field ionization meeting such conditions
often employ classical dynamics, where the choice of proper
initial conditions, including the longitudinal momentum, is
an important open question [18,33–40], with controversies
regarding, e.g., conservation of energy.

In this Letter, we reveal the real classical picture that can
be associated with the exact quantum process of strong-field
ionization of a single atom driven by a linearly polarized
few-cycle laser pulse, in the γ ≈ 1 range. Our analysis using
the Wigner function over the phase space inspires improved
initial conditions for a set of classical electron trajectories
which approximate the quantum evolution very well. Regard-
ing model parameters, we focus on atomic hydrogen driven
by a few-cycle pulse with a near-infrared carrier wavelength

*czirjak@physx.u-szeged.hu

and a peak intensity in the 100 TW/cm2 range, which is a
widespread case in theoretical works based on its relevance to
state-of-the-art experimental techniques. We use atomic units
unless otherwise stated.

We work in the framework of a simple model: we use
dipole approximation for the interaction of a single active
electron atom with the classical electromagnetic field in the
length gauge. We define the laser pulse by the temporal pulse
shape of its electric field along the z direction for 0 < t < NT
as Ez(t ) = F sin2(πt/NT ) cos(2πt/T + φ), having N optical
cycles of period T and a carrier-envelope phase difference of
φ. This pulse excites the electron from its atomic ground state.
The electron’s wave function then does not depend on the
azimuth angle around the z axis: � = �(z, ρ, t ), thus we can
write the three-dimensional (3D) time-dependent Schrödinger
equation (TDSE) for the electron’s motion (assuming a fixed
nucleus) in cylindrical coordinates (z, ρ) as
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−1

2
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with V (z, ρ, t ) = −1/
√

z2 + ρ2 + Ez(t ) z. Our recently devel-
oped algorithm [41] supports the direct numerical integration
of this TDSE with Coulomb singularities and provides fourth-
order accuracy in both space and time. In the following, the
numerical results assume a laser pulse with N = 3, T = 110
(corresponding to ∼800 nm carrier wavelength) and φ = 0,
having an electric field amplitude of F = 0.06 (corresponding
to ∼1.26 × 1014 W/cm2 peak intensity). These ensure that
tunneling is possible during the entire laser pulse, γ = 0.952,
and the pulse length is short enough to model high-order har-
monic generation (HHG) resulting in an isolated attosecond
pulse [26,27,42].

Since the main dynamics happens along the laser polariza-
tion [43], and a phase space analysis is more feasible in one
dimension, we compute the one-dimensional (1D) reduced
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FIG. 1. Contour plots of the reduced 1D Wigner function of Eq. (3) in logarithmic color scheme (upper panels) and plots of V (z, 0, t )
(lower panels, in black) at t = 155 (a), t = 160 (b), and t = 165 (c) during the liberation of the hydrogen atom’s electron by the laser pulse
of the Ez(t ) plot in the insets. Phase space trajectories in gray with different styles represent classical motion in the instantaneous potential,
corresponding to energy levels marked in the lower panels with respective styles. The trajectory with a thin gray solid line is the instantaneous
separatrix between tunneling and OB ionization regimes. Black solid lines in the upper panels show the quantum momentum function of
Eq. (4).

density matrix of the quantum state along the z axis from �

by integrating over the azimuth angle and radial coordinate:

�(z, z′, t ) = 2π

∫ ∞

0
�∗(z, ρ, t )�(z′, ρ, t )ρ dρ. (2)

Then we compute the corresponding Wigner function [44]

W (z, pz, t ) = 1

π

∫ ∞

−∞
�(z + ζ , z − ζ , t )e2ipzζ dζ , (3)

which is a successfully used tool also in strong-field and at-
tosecond physics [45–50]. The main advantage of an analysis
based on the Wigner function is that W displays the quantum
description in a close analogy to the classical phase space
dynamics, thus it enables one to use our intuition based on
classical physics, while it still contains all the quantum details,
most notably quantum interference [W is equivalent to �,
since Eq. (3) can be inverted].

Snapshots of this Wigner function at selected time instants
close to and at the peak intensity of the laser pulse in Fig. 1
clearly show a developing stream in yellow (or in lightest
gray in printed grayscale) along classical phase space trajec-
tories of escaping particles, which already suggests that the
liberation of the electron is blurred in time. (See [51] for
an animation of the Wigner function during the whole laser
pulse.) The oscillating ripples, including regions with negative
function values, refer to strong quantum interference, simi-
larly to earlier results with a simpler model [45]. The Wigner
function’s contour lines well follow the stationary phase space
trajectories of classical particles with relevant energies in the
instantaneous potential V (z, ρ, t ), including over-the-barrier
(OB) ionization paths. This feature suggests the analysis of the
energy distribution of the momentary quantum state, which
we performed numerically in the instantaneous eigenstate
basis of V , since we think this more appropriate than to
follow the population of the unperturbed atomic bound states

[52]. The instantaneous energy probability densities, shown
in Fig. 2, are sharply peaked around energy values which
are close to but lower than the mean energy 〈E〉(t ). These
peaks get broader and lower, and the population of the energy
range above the top of the potential barrier Vtop(t ) increases
considerably, as the laser pulse approaches its peak. Thus, the
energy variance 
E (t ) increases as well.

In order to evaluate the importance of the tunneling and OB
ionization pathways, we compare the 1D probability currents
jFT(z, t ) and jOB(z, t ) of the respective full tunneling (FT)
and OB wave packets, shown in Fig. 3(a), which we com-
pute using the instantaneous energy eigenstate decomposition,
by integrating over all of the corresponding energy range
below and above Vtop(t ), respectively. These curves suggest
that the resulting coherently summed full OB pathway is at

FIG. 2. Energy probability density of the quantum state at t =
155 (blue, �), 160 (green, �), and 165 (red, �) in the instantaneous
potential. Thin solid vertical gridlines mark the 〈E〉(t ) ± 
E (t )
values; dashed gridlines mark Vtop(t ), with respective colors and
symbols. The inset zooms in on the region around the peaks; thick
solid gridlines mark 〈E〉(t ).
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FIG. 3. Comparison of the probability currents j(z, t ) (black, �),
jFT(z, t ) (red, �), jOB(z, t ) (blue, �), and jST(z, t ) (magenta, �) in
(a), and the corresponding quantum momentum functions in (b). We
plot these curves at the peak of the laser pulse t = 165 (solid lines)
and somewhat earlier at t = 155 (dashed lines). The vertical gridlines
mark the momentary positions of the tunnel entrance, the Vtop(t ), and
the tunnel exit, from left to right, with respective style.

least as important as the resulting coherently summed full
tunneling pathway of ionization. Comparing them to the total
probability current j(z, t ) obviously shows strong interference
between them. We would like to emphasize that this full
tunneling pathway significantly expands the most widespread
view of tunnel ionization, when tunneling is considered usu-
ally at the initial bound state energy or at the mean value of the
energy. In order to highlight this difference, we also plot the
probability current jST(z, t ) of a such a sharp tunneling (ST)
wave packet, which we create by integrating over a narrow
energy range of 0.004 a.u. centered at the mean value of
the energy. The jST(z, t ) is two to three orders of magnitude
smaller than the full tunneling current jFT(z, t ), and this fact
does not change qualitatively, if the narrow energy range is
centered at the peak of the energy probability density. This
seemingly surprising difference may be well explained by the
“laser acceleration” beyond the tunnel exit for those compo-
nents which tunneled out at higher energy levels. However, the
above results actually question the justification of a sharply
defined position and time instant for the tunnel exit.

Due to the essential role of quantum interference during the
escape, the classical particle model of the escaping electron
should account for all of the possible pathways. One of the
most important open questions for such a classical particle is a
properly chosen initial momentum. This is in close connection
with the Wigner function, since its meaning leads intuitively
to the notion of a position-dependent average momentum in
terms of its nth moment Pn(z, t ) = ∫ ∞

−∞ pn
z W (z, pz, t ) d pz as

q(z, t ) = P1(z, t )/P0(z, t ), (4)

which is in fact identical to the gradient of the Madelung phase
(multiplied by h̄), usually called quantum momentum function
or flow momentum [53]. We plot the quantum momentum
function q(z, t ) in the phase space snapshots of Fig. 1 with

FIG. 4. Definition of the initial phase space point (shown for
ts = 157): there is only a single inflection point (along the dot-dashed
line in red) among the inflection points (dashed line and dots in
gray) of the stationary phase space trajectories (gray solid lines) of
the instantaneous potential, which is on the instantaneous quantum
momentum function (black solid line).

a black solid line: it follows very well the main stream of
the Wigner function corresponding to an escaping particle in
the spatial domain where the electron’s probability density
is significant. Its developing oscillations are due to quantum
interference of the ionization pathways with different ener-
gies. Figure 3(b) shows clearly the interference between the
quantum momenta of the FT and OB wave packets, and the
negligible quantum momentum of the ST wave packet.

Next we show that properly chosen initial conditions en-
able a suitable set of classical trajectories that follow the
quantum momentum function very well and they also reflect
that the liberation process is blurred both in space and time.
Based on its physical meaning, it is intuitive to use a suitable
point of the quantum momentum function itself as the initial
condition of a possible classical trajectory which starts at
the instant ts from the phase space point [zs, q(zs, ts)]. This
initial zs coordinate should be chosen in such a way, that the
quantum propagation of the escaping wave packet beyond zs

can be approximated by classical dynamics with sufficient
accuracy, but it is still close enough to the position of the local
maximum of the potential barrier so that it is relevant as the
initial position of an escaping trajectory. A reasonable balance
of the latter two requirements is provided by the position
zi(E ) of the outermost inflection point of a suitable stationary
phase space trajectory of the instantaneous potential, given by
pz(z, ts; E ) = √

2[E − V (z, 0, ts )] for total energy E . We plot
these trajectories and the corresponding inflection points for a
few of the continuum values of E in Fig. 4. The pz(z, ts; E ) are
concave for z > zi(E ), because the dynamics is dominated by
the laser electric field, which allows a classical approximation.
Taking into account now all of the above considerations, it
follows that the initial position zs we seek is actually the posi-
tion of that particular inflection point where the corresponding
stationary phase space trajectory intersects the quantum mo-
mentum function (see the dot-dashed red curve and the solid
black curve in Fig. 4). Denoting the corresponding energy by
Es, the zi(Es) selected by the quantum momentum function is
the solution of the following equation:

q(zi(Es), ts) = pz(zi(Es), ts; Es). (5)
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FIG. 5. Classical phase space trajectories of the liberated elec-
tron (dashed lines) for the indicated starting time instants, plot
from ts to t = NT . Initial conditions correspond to Eq. (5); the
inset zooms in to the phase space region around these start points.
Directly escaping trajectories are represented and marked by ts =
149, 153, and 157 (in purple, green, and red, respectively). The
ts = 159 (in dark blue) marks a limiting case having ∼0 momen-
tum at t = NT . The ts = 165 (in light blue) marks a rescattering
trajectory. Snapshots of the classical and the quantum propagation
at t = 157, 185, 210, and 230, represented by the dots and by
q(z, t ) (black solid line), respectively, show a good match for all of
the different outcomes.

At every realistic starting time ts, there is only a single solution
zi(Es) of Eq. (5). We propose this as the initial position,
zs = zi(Es), and the unique phase space point [zs, q(zs, ts )] as
the initial state of the classical escape trajectory which starts at
ts. This initial state is always in the OB regime but, as we shall
see, it is still a good classical representation of all possible
escape pathways depending on the starting time. We plot sev-
eral phase space trajectories and some characteristic snapshots
of the dynamics of the escaping electron for different starting
time instants in Fig. 5. The electron is close to the quantum
momentum function during the whole propagation, regardless
of the starting time, which well justifies that they represent a
good classical approximation of the true quantum dynamics.
As the ts values get closer to the instant of the main peak of
the laser pulse, for ts > 157 the electron does not have enough
kinetic energy at the end of the interaction to leave its parent
ion permanently. For further increasing starting time instants,
the electron is rescattered with energy gain from the laser
pulse and it may thus contribute, e.g., to HHG. The starting
positions are in good agreement with earlier data derived from
experiments [8].

We can gain more insight into the onset of the escape
process by studying a wave packet which is defined to have
positive momentum and positive energy (PMPE) at the final
instant of the laser pulse: i.e., we obtain this PMPE wave
packet by first subtracting the contributions of the bound states
|n, �〉 from the 3D solution at t = NT :

|�PE(t = NT )〉 = |�(t = NT )〉 −
∑
n,�

〈n, �|�〉|n, �〉 (6)

and then keeping (by Fourier filtering) only those compo-
nents of |�PE(t = NT )〉 which have positive pz. In an ideal
case, this PMPE wave packet is able to reach a detector at
a macroscopic distance (placed at a position with a large

FIG. 6. Comparison of classical and PMPE quantum dynamics
of an escaping electron at t = 158 (a) and at t = 180 (b). Left panels:
colored contour plots of WPMPE and plot of q(z, t ) (solid black line).
Solid and dashed thin gray trajectories are as in Fig. 1. Dashed
lines in purple (marked by �), green (�), red (�), and magenta (�)
show classical trajectories starting at ts = 149, 153, 157, and 158,
respectively, having different initial conditions according to Eq. (5).
Dots on each of these dashed lines mark the momentary state of
the classical dynamics. Right panels: momentum distribution of the
PMPE wave packet (black solid line) and momentum values relevant
to classical dynamics marked with gridlines in respective colors and
symbols.

positive z coordinate). However, we now propagate this 3D
PMPE wave packet backwards in time using the 3D TDSE
(1) and then we do a phase space analysis of the resulting 1D
Wigner function WPMPE(z, pz, t ) which we obtain from the 3D
PMPE wave packet just as we obtained W (z, pz, t ) from the
full 3D wave function �(z, ρ, t ). We compare the classical
trajectories according to the initial conditions of Eq. (5) with
the WPMPE(z, pz, t ) in Fig. 6. The snapshot at t = 159 clearly
shows that besides tunneling, the OB pathway is essential also
in the escape of the PMPE wave packet. If a single “privi-
leged” classical trajectory should be chosen, the one starting
at t = 157 a.u. seems to be the good representation of this pro-
cess. However, a suitable set of such trajectories with different
starting times gives apparently a better approximation of the
quantum dynamics of the PMPE wave packet, and such a set
reflects also the temporally blurred feature of the liberation
process. This approach is further supported by the observation
that the Wigner function approximately follows the classical
propagation during its time evolution, in agreement with the
well-known fact that for potentials with up to quadratic spatial
dependence (which is a good approximation in the relevant
spatial domain of WPMPE) the quantum Liouville equation is
identical to the classical one. This makes the assignment of
probabilities to these trajectories possible and meaningful.

Finally, we show how a simple procedure can reconstruct
the starting time from the detected momentum of a directly
escaped electron. Neglecting the Coulomb interaction first, the
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TABLE I. Comparison of real staring times (ts) and reconstructed
starting times (tR

s ) obtained from the method described in the main
text.

ts 149 151 153 154 155 156 157
tR
s 151.88 153.11 153.99 154.47 155.06 155.84 156.84

momentum of the electron at the end of the laser pulse would
be the following:

pNC
f = p0 +

∫ t f

ts

eEz(t ) dt, (7)

where p0 is unknown if ts or q(z, t ) is unknown. In reality,
the escaping electron interacts with its parent ion’s Coulomb
potential until it reaches the detector at infinity where its
measured momentum is pd =

√
(pC

f )2 + 2V C
f in terms of its

potential energy V C
f and momentum pC

f at t f = NT . Denoting
by 
W the difference of the work of the laser electric field on
the trajectories with and without the Coulomb interaction, we
get

pNC
f =

√
p2

d − 2
(
V C

0 + 
W
)
, (8)

where V C
0 is the potential energy of the electron in the

Coulomb field at ts. The energy in parentheses can be approxi-
mated well in terms of the initial coordinate z0 as V C

0 + 
W =
−1/z0. Equations (8) and (7), and Eq. (5) with q replaced by
p0, enable an iterative procedure to reconstruct the value of
ts from pd, based on realistic starting values of p0 and z0. In
order test the accuracy of this procedure, we generated the pd

values in a “numerical experiment”: we computed the final
momenta of escaping classical trajectories according to the
initial conditions of Eq. (5) for a set of ts which are relevant for
the PMPE wave packet. Then we applied the above iterative
procedure to obtain the reconstructed values of the starting
time: tR

s . The results listed in Table I show that, although
the largest error exceeds 2 a.u. for the earliest starting times,
the accuracy greatly improves for more probable trajectories
and the error may get even below 5 attoseconds for 155 �
ts � 157. Note that the corresponding phase space trajectories
follow the larger values of the PMPE Wigner function.

In conclusion, our results provide important and detailed
insight into the process of atomic strong-field ionization by
a linearly polarized single-cycle laser pulse. We investigated
the Keldysh parameter range of γ ≈ 1, which is typical in

many of the relevant experiments but it lacks exact analytic
theory. Based on accurate numerical simulations, important
features of the electron’s motion are shown by the Wigner
function intuitively: the escaping wave packets create streams
and oscillating ripples as a manifestation of quantum interfer-
ence, which also rotate clockwise around the central bound
part as the laser electric field drives the process (see the
animation [51]). Our primary purpose was to explore the
quantum details of the electron’s liberation around the main
peak of the laser pulse. Interference between components
tunneling with different energies [below Vtop(t )] makes both
the time and the position of the tunnel exit blurred, which
questions the usual picture of strong-field tunneling. Both
the Wigner function and the probability currents show that
the over-the-barrier pathways have an important contribution
to the liberation, despite 〈E〉(t ) < Vtop(t ). These explain ex-
perimental results on nonzero longitudinal momentum at the
tunnel exit, which apparently contradict energy conservation
according to the definition of a sharp tunnel exit. We showed
that the Wigner function naturally inspires one to use the
quantum momentum function and that this enables new initial
conditions [Eq. (5)] for classical approximation with nonzero
initial longitudinal momentum. The resulting classical trajec-
tories follow the quantum evolution very well; they account
for direct escape and rescattering, depending on start time,
and a suitable set of such trajectories reflects the blurred
nature of the liberation process. The presented results were
checked to be qualitatively valid for F = 0.04–0.06 and φ =
0, π/4, π/2, 3π/4. We believe that the Wigner function will
be useful in further analysis of strong-field ionization, espe-
cially if quantum interference has an important role, like, e.g.,
in rescattering, above-threshold ionization, and low-energy
structures.
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