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The Hohenberg-Kohn theorem and the Kohn-Sham equations, which are at the basis of the density-functional
theory, are reformulated in terms of a particular many-body density, which is translational and Galilean invariant
and therefore is relevant for self-bound systems. In a similar way that there is a unique relation between the
one-body density and the external potential that gives rise to it, we demonstrate that there is a unique relation
between that particular many-body density and a definite many-body potential. The energy is then a functional
of this density, and its minimization leads to the ground-state energy of the system. As a proof of principle, the
analogous of the Kohn-Sham equation is solved in the specific case of 4He atomic clusters, to put in evidence
the advantages of this formulation in terms of physical insights.
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I. INTRODUCTION

The essential idea behind the density-functional theory
(DFT) is to reduce the complexity of the solution of the
many-body Schrödinger equation to a much tractable prob-
lem given in terms of the one-body density, avoiding in this
way the explicit reference to the many-body wave function.
In fact, Hohenberg and Kohn (HK) demonstrated that the
ground-state energy of a quantum system is a functional of
the one-body density n(�r) and could, in principle, be ob-
tained from a minimization procedure [1]. Moreover, Kohn
and Sham (KS) demonstrated that the one-body density can
be represented by a noninteracting system placed inside a
particular external field [2].

The success of DFT for various many-body systems, for
instance, atoms, molecules, and the condensed phases, has
been enormous, and its formulation and details are currently
part of books in which many of the recent applications are dis-
cussed (see, for example, the books by Giuliani and Vignale
[3], by Lipparini [4], and by Parr and Yang [5], and references
therein). After its original formulation, many aspects were
addressed along the years to put it in more solid mathematical
grounds [6–8]. In the last 15 years also nuclear physicists have
devoted attention to it and carried out a considerable activity,
starting from the seminal works of Refs. [9,10]. Since nuclei
are self-bound systems, the original formulation of the HK
theorem, which starts from a Hamiltonian containing a single-
particle external field, cannot be applied in a straightforward
way. Such an external field, in fact, breaks the translation
invariance required by a self-bound system. To this problem
a series of works have been devoted proposing different solu-
tions [11–19].

The aim of the present work is to suggest a formulation of
the DFT that replaces the one-body density with a particular

many-body density and that, at the same time, fulfills the
mentioned invariance. More explicitly: the traditional energy
functional E [n(�r)] is replaced by E [ν(ρ)], where ν is a differ-
ent density, expressed in terms of the so-called hyper-radius ρ,
a collective variable depending on all interparticle distances,

ρ2 = 2

N

∑
i< j

(�ri − �r j )
2, (1)

with N the number of particles (of equal masses). In a similar
way that there is a unique relation between the one-body
ground-state density and the external potential, we demon-
strate that there is a unique relation between ν(ρ) and a
definite many-body potential W (ρ). The minimization of
E [ν(ρ)] with respect to ν(ρ) leads to an equation whose
solution allows to know the ground-state energy of the system,
if the correct information is included in W (ρ). The search
for the correct KS energy functional E [n] is replaced by the
search for the correct E [ν]. This approach lets us envisage
the possibility that, in practical applications, the new func-
tional E [ν(ρ)] might better take into account the complex
many-body dynamics of a strongly interacting self-bound
system.

In Sec. II we introduce the new variable ρ within the
general so-called hyperspherical harmonics (HH) formalism.
In Sec. III we define the associated density ν(ρ), the energy
functional E [ν(ρ)], and the analogous of the KS approach,
demonstrating a one-to-one relation between ν(ρ) and a
many-body potential W (ρ). As a practical application, in
Sec. IV a particular energy functional is suggested for the
much studied bosonic self-bound systems, namely, 4He clus-
ters. Surprisingly, satisfactory results are obtained. Further
considerations and outlooks are found in Sec. V.
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II. FORMALISM

A convenient set of translation-invariant coordinates useful
to describe an interacting N-body system are the N − 1 Jacobi
vectors �ξi, i = 1, . . . N − 1 defined (for equal masses m) as

�ξN− j =
√

2 j

j + 1
(�r j+1 − �Rj ), j = 1, . . . , N − 1, (2)

with �Rj = (1/ j)
∑ j

i=1 �ri. The (3N − 3) independent Jacobi
coordinates can then be transformed into a set of as many
independent hyperspherical coordinates (HC) [20] consisting
in the hyper-radius ρ

ρ =
√√√√N−1∑

i=1

ξ 2
i , (3)

and (3N − 4) angles � = (ξ̂1, . . . , ξ̂N−1, φ2, . . . , φN−1), with
the hyperangles φi defined by

cos φi = |�ξi|√
ξ 2

1 + · · · + ξ 2
i

, i = 2, . . . , N − 1. (4)

Notice that the hyper-radius ρ is a (translation-invariant)
many-body variable, involving all particle distances. In fact,
it can be shown that

ρ2 = 2

N

N∑
i< j

(�ri − �r j )
2 = 2

N∑
i

(�ri − �RN )2, (5)

with �RN the center-of-mass position. In terms of the hy-
perspherical coordinates the volume element dV 3N−3 =
d�ξ1 . . . d�ξN−1 becomes

dV 3N−3 = ρ3N−4dρ d� (6)

(for notation and further details see, e.g., Refs. [21–23]).
Let us consider the typical translation and Galilean in-

variant Hamiltonian of a system characterized by mutual
interactions,

H = T +
∑
i< j

Vi j +
∑

i< j<k

Vi jk + · · · ≡ T + V (ρ,�), (7)

where in the kinetic term the center of mass has been sub-
tracted,

T =
N∑

i=1

p2
i

2m
− P2

CM

2MCM
. (8)

Expressed in terms of the HC, ρ, and �, T assumes a rather
familiar form:

T = − h̄2

2m

(
∂2

∂ρ2
+ 3N − 4

ρ

∂

∂ρ
+ K̂2(�)

ρ2

)
. (9)

The operator K̂ , called the hyperangular momentum, has a
complete set of orthonormal eigenfunctions Y[K](�) called
hyperspherical harmonics that satisfy the following eigen-
value equation:

K̂2Y[K](�) = K (K + 3N − 5)Y[K](�), (10)

where K is called the grand angular quantum number and [K]
indicate all the other relative 3N − 4 good quantum numbers.

The N-body wave function, �(ρ,�), can in principle be
expanded in terms of the HH functions up to some [KM] (in
principle infinite) as

�(ρ,�) = ρ−(3N−4)/2
[KM ]∑

[K]=[Km]

u[K](ρ)Y[K](�N ), (11)

where [Km] is the set of quantum numbers consistent with
the minimal value of the grand angular quantum number Km,
compatible with the permutational symmetry requirements. In
the case of spin-0 bosons Km = 0 (and so are all other good
quantum number in [0]); for higher values of the spin or for
fermions Km could be different from zero [24].

For normalizable wave functions one can then define the
density

ν(ρ) ≡
∫

d� |�(ρ,�)|2 = ρ−(3N−4)
[KM ]∑

[K]=[Km]

u2
[K](ρ), (12)

normalized as∫ ∞

0
dρ ρ3N−4 ν(ρ) =

∫ ∞

0
dρ

[
[KM ]∑

[K]=[Km]

u2
[K](ρ)

]
= 1. (13)

It is in terms of this density that, in the next section, the HK
theorem will be reformulated.

III. THE ENERGY FUNCTIONAL

Following Levy’s proof of the HK theorem [25], based on
a constrained search, we start from the Hamiltonian in Eq. (7)
and define the functional E [ν] as the minimum of the energies
obtained with all wave functions � that have the same ν(ρ):

E [ν] = min
�→ν

〈�|T + V |�〉. (14)

Since ν(ρ) is an integral property of |�〉, there will be in prin-
ciple an infinite number of normalizable functions having the
same ν. The functional E [ν] is then defined as the minimum
produced by all such functions.

Calling E0 the ground-state energy of H , and |�0〉 the
corresponding wave function, the Rayleigh-Ritz variational
principle establishes that

E [ν] � E0, (15)

and

E [ν0] = min
�→ν0

〈�|T + V |�〉 = E0, (16)

where we have denoted by ν0 the density corresponding to the
ground-state wave function |�0〉. This last statement follows
from the fact that when the set of functions is selected among
those having the density ν0, the true wave function |�0〉 is
included in that set and the global minimum E0 is reached.
The above statements imply that

δE [ν]

δν

∣∣∣∣
ν=ν0

= 0. (17)
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The properties of such a functional, when depending on the
one-body density n(�r), are extensively discussed in the litera-
ture (see, for example, Refs. [3,6–8] and references therein).

Let us consider now the particular case of a system inter-
acting through a hypercentral potential W (ρ):

HW = T + W (ρ). (18)

Analogously to the central potential case for two particles, the
ground-state wave function is simply


0(ρ,�) = ρ−(3N−4)/2w[Km](ρ)Y[Km](�), (19)

namely, it includes only the lowest term of the expansion
given in Eq. (11). The hyper-radial function w[Km] and the
ground-state energy E0 can be obtained by solving a one-
dimensional differential equation (hyper-radial equation):[

− h̄2

m

(
∂2

∂ρ2
− (3N − 4)(3N − 6)

4ρ2
+ Km(Km + 3N − 5)

ρ2

)

+W (ρ) − E0

]
w[Km](ρ) = 0, (20)

and the ground-state density defined in Eq. (12) is

νW
0 (ρ) = ρ−(3N−4)w2

[Km](ρ) (21)

normalized as∫ ∞

0
dρ ρ3N−4 νW

0 (ρ) =
∫ ∞

0
dρ w2

[Km](ρ) = 1. (22)

On the other hand, after having defined Tmin[ν] ≡
min
�→ν

〈�|T |�〉 and the density functional

EW [ν] ≡ min
�→ν

〈�|T + W |�〉

= Tmin[ν] +
∫

dρ ρ3N−4ν(ρ)W (ρ), (23)

E0 could as well be found by a minimization procedure, in
fact,

δEW [ν]

δν
= δTmin[ν]

δν
+ ρ3N−4W (ρ) = 0 ⇐⇒ ν = νW

0 and

E0 = EW (νW
0 ). (24)

Turning back to the energy functional of Eq. (14) we impose
the following requirement:

E [ν] = EW [ν], (25)

assuming the W representability of the functional.1 Namely,

min
�→ν

〈�|T + V |�〉 = min
�→ν

〈�|T + W |�〉

= Tmin[ν] +
∫

dρ ρ3N−4ν(ρ)W (ρ). (26)

The energy functional E [ν] is now represented by a system
of particles interacting through this particular potential W (ρ).

1The representability of the functional E [n(�r)] in terms of the
external potential has been discussed many times in the literature
[3,7,8].

Since for the ground state of H = T + V one has dE [ν]
dν

= 0,
Eq. (26) formally defines the hypercentral potential W (ρ) as

W (ρ) = − 1

ρ3N−4

δTmin[ν]

δν
. (27)

The core of requirement (26) is that W (ρ) gives the same
density ν(ρ) as V (ρ,�). One can show that such a W (ρ)
is unique.2 The proof goes via a reductio ad absurdum pro-
cedure. One assumes that two hypercentral potentials, W1(ρ)
and W2(ρ), differing by more than a constant, exist in such a
way that the two Hamiltonians HW

1 = T + W1(ρ) and HW
2 =

T + W2(ρ) have the same ν(ρ). Let us call |
1〉 and |
2〉 the
respective wave functions and E1 and E2 the corresponding
energies. From the Rayleigh-Ritz variational principle the fol-
lowing condition holds:

E1 < 〈
2|HW
1 |
2〉 = 〈
2|HW

2 |
2〉 + 〈
2|HW
1 − HW

2 |
2〉,
(28)

E1 < E2 +
∫

dρ ρ3(N−4) [W1(ρ) − W2(ρ)] ν(ρ). (29)

The same can be repeated starting from E2 arriving at

E2 < E1 +
∫

dρ ρ3(N−4)[W2(ρ) − W1(ρ)] ν(ρ). (30)

Summing both inequalities we arrive at the following contra-
diction, E1 + E2 < E1 + E2, proving that the first assumption
was wrong. Accordingly, it is proven that the density ν(ρ)
uniquely determines the hyper-radial potential W (ρ) that gen-
erates it. Notice, by the way, that the same conclusion holds
if a further generic W (ρ,�) interaction is included in H1 and
H2.

The important conclusion is then that E0 could be found
either by δEW [ν]

δν
= 0 or simply by solving Eq. (20). In the tra-

ditional KS case the problem is to guess the correct functional;
here it is to guess the correct W (ρ).

Equation (20) is the basic equation of the translational-
invariant density-functional theory discussed here. This equa-
tion has been obtained previously in the literature (see, for
example, Refs. [26–28]); however, in a different context,
namely, as the result of the lowest order HH expansion of the
ground-state wave function. In our case, in view of the unique
relation between W (ρ) and the density ν(ρ), this equation
provides the way to obtain the right energy functional, and
therefore the right ground-state energy, for any number of
particles.

As a first application, in the next section the functional
E [ν] is constructed in the case of atomic clusters of bosonic
helium. The case of fermions is postponed to a forthcoming
work.

IV. APPLICATION TO ATOMIC CLUSTERS

We consider clusters of atomic 4He, largely discussed in
the literature. Helium drops and the homogeneous system

2Here the argument is similar to that of Kohn-Sham one-body
potential, namely, once the existence of W is assumed, one can show
its uniqueness.
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have been extensively studied using realistic He-He poten-
tials. A rather successful one is the Aziz HFD-HE2 He-He
potential [29], which we will take as reference potential and,
for the purpose here, its results are considered equivalent to
experimental data.

Another interesting approach to helium clusters starts from
the observation that the dimer of 4He has a binding en-
ergy of about 1 mK, three orders of magnitude less than the
typical energy scale of h̄2/mr2

vdW = 1.677 K, with h̄2/m =
43.281 307 K a2

0 and rvdW = 5.08 a0 the corresponding van
der Waals length (a0 is the Bohr radius). Moreover, the two-
body scattering length has been estimated to be a ≈ 190 a0,
20 times larger than rvdW . In the limiting case, a → ∞, the
system is located at the unitary limit, well suited for an effec-
tive expansion of the interaction. In the spirit of an effective
field theory devoted to describe systems with large values of
the two-body scattering length [30–32], the first term of this
expansion is a contact interaction between the two helium
atoms. However, as it is well known, the three-body system
(as well as larger systems) collapses, even if the contact inter-
action is set to produce an infinitesimal binding energy. This
phenomenon is known as the Thomas collapse [33] and it is
remedied by the introduction of a (contact) three-body force
set to correctly describe the trimer energy ε3. Accordingly,
the leading order (LO) of this effective theory has two terms,
a two-body term and a three-body term, associated with two
constants, named low-energy constants (LECs), needed to
determine their strengths, usually fixed by ε2 and ε3.

For the only purpose of determining W (ρ), and inspired
by the effective theory just described above, we introduce the
following two- and three-body potentials:

V [2]
LO =

∑
i< j

Ae−r2
i j/α

2
, V [3]

LO =
∑

i< j<k

Be−r2
i jk/β

2
, (31)

where r2
i j ≡ (�ri − �r j )2 and r2

i jk = (�ri − �r j )2 + (�ri − �rk )2 +
(�r j − �rk )2. The natural choice is to consider W (ρ) as a sort
of mean hypercentral field, and we obtain it by averaging on
the hyperangular part of the ground-state wave function:

WA(ρ) = A
N (N − 1)

2

∫
d�e−r2

12/α
2 |Y[0](�)|2, (32)

WB(ρ) = B
N (N − 1)(N − 2)

6

∫
d�e−r2

123/β
2 |Y[0](�)|2

(33)

(for spin 0 systems the minimal value of [Km] = 0). From the
definition of Y[0](�) and writing the distances r12 and r123 in
terms of the hyperspherical coordinates [23], the above inte-
grals can be reduced to one-dimensional integrals that can be
computed with sufficient accuracy using standard quadratures.
In the particular case of the Gaussian interaction one has

W (ρ) = A
N (N − 1)

2
M

(
3

2
,

3N − 3

2
,−ρ2

α2

)

+ B
N (N − 1)(N − 2)

6
M

(
3,

3N − 3

2
,−3ρ2

β2

)
,

(34)

FIG. 1. Binding energy per particle obtained solving Eq. (35)
with 7.5 a0 < β < 9.0 a0, the (red) diamonds highlight the best case
(B, β ) = (7.211 K, 8.33 a0 ), with the spread denoted by the error
bars visible for N � 40. The GFMC results for the HFD-HE2 po-
tential (black solid line), the DFT results of Ref. [37] (blue squares),
and the results of the soft Gaussian potential (SGP) of Refs. [38,39]
(orange triangles) are shown too.

where the function M(a, b, c) is a confluent hypergeometric
function [34,35].

Having found an expression for W (ρ) one can now give
a prediction for the ground-state energy of clusters of any
number N of bosons by solving the following simple equation:[

− h̄2

m

(
∂2

∂ρ2
− (3N − 4)(3N − 6)

4ρ2

)
+ W (ρ) − E0

]
w0(ρ)

= 0. (35)

The four parameters in W (ρ) give us the opportunity to relate
the two functionals, EW [ν] and E [ν], as follows. The helium
dimer represented by the Aziz potential has a single bound
state with energy ε2 = 0.830 12 mK, a scattering length a =
235.547 a0, and an effective range re = 13.978 a0. Fitting α

and A to the corresponding HFD-HE2 values, the Gaussian
parameters result: α = 10.0485 a0 and A = −1.208 018 K.

Several choices are possible to determine the other two
parameters (B, β ). One could choose, e.g., to fit the trimer
and tetramer binding energies [38,39]. In view of the fact
that W (ρ) has to account for energies at any N , we think
it more expedient to obtain couples (B, β ) values, all fitting
the tetramer binding energy. So we solve Eq. (35) for the
four-body system and require E0 = 0.5332 K, the HFD-HE2
value [36]. We observe substantial independence from the
three-body range β for the lowest N values with the overall
best description inside the interval 7.5 a0 < β < 9.0 a0, where
the central value is β = 8.33 a0 and B = 7.211 K the corre-
sponding strength.

Having determined the parametrization of W (ρ), we pro-
ceed to solve Eq. (35) for increasing values of N to determine
the binding energy per atom EN/N as a function of the number
of atoms N . The results are shown in Fig. 1. The red diamonds
are the results obtained with (B, β ) = (7.211 K, 8.33 a0),
where the error bars show results with β varying inside the
interval 7.5 a0 < β < 9.0 a0. For the sake of comparison we
show the Green function Monte Carlo (GFMC) results of
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Ref. [36] (black solid line), the DFT results of Ref. [37]
(blue diamond), and the results of the soft Gaussian potential
(SGP) of Refs. [38,39] (orange triangles). Unexpectedly, the
four-parameter hyper-radial potential W (ρ) has sufficient in-
formation to reproduce the EN/N behavior. As it is evident
in Fig. 1, the results of Eq. (35) are of similar quality as
those using more sophisticated potentials and methods, giving
support to the formalism presented.

As we will see below, for large values of N the solutions
of Eq. (35) are very much localized; the kinetic energy gets
a small fraction of the total energy which tends to equal the
minimum of W (ρ). Using the asymptotic form of the conflu-
ent hypergeometric functions such a minimum results:

Wm = −34

8

A2

B

(
α

β

)6

N. (36)

The potential parameters selected to reproduce the binding en-
ergy per particle for low N values predict EN/N → |Wm|/N =
6.4 ± 0.7 K, compared to the experimental value of 7.1 K of
the homogeneous system. Though this is a remarkable result
considering the minimal information used to determine W (ρ),
the above relation gives a further condition that might be used
in determining the potential parameters.

To conclude the analysis of the results, in Fig. 2 (upper
panel) we show the (reduced) many-body density for selected
number of particles. As can be seen from the figure, the
density is extremely localized around a particular value of
ρ, which increases almost linearly with N . The behavior of
ν(ρ) indicates a very compact object, not compressible; in
fact, lower values of ρ allowing the particles to be closer are
discouraged as well as larger values, which would indicate
possible clusterizations.

The many-body density ν(ρ) can be used to calculate the
mean-square radius. Defining �r the position of a generic parti-
cle with respect to the center of mass, using Eq. (5) results in
〈r2〉 = 1

2N 〈ρ2〉, with

〈ρ2〉 =
∫

ρ2ν(ρ)ρ3N−4dρ. (37)

In Fig. 2 (lower panel) the unit radius, r0(N ) =√
5/3 〈r2〉1/2/N1/3, is shown (black solid points) as a

function of N with error bars corresponding to variations
of β in the interval indicated above and it is compared
to the GFMC results of Ref. [36] (red solid points). The
agreement is evident; the r0 values obtained from the best
parametrizations of W (ρ) reproduce the GFMC results better
than 5%. Moreover, in the large-N limit, Wm is located at

ρm =
(

2B
|A|

)1/3

N5/6, (38)

with A = A
2 ( 3

2 )3/2α3 and B = B
6 ( 1

2 )3β6. The unit radius tends
to r0 → √

5/6( 2B
|A| )

1/3 = 4.1 ± 0.2 a0, extremely close to the
GFMC results at N → ∞.

V. CONCLUSIONS AND OUTLOOK

In this work we formulate a density-functional approach
in terms of the density ν(ρ). Such a density depends on the

un
its

 o
f

units of

FIG. 2. The (reduced) many-body density ν(ρ ) for selected num-
ber of particles (upper panel). The unit radius r0 (black solid points)
(lower panel) with error bars corresponding to variations of β in the
interval 7.5 a0 < β < 9.0 a0. For the sake of comparison, the GFMC
results [36] are shown too (red solid points), together with a fit to
these values represented by the (red) dashed line in units of a0.

hyper-radius ρ, a translation-invariant variable of a collective
nature, because it is connected to the sum of the distances
between the particles. It is shown that the functional E [ν] is
governed by a unique (unknown) hyper-radial potential W (ρ).
The solution of a single hyper-radial equation with such a
hyper-radial potential allows one to determine the binding
energy for any number of particles in a straightforward way.

We have applied this framework to the bosonic case, focus-
ing on 4He clusters. The guess for W (ρ) has been inspired by
the effective theory approach together with a generalization
of the mean-field concept. Extremely satisfying results have
been found. The key point has been to use the range of the
three-body interaction, β, to fine tune the hyper-radial poten-
tial W (ρ). The extension to treat trapped systems is underway.
Since the formalism presented here is valid for bosons as well
as for fermions, an application to nuclear systems might be
promising, provided that a good guess for W (ρ) is found.
The effective theory point of view might again be of help, as
envisaged by results obtained recently in Ref. [40]. Work in
that direction is in progress.
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