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Adiabatic theorem for closed quantum systems initialized at finite temperature
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The evolution of a driven quantum system is said to be adiabatic whenever the state of the system stays close
to an instantaneous eigenstate of its time-dependent Hamiltonian. The celebrated quantum adiabatic theorem
ensures that such pure state adiabaticity can be maintained with arbitrary accuracy, provided one chooses a small
enough driving rate. Here, we extend the notion of quantum adiabaticity to closed quantum systems initially
prepared at finite temperature. In this case adiabaticity implies that the (mixed) state of the system stays close
to a quasi-Gibbs state diagonal in the basis of the instantaneous eigenstates of the Hamiltonian. We prove a
sufficient condition for the finite temperature adiabaticity. Remarkably, it turns out that the finite temperature
adiabaticity can be more robust than the pure state adiabaticity with respect to increasing the system size. This
can be the case for one-body systems with large Hilbert spaces, such as a particle in a large box, as well as for
certain many-body systems. In particular, we present an example of a driven many-body system where, in the
thermodynamic limit, the finite temperature adiabaticity is maintained, while the pure state adiabaticity breaks
down. On the other hand, for generic many-body systems the scaling of the finite temperature adiabatic condition
with the system size is exponential, analogously to pure state adiabatic conditions.
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I. INTRODUCTION

A concept of quantum adiabatic evolution was introduced
by Born and Fock in the early days of quantum mechanics
[1,2]. The concept pertains to a driven closed quantum system
described by a time-dependent Hamiltonian. The evolution of
the system is called adiabatic as long as the state of the system
stays close to the time-dependent instantaneous eigenstate of
the Hamiltonian. The celebrated adiabatic theorem [2,3] states
that adiabaticity can be maintained with any prescribed accu-
racy, provided the driving rate (i.e., the rate of change of the
Hamiltonian) is chosen small enough. The adiabatic theorem
enjoys a glorious history and a wide range of theoretical and
practical applications, including dynamics of chemical reac-
tions [4], population transfer between molecular vibrational
levels [5,6], theory of quantum topological order [7], quan-
tized charge transport [8], quantum memory [9], and quantum
adiabatic computation [10–12].

Nowadays there is a wealth of experimental techniques
available to manipulate large quantum systems consisting of
cold atoms in optical lattices, ions in ion traps, arrays of
superconducting qubits and quantum dots, etc. [13]. However,
these systems are rarely prepared in pure states. Rather, they
are typically initialized at some finite temperature determined
by the preparation protocol. Therefore, the conventional con-
cept of adiabaticity [1–3], which we refer to as pure state
adiabaticity (PSA) in what follows, calls for extension to the
case of finite temperature.

Here we introduce the finite temperature adiabaticity
(FTA) as the property by which the state of a system initially

prepared at finite temperature stays close to the quasi-Gibbs
state in the course of the unitary quantum evolution. The
time-dependent quasi-Gibbs state, defined by Eq. (12) below,
is diagonal in the instantaneous eigenbasis of the Hamiltonian
and has the same spectrum as the initial thermal state.

The central result of the present Letter is a finite temper-
ature quantum adiabatic theorem with an explicit sufficient
condition for FTA. Examining this condition, we discover
that FTA can be more robust than PSA in certain cases,
in particular, for locally perturbed single-body systems with
large Hilbert spaces (such as a particle in a large box) and,
sometimes, for isospectrally driven many-body systems. On
the other hand, for generic many-body systems the scaling
of the FTA condition with the system size is exponential,
analogously to the PSA case.

The rest of the paper is organised as follows. We start
from introducing required definitions and notions (most im-
portantly, the notion of the quasi-Gibbs state). Then we state
the adiabatic theorem for closed quantum systems prepared
in thermal states. Then we discuss its scope and implications,
with the emphasis on the scaling with system size. General
considerations are illustrated by examples. We conclude the
paper with the summary and outlook. Technical details are
relegated to the Supplemental Material [14].

II. PRELIMINARIES

We describe an isolated driven quantum system by means
of a time-dependent Hamiltonian. To be more precise, we
need a family of time-dependent Hamiltonians that traverse a
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given path r(s) in a parameter space (where s is the dimension-
less coordinate parametrizing the path) in different physical
times t . The time scale is set by the driving rate ω:

s = ωt . (1)

It should be stressed that the parametrization of the path
itself must not be linear, i.e., |dr/ds| must not be constant.
We assume that the path along with its parametrization, r(s),
is fixed, with Hs being the Hamiltonian in the point s. The
adiabatic limit is defined as

ω → 0, t → ∞, ωt = const > 0. (2)

Let En
s and �n

s be, respectively, eigenenergies and eigen-
vectors of Hs,

Hs�
n
s = En

s �n
s , n = 1, 2, ..., d, (3)

where d is the dimension of the Hilbert space. We assume that
En

s and �n
s are continuously differentiable in s.

Importantly, Hs can be represented as

Hs = UsH̃sU
†
s , (4)

where Us is a continuously differentiable unitary operator,1

U0 = 1 and H̃s is an auxiliary operator with the same eigen-
values as Hs and the same eigenvectors as H0,

H̃s =
∑

n

En
s |n〉〈n|, (5)

where |n〉 ≡ �n
0. Note that time dependence enters H̃s only

through En
s . An important object in our study is the adiabatic

gauge potential (AGP) [15]

As ≡ i(∂sUs)U †
s . (6)

To characterize the spectrum, we define

1

μs
= max

n

∣∣∣∣En+1
0 − En

0

En+1
s − En

s

∣∣∣∣ (7)

and

νs = max
n

|∂s ln
(
En+1

s − En
s

)|. (8)

If the spectrum of the driven Hamiltonian does not change
with time, we refer to the driving as isospectral. In this case
H̃s = H0, μs = 1, νs = 0 and the AGP can often be easily
obtained explicitly.

The state of the system ρt satisfies the von Neumann equa-
tion

i∂tρt = [Hωt , ρt ]. (9)

We assume that at t = 0 the system is initialized in a thermal
state,

ρ0 = e−βH0/Z0, Z0 ≡ tr e−βH0 , (10)

β being the inverse temperature.
To quantify the difference between two mixed quantum

states we employ the trace distance

Dtr (ρ, ρ ′) ≡ (1/2) tr|ρ ′ − ρ|, (11)

1Note that Us is not an evolution operator.

which is known to have a straightforward operational meaning
[16–20]. As a side remark, we note that the (more easily
computable) Hilbert-Schmidt distance is unsuitable for fairly
discriminating many-body states [19] and thus will not be
used.

III. GENERALIZED GIBBS STATE

If the system were prepared in an eigenstate (in particular,
in the ground state, i.e., “at zero temperature”), the adiabatic
theorem [2,3,11] would imply that for any given s one can
choose sufficiently small ω so that the state of the system at a
(large) time t = s/ω is close (within a given error margin) to
the corresponding instantaneous eigenstate. This is the exact
meaning of PSA.

When we turn to the case of finite temperatures, the first
question we have to address is what state one should compare
the dynamical state ρt with. When the conditions for PSA are
met for any eigenstate, then ρt stays close to the quasi-Gibbs
state given by (see also Ref. [21])

θ
β
t ≡ Z−1

0

∑
n

e−βEn
0 |�n

ωt 〉〈�n
ωt |. (12)

In fact, in some cases this happens under conditions less
restrictive than those for PSA, as will be demonstrated in what
follows. We define FTA as the closeness of ρt and θ

β
t in the

course of quantum evolution.
Arguably, the notion of FTA is the closest proxy of the

notion of PSA one can imagine in the finite temperature set-
ting. It is different from thermodynamic or local adiabaticity
that is concerned not with the many-body state ρt itself, but
rather with the expectation values of few-body observables
such as total energy, spin polarization, etc. [22–31]. Since
D(ρt , θ

β
t ) constrains the difference between the expectation

values of any bounded observable in the states ρt , θ
β
t [20],

the finite temperature adiabaticity entails the thermodynamic
adiabaticity. The reverse is not true; two many-body states
can have close expectation values of, say, all single- and
two-body observables, but be vastly different otherwise. We
anticipate that the notion of the finite-temperature adiabatic-
ity introduced here will gain significance in cases where
the complete characterization of the many-body state ρt is
important, such as quantum adiabatic computation, quantum
annealing, and adiabatic preparation of many-body states for
measurement-based quantum computation [32–43], while the
thermodynamic adiabaticity will remain most appropriate in
the field of quantum thermodynamics.

IV. ADIABATIC THEOREM FOR FINITE TEMPERATURES

Now we are in a position to state the following:
Theorem: The trace distance between the dynamical state

of the system ρt [initialized in the Gibbs state (10) and evolv-
ing according to the von Neumann equation (9)] and the
quasi-Gibbs state θ

β
t [defined by Eq. (12)] is bounded from
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FIG. 1. A system of lattice fermions described by the Hamilto-
nian (14). The time-dependent part of the Hamiltonian, 	Ht , acts
only on the two middle sites of the lattice.

above by

Dtr (ρt , θ
β
t ) �

√√
2ωβ

(
1

μωt
‖Aωt‖

+
∫ ωt

0

1

μs′
‖∂s′As′ ‖ds′ +

∫ ωt

0

νs′

μs′
‖As′ ‖ds′

+
√

2
∫ ωt

0

1

μs′
‖As′ ‖2ds′

)1/2

. (13)

Here As, μs and νs are defined in Eqs. (6), (7), and (8),
respectively, and ‖ . . . ‖ refers to the operator norm.

This theorem implies that ρt converges to θ
β
t in the adia-

batic limit (2), provided the term in brackets remains finite.
The proof of the theorem can be found in the Supplemental
Material [14].

The bound (13), which is the main result of the present Let-
ter, is a sufficient condition for FTA. The following remarks
on its merits are in order:

(1) The bound explicitly depends on temperature and van-
ishes in the limit of infinite temperature, β = 0. This is
consistent with the simple fact that at the infinite temperature
ρt = θ

β=0
t = 1/d , and the evolution is trivially adiabatic for

any driving rate.
(2) The system size can enter the bound through μs, νs and

the norms ‖As‖, ‖∂sAs‖.
(3) In practice, the application of the bound is greatly

facilitated for an isospectral driving, where μs = 1, νs = 0
and, most importantly, the AGP As is often explicitly known,
as will be exemplified in what follows.

(4) For a generic, nonisospectral driving in many-body
systems the bound is less useful since the explicit form of AGP
is usually unknown. Furthermore, the norm of nonisospectral
many-body AGP generically diverges exponentially with the
system size [44].2 μs and νs will also typically diverge expo-
nentially with the system size, however this divergence can be
eliminated for chaotic many-body systems [45] by refining the
bound, as discussed in the Supplemental Material [14].

To further elucidate the merits of the FTA condition (13),
we analyze several examples below, focusing on the scaling
of the bound with the system size.

2This divergence has been established in Refs. [15,44] for a normal-
ized Hilbert-Schmidt norm that does not exceed the operator norm.

V. LOCALLY DRIVEN LATTICE FERMIONS

Consider spinless fermions in a one-dimensional lattice
with 2L sites described by the Hamiltonian (see Fig. 1)

Hs = Hhop + Hint + 	Hs, (14)

where Hhop = (−1/2)(
∑L−1

j=1 +∑2L−1
j=L+1)(c†

j c j+1 + c†
j+1c j )

describes the nearest-neighbor hoppings in the left and
the right halves of the lattice (but not between the two),
Hint = ∑

i< j vi jnin j with n j ≡ c†
j c j is the interaction term,

vi j being some interparticle potential, and 	Hs is the
time-dependent part acting on the two central cites of the
lattice. The total number of fermions, N = ∑2L

j=1 n j , is an
integral of motion, and we can consider sectors with fixed N
separately.

We will consider two types of 	Hs. The first one is non-
isospectral:

	Hgen
s = εs

(
c†

j c j + c†
j+1c j+1

) − (
c†

j c j+1 + c†
j+1c j

)
/2. (15)

Here only the first term depends on time through the on-site
potential εs.

First let us discuss the one-body sector of the model, N =
1. In this sector we numerically verify that ‖As‖, ‖∂sAs‖,
μs and νs are finite in the limit of L → ∞ [14]. This is
consistent with Refs. [15,46] where a local approximation to
AGP has been calculated (see the Supplemental Material for
more details [14]). Therefore, for a fixed driving rate, the FTA
remains robust in the large system size limit of L → ∞.

In contrast, to maintain the PSA, one needs to polynomially
scale down the driving rate with the system size (here and
throughout the paper “polynomially” means “as a power law”,
not necessarily with an integer power). One can anticipate
this already from spectral gaps that vanish polynomially in
this limit. Alternatively, one can notice that restructuring of
a dynamical pure state evolving according to the Schrodinger
equation takes at least O(L) time due to the locality of the
driving and the finiteness of the Lieb-Robinson speed, there-
fore the driving rate should scale at least as O(1/L) in order
to catch up the instantaneous eigenstate. The latter reasoning
closely follows that in Ref. [47]. In the Supplemental Mate-
rial [14] we verify numerically that maintaining PSA with a
prescribed accuracy requires driving rates that vanish with the
system size.

Next, we turn to the many-body case with the fixed density
n ≡ N/L. In this case ‖As‖ and ‖∂sAs‖ diverge exponentially
with the system size [44]. We therefore conclude that in the
many-body sector the sufficient condition (13) for FTA per-
forms essentially not better than known sufficient conditions
for PSA,3 indicating the exponential fragility of FTA in the
thermodynamic limit.

The second 	Hs we consider corresponds to the isospectral
driving:

	H iso
s = (−1/2)

(
eiφs c†

j c j+1 + e−iφs c†
j+1c j

)
. (16)

Here φs is some smooth function of s with φ0 = 1. The
corresponding unitary operator that takes H0 to Hs reads

3Here and in what follows we have in mind PSA conditions for an
eigenstate whose energy corresponds to the inverse temperature β.
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FIG. 2. A quantum spin is moved around a wire along a circular
trajectory. Electrons in the wire are magnetically coupled to the spin
due to fluctuations of the current. The many-body adiabaticity of the
electron-spin system at finite temperature is robust with respect to in-
creasing the length of the wire. In contract, the pure state adiabaticity
breaks down at any finite driving rate.

Us = eiφsNL , where NL ≡ ∑L
j=1 n j is the number of fermions

in the left half of the chain.4 The corresponding AGP is easily
found to be A = −∂sφs NL, and the bound (13) reads

Dtr
(
ρt , θ

β
t

)
�

√
N

√√
2ωβ

(
|∂sφs| +

∫ ωt

0
ds′|∂2

s′φs′ |

+
√

2 N
∫ ωt

0
ds′|∂s′φs′ |2

)1/2

. (17)

In the one-body sector the behavior of both FTA and PSA is
analogous to that for the generic (nonisospectral) case. Indeed,
for N = 1 the r.h.s. of the bound (17) does not depend on
the system size L, and the FTA remains robust in the limit
of L → ∞. As for the PSA, it breaks down in this limit analo-
gously to the nonisospectral case, as we verify numerically in
the Supplemental Material [14].

In the many-body sector the bound (17) implies that to
maintain the FTA in the thermodynamic limit it is sufficient
to scale the driving rate as ω ∼ 1/L2. Remarkably, the condi-
tion for PSA in the isospectral case is also polynomial in L,
despite the exponentially small energy gaps, as discussed in
the Supplemental Material [14] (see also Refs. [50,51]).

VI. SPIN COUPLED TO A COLLECTIVE COORDINATE

Consider a thin straight wire with N electrons and a quan-
tum spin S that is moved around the wire, see Fig. 2. The spin
has a magnetic moment μmagn [not to be confused with μs

defined in Eq. (7)]. The interaction between the spin and the
electrons is mediated by the magnetic field produced by the

4Note that while the driving term is local, the AGP is extensive in
the system size. This is a generic behavior [15]. Another interesting
model with a local driving and an explicit AGP can be found in
Refs. [48,49]. One can perform an analogous analysis of adiabaticity
in this model, with the same qualitative conclusions.

electron motion. In equilibrium the net current of electrons
is zero, but the interaction persists due to fluctuations of the
current, both classical and quantum. The Hamiltonian of the
system reads

Hs = He + HSe
αs

, (18)

where He is the Hamiltonian of electrons (its explicit form is
not required), and

HSe
αs

= − μmagn

2πr
J (− sin αs Sx + cos αs Sy) (19)

is the Hamiltonian of the magnetic field-mediated interaction
between electrons and the spin. Here (Sx, Sy, Sz ) are the com-
ponents of the spin operator, J is the operator of the electron
current, r is the distance from the spin to the wire, and αs is
the time-dependent polar angle determining the position of the
spin, see Fig. 2.

We further assume that the spin is moved along a circular
trajectory around the wire with r = const, which amounts
to the isospectral driving. The AGP is then given by As =
(∂sαs) Sz. Plugging this to Eq. (13), one gets a sufficient condi-
tion for FTA. Its explicit form is similar to Eq. (17) and can be
obtained from the latter by replacing ∂sφs by ∂sαs

√
S(S + 1)

and N by 1.
Remarkably, the number of electrons does not enter the

sufficient condition for FTA. Consequently, one can increase
the length of the wire indefinitely and still maintain the FTA
with a given accuracy and a fixed driving rate. In contrast, the
PSA breaks down in this limit (see [14]).5

VII. SUMMARY AND OUTLOOK

To summarize, we have introduced a notion of finite tem-
perature adiabaticity (FTA) of an isolated quantum system and
proved a finite temperature adiabatic theorem. To be more
precise, we have proven a sufficient condition (13) for main-
taining the FTA with a given accuracy. The system size enters
the condition mainly through the norms of the adiabatic gauge
potential and its derivative. The condition becomes particular
tractable and useful for the isospectral driving, where the
adiabatic gauge potential is often explicitly known.

We have analyzed in detail the scaling of the adiabatic
condition (13) with the system size. While in a generic many-
body case the FTA shares with the PSA the unfavorable
exponential scaling, in certain special cases the former is dra-
matically more robust than the latter.6 We have demonstrated
this robustness for locally driven one-body models with large
Hilbert spaces. We have also presented an example of an
isospectrally and locally driven many-body model where the
FTA survives the thermodynamic limit while the PSA breaks
down.

Yet another class of many-body systems where the FTA
might be more robust than the PSA are driven systems with

5Note that there are examples of isospectrally and locally driven
many-body systems where PSA is as robust as the FTA [50].

6This is consistent with earlier numerical observations that micro-
canonical mixed states are more robust to adiabaticity breaking than
pure states [52].
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integrable instantaneous Hamiltonians. This follows from the
finding of Ref. [44] where the scaling of the normalized
Hilbert-Schmidt norm for such a system has been demon-
strated to be polynomial instead of exponential. One way
to connect our work to this result would be to refine the
FTA condition (13) by replacing operator norms by thermal
averages. In fact, this can be done for three out of four terms
in Eq. (13), as discussed in the Supplemental Material [14].

However, at the moment we are not able to avoid the operator
norms altogether, and leave the improvement of the bound
(13) for further work.
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