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The process of reconstruction of attosecond beating by interference of two-photon transitions (RABBITT)
can become resonant with a discrete atomic level either in the intermediate or the final continuous states.
Experimental observations of the former [Phys. Rev. Lett. 104, 103003 (2010)] and latter [Nature Commun.
7, 10566 (2016)] resonant processes revealed modification of only those parts of the photoelectron spectrum that
overlapped directly with the resonance. In the lithium atom and other members of the alkali-metal family, the
valence shell ns → np transition to the intermediate RABBITT state affects the whole photoelectron spectrum in
the final state. The strong additional resonant channel modifies entirely the ionization dynamics and opens direct
access to the resonant phase of the two-photon transitions, which is common for various single and multiple
electron ionization processes. Elucidation of this phase has wider implications for strongly resonant laser-matter
interaction.

DOI: 10.1103/PhysRevA.104.L021103

Valence shell dipole transitions are commonly used for op-
tical manipulation of alkali-metal atoms. This includes optical
pumping [1], trapping [2], and cooling [3]. These processes
are of importance for many quantum technologies such as
metrology [4], information processing [5], computations [6],
and simulations [7]. Lithium, the lightest member of the alkali
atom family, can be magneto-opically trapped [8], cooled [9],
and pumped selectively to various 2pm magnetic substates
[10]. These manipulations make lithium an ideal target for
collision [9] and strong laser physics [8,10] experiments.

The process of reconstruction of attosecond beating by
interference of two-photon transitions (RABBITT) [11,12]
has become a widely used tool for attosecond chronoscopy
of atoms [13], molecules [14,15], liquids [16], and solids
[17,18]. In RABBITT, XUV driven primary ionization is aug-
mented by secondary IR photon absorption or emission. These
two latter processes lead to the same final continuous state
whose population depends on the relative phase of the ab-
sorption or emission amplitudes. Experimental access to this
phase makes it possible to obtain the timing information and
to resolve photoemission on the attosecond time scale. RAB-
BITT can become resonant with a discrete atomic level either
in the intermediate or the final continuous states. In the former
process, a discrete atomic state substitutes a missing continu-
ous intermediate state that falls below the ionization threshold.
Such an under-threshold RABBITT (or uRABBITT) has been
observed in He [19] and Ne [20,21]. Alternatively, the final
continuous state can be tuned to a Fano resonance. Such
experiments were conducted on He [22] and Ar [23,24]. In
both cases, the resonance has a mild effect on the observed
photoelectron spectrum in the final state modifying only those
parts that overlap directly with the resonance.

In this Letter, we demonstrate a very strong modifica-
tion of the whole photoelectron spectrum in lithium when

the 2s → 2p transition becomes resonant with the interme-
diate RABBITT state. The strong additional resonant channel
modifies entirely the ionization dynamics beyond its simple
interpretation in terms of the relative absorption/emission
phase converted to the atomic time delay.

The conventional RABBITT on either of the Li 2s/2p
initial states is illustrated graphically in Fig. 1(a). The atom
absorbs an odd number of the linearly polarized photons of
the fundamental frequency (2q ± 1)ω to get ionized to one of
the intermediate states, which are marked in the photoelectron
spectrum by the harmonic order H2q±1. Subsequent emission
or absorption of one IR photon leads to the same final state,
which appears in the photoelectron spectrum as a sideband
SB2q. The SB population oscillates when a time delay τ is
introduced between the ionizing XUV and the dressing IR
pulses

S2q(τ ) = A + B cos(2ωτ − C) (1)

The simplest interpretation of the parameters entering Eq. (1)
is provided by the lowest-order perturbation theory (LOPT):

A = |Ma|2 + |Me|2, B = 2Re[MaM∗
e ]

C = arg [MaM∗
e ] = 2ωτa. (2)

Here we introduce the complex amplitudes of the XUV ab-
sorption, augmented by absorption Ma or emission Me of an
IR photon. The phase of the RABBITT oscillation

C = �φ2q±1 + �φW + �φcc (3)

is the sum of the phase difference of the neighboring odd har-
monics (�φ2q±1 = φ2q+1 − φ2q−1), the analogous difference
of the phases of the XUV absorption (the so-called Wigner
phase difference) �φW, and the phase difference of the IR
driven transitions (the so-called continuum-continuum or CC
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FIG. 1. (a) Schematic representation of the conventional RAB-
BITT process on either of the Li 2s/2p initial state. (b) Same for
the resonant Li 2s RABBITT process when the photon energy is in
resonance with the level spacing ω � E2p − E2s. (c) Same for the
resonant Li 2pm=0 process.

phase difference) �φcc. The latter phase differences are con-
verted to the corresponding time delays by a finite difference
formula [25]

τW = �φW/(2ω), τcc = �φcc/(2ω). (4)

The two time delays in Eq. (4) add up to the atomic time delay
τa = τW + τcc, which is the group delay of the photoelectron
wave packet propagating in the combined field of the ion
remainder and the dressing IR field relative to its free space
propagation.

The resonant 2s → 2p RABBITT process on the ground
2s state of Li is illustrated in Fig. 1(b). In this process, the
IR photon absorption promotes the electron to the 2pm=0 in-
termediate bound state. Then the XUV (2q − 1)ω absorption
elevates it to the same final state SB2q. A similar resonant
channel on the 2pm=0 initial state is exhibited in Fig. 1(c).
Here the IR photon is first emitted and then the XUV (2q +
1)ω absorption populates SB2q. In both Figs. 1(b) and 1(c) the
resonant RABBITT process does not involve a CC transition
and lacks the φcc phase. Instead, it contains the resonant phase,
which can be approximated by a simplified expression [20]

φr ≈ arg[ω + E2s − E2p − i�]−1 = arctan(�/�). (5)

Here � is the spectral width of the IR pulse and � ≡
ω + E2s − E2p is the detuning. More elaborate expressions
for the resonant two-photon absorption phase are derived in
Refs. [26,27].

The relative contribution of the resonant and nonresonant
RABBITT processes and their phases depends on the strength
of the corresponding ionization channels. This strength can be
gauged from the partial photoionization cross sections exhib-
ited in Fig. 2. In the limits of the small and large photoelectron
energy E , these cross sections satisfy the following relations:

σ2p = 14 Mb � σ2s = 1.3 Mb for E � 0

σ2p ∝ E−9/2 	 σ2s ∝ E−7/2 for E � Ip (6)

The above relations show that the 2p primary ionization is
much stronger than the 2s one when the photoelectron energy
is low. When this energy is high, it is the 2s primary ionization
that is dominant over the 2p one. The 2s and 2p resonant
channels exhibited in Figs. 1(b) and 1(c) are driven by the

FIG. 2. Partial photoionization cross sections of the Li atom.
Present calculations within the random phase approximation with
exchange (RPAE) [28] are compared with the experimental data for
the Li atom in the 2s [29] and 2p [30,31] initial states.

(2q − 1)ω and (2q + 1)ω XUV photon absorption, respec-
tively. The former process approaches the threshold closely
for the lower SB orders whereas the latter process always stays
away from the threshold. Accordingly, the resonant channel
of Fig. 1(b) weakens away from the threshold relative to the
nonresonant 2s channel exhibited in Fig. 1(a). Conversely, the
resonant process exhibited in Fig. 1(c) is uniformly strong for
all the SB’s in comparison with its nonresonant 2p counter-
part. Therefore the resonant phase in this channel is dominant
over the nonresonant one. Notably, the 2pm=1 initial state does
not mix with the intermediate 2sm=0 state and the correspond-
ing RABBITT process lacks the resonant phase in this case.

Accurate nonperturbative treatment of the RABBITT
process requires numerical solution of the time-dependent
Schrödinger equation (TDSE). We seek this solution in the
single-active electron (SAE) approximation [32] with an ef-
fective one-electron potential [33]. This approximation is
valid in the photon energy considered here, which is well
below the 1s threshold at �60 eV. The TDSE SAE approach
to RABBITT has been tested successfully on He [34], Ne
[35], and heavier noble gas atoms [36]. The TDSE is driven
by a superposition of an XUV attosecond pulse train (APT)
and the IR pulse in several fixed increments of the IR-XUV.
delay τ .

The APT is modeled with the vector potential

Ax(t ) =
5∑

n=−5

(−1)nAn exp

(
−2 ln 2

(t − nT/2)2

τ 2
x

)

× cos[ωx(t − nT/2)], (7)

where

An = A0 exp

(
−2 ln 2

(nT/2)2

τ 2
T

)
.

Here A0 is the vector potential peak value and T = 2π/ω is
the period of the IR field. The XUV central frequency is ωx

and the time constants τx, τT are chosen to span a sufficient
number of harmonics in the range of photon frequencies of
interest for a given atom.
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The vector potential of the IR pulse is represented by the
cosine squared envelope

A(t ) = A0 cos2

(
π (t − τ )

2τIR

)
cos[ω(t − τ )]. (8)

In the present work, the APT is centered at ωx = 15ω and
its spectral width � = 0.4 eV. Typical XUV and IR field inten-
sities are 5 × 109 and 3 × 1010 W/cm2, respectively. In this
low intensities regime, our numerical results depend weakly
on variation of these parameters.

The photoelectron spectrum is obtained by projecting the
time-dependent wave function at the end of the time evolution
on the basis of Volkov states. Numerical details are given in
the preceding publications [35,36].

Results of our simulations are shown in Fig. 3 for the
Li atom initially in the 2pm state summed over m = 0,±1
[Fig. 3(a)] and the 2s state [Figs. 3(b), 3(c)]. The photon
energy ω = 1.55 eV in Figs. 3(a), 3(b) and 1.65 eV in Fig.
3(c). In Fig. 3 we display the RABBITT traces, which are
comprised of the stack of angular integrated photoelectron
spectra taken while varying the XUV-IR delay τ . As the two-
photon RABBITT transitions are weaker than the one-photon
primary photoionization, the harmonic peaks are normally
much stronger than the sidebands (see Fig. 1 for graphical
illustration). To highlight the SB’s, we conduct yet another
computation with the XUV ionization only and subtract the re-
sulting photoelectron spectrum from the XUV-IR RABBITT
spectra at each time delay. Thus the primary harmonic peaks
are all but removed and the RABBITT traces of Fig. 3 display
the sidebands very clearly.

The sidebands are integrated over the energy window
2qω ± �/2 and their time dependence is fitted with Eq. (1).
The resulting phases C2q for each SB are marked on the RAB-
BITT traces and joined by the solid blue lines. These lines
guide the eye through the SB centers on each panel of Fig. 3.
The striking difference between the Figs. 3(a) and 3(b), 3(c) is
that the SB’s are perfectly aligned in the case of the 2p initial
state whereas they are visibly tilted for the 2s initial state.
The direction of this tilt is opposite for the photon energies
of 1.55 eV and 1.65 eV.

The lack of a SB dispersion for the 2p initial state can be
understood from Eq. (3). In our simulations, the APT is com-
posed of the pulselets of altering polarity and �φ2q±1 = π∀q.
In comparison, both the Wigner �φW and the CC �φcc phase
differences are small away from the threshold. Also the reso-
nant phase φr (5) does not depend on the photoelectron energy
E . Thus the resulting RABBITT phase is nearly constant for
all the SB’s.

The phase variation with the photoelectron energy and the
fundamental photon frequency ω is analyzed in more detail in
Fig. 4. In the three panels of this figure, from top to bottom, we
display the net RABBITT phase corresponding to the 2pm=0,
2pm=1 and 2s initial states, respectively. The harmonic phase
difference �φ2q±1 = π is subtracted for clarity. The funda-
mental photon frequency ω varies across the resonant 2s − 2p
transition. For the 2pm=0 initial state, the net RABBITT phase
depends strongly on ω but remains flat with E . Conversely, the
2pm=1 phase does not depend either on ω or on E . And, finally,
the 2s phase depends strongly both on ω and E . The sign of the
E dispersion depends on ω. It turns from positive to negative

FIG. 3. RABBITT traces of the Li atom initially in the (a) 2p
and (b), (c) 2s states at the fundamental frequency ω = 1.55 eV,
λ = 800 nm (a), (b) and ω = 1.65 eV, λ = 729 nm (c). The corre-
sponding SB orders are marked on the right vertical axis of each
panel. The blue solid lines guide the eye through the centers of the
sidebands.

when ω � 1.65 eV. This transition corresponds to the photon
energy approaching the level spacing E2p − E2s (1.68 eV in
our model potential and 1.86 eV in the experiment [37]).
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FIG. 4. (a) The 2pm=0 RABBITT phases C2q for various side-
bands are plotted for several fixed photon energies. The top scale
indicates the SB order for ω = 1.55 eV. (b) and (c) is the same for
the 2pm=1 and 2s RABBITT phases, respectively.

The resonant transition of the 2pm=0 and 2s RABBIT
phases is shown more distinctively in Fig. 5 where we select
just a single SB8 and trace its phase as a function of the photon
energy. This low SB8 is dominated by the resonant channel
for both the initial states. For the 2pm=0 initial state, this
resonant character is retained by the higher-order SB’s and
their phases remain nearly flat over an extended range of the
photoelectron energy E as displayed in Fig. 4(a). Conversely,
for the 2s initial state, the resonant character of the higher-
order SB’s weakens and their phases approach �φ2q±1 = π

FIG. 5. The C8 phase variation with the photon energy ω is
plotted for 2pm=0,1 and 2s initial states. The dotted line visualizes
Eq. (5).

as exhibited in Fig. 4(c). Thus the corresponding RABBITT
phases demonstrate a significant energy dispersion with E .

Up to now, we examined the angular integrated RABBITT
spectra. The angular dependence of these spectra can also be
explored by tracing the SB position and deducing its phase
as a function of the photoelectron emission angle θ . This
tracing is exhibited in Fig. 6 for the 2pm=0 [Fig. 6(a)], 2pm=1

[Fig. 6(b)], and 2s [Fig. 6(c)] initial states. Here the RABBITT
phase C(θ ) − C(θ = 0) is plotted relative to the polarization
direction corresponding to θ = 0. In the case of the 2pm=1

initial state, which is not resonant with its 2s counterpart,
there is no angular variation of the RABBITT phase except
its sharp rise above θ � 60◦. The smooth and rather uniform
angular dependence appears in the RABBITT phase for the
2pm=0 initial state, which is consistently resonant with the 2s
state for all the SB’s. In both cases, the angular dependence
originates from the competition of the two continuous final
states,

2p
(2q±1)ω−→ εd

∓ω−→ E p, E f ,

each supported by their own spherical harmonics. The popu-
lation of the εs intermediate state is ten times smaller and can
be neglected. The E f channel should normally dominate over
the E p one because of the Fano propensity rule [38], which
was confirmed in other RABBITT studies [20,39]. A single
dominant spherical harmonic does not provide any angular de-
pendence below its kinematic node. This is indeed the case for
the nonresonant 2pm=1 initial state where the angular depen-
dence is missing for all the SB’s below the node of Y31(63.4◦).
For the resonant 2pm=0 initial state, the angular dependence is
also uniform but it is noticeable for all the emission angles.
This is the evidence of several competing spherical harmon-
ics. Finally, for the 2s initial state, the angular dependence
is strong for lower-order SB’s but it gradually weakens for
higher-order SB’s. For a nonresonant ns initial state, it is the

competition of the εp
±ω−→ Es, Ed transitions that introduces

the angular dependence of the RABBITT phase [34]. Such a
dependence, however, reveals itself only beyond the kinematic
node Y20(54.7◦). In the present case of the resonant 2s initial
state, the angular dependence onsets at significantly smaller
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FIG. 6. Variation of the RABBITT phase relative to the polariza-
tion direction C(θ ) − C(θ = 0) on the (a) Li 2pm=0, (b) 2pm=1, and
(c) 2s initial states. The photon energy ω = 1.55 eV.

angles. The angular dispersion is strong and positive for small
SB’s. It becomes weak and negative for higher SB orders,
which is typical for a nonresonant He 1s initial state [34].

In conclusion, we studied systematically the RABBITT
processes in the Li atom prepared initially in the 2s, 2pm=0,
and 2pm=1 states. The properties of the RABBITT process
in lithium are very diverse. Experimentally, the population of
the Li atom in various 2pm substates is achieved by resonant
pumping by the linearly [8] or circularly [10] polarized laser
pulses. The three initial states demonstrate different interplay
between the resonant and nonresonant RABBITT processes.
The contribution of the resonant channel is selective for the
2s initial state. It is very strong for the lower-order SB’s
near the threshold but it weakens as the SB order and the

corresponding photoelectron energy grow. Such a variable
competition between the resonant and nonresonant channels
leads to a strong SB energy and angular dispersion. The sign
of the energy dispersion changes abruptly when the photon
energy passes through the resonance corresponding to the
energy spacing between the 2s and 2p initial states. In the
case of the 2pm=0 initial state, the resonant channel makes a
uniformly dominant contribution for all the SB orders. In this
case, the energy dispersion of the SB’s is very weak while the
angular dependence is uniform and moderate. Finally, the res-
onant channel does not contribute for the 2pm=1 initial state.
In this case, both the energy and angular dispersion of the
SB’s are absent. It needs to be stressed that a strong resonant
channel invalidates the conventional definition of the atomic
time delay via the RABBITT phase by way of Eq. (2). Indeed,
the resonant phase is contained only in one of the (2q ± 1)ω
XUV absorption arms and the finite difference expression (4)
for the phase derivative cannot be used.

Our study broadens significantly the catalog of the resonant
RABBITT processes reported so far in the literature. In the
previous studies, only one selected sideband was affected by
the resonance either in the intermediate state (the so-called
uRABBITT process [19,20]) or by tuning it to a Fano reso-
nance in the final state [22–24].

The strongly resonant RABBITT should be found in other
members of the alkali atoms family. Their valence shell dipole
ns → np transitions overlap with NIR laser frequencies and
make these atoms convenient targets for optical manipula-
tion. Importantly, because of the identical principle quantum
numbers, the oscillator strength of the ns → np transition
is several times greater than that of the higher-order transi-
tions. This makes the resonant behavior of the ns RABBITT
very robust and clear. In the meantime, a nonresonant npm=1

RABBITT can serve as a stable reference, which displays no
sideband dispersion except the high-order harmonics group
delay (the attochirp). The latter instrumental effect is identical
for both initial states and thus can be easily eliminated.

The significance of the present findings goes beyond the
specificity of the RABBITT process. It opens direct access to
the resonant phase of the two-photon transitions. The resonant
phase can be extracted straightforwardly by taking the differ-
ence between the npm=0 and npm=1 RABBITT measurements.
This phase is common for various single and multiple electron
ionization processes. Several theoretical models describing
this phase [20,26,27] can thus be validated. This will have
wider implications for strongly resonant laser-matter interac-
tion. The combination of the RABBITT and magneto-optical
trapping is technically challenging at present [40]. Neverthe-
less, we hope that we provided sufficient motivation for such
an experiment to be conducted. The alkali-metal atoms are
the natural candidates for future attosecond studies once the
traditional noble gas targets are exhausted.

The author thanks Alex Bray for automating repetitive
RABBITT calculations with the use of efficient shell scripts.
Resources of the National Computational Infrastructure (NCI)
facility were utilized in the present work.
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