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Nonlinearities of King’s plot and their dependence on nuclear radii
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Investigations of isotope shifts of atomic spectral lines provide insights into nuclear properties. Deviations
from the linear dependence of the isotope shifts of two atomic transitions on nuclear parameters, leading to a
nonlinearity of the so-called King plot, are actively studied as a possible way of searching for new physics. In the
present Letter we calculate the King-plot nonlinearities originating from the standard-model atomic theory. The
calculation is performed both analytically, for a model example applicable for an arbitrary atom, and numerically,
for one-electron ions. It is demonstrated that the standard-model predictions of the King-plot nonlinearities are
hypersensitive to experimental errors of nuclear charge radii. This effect significantly complicates identifications
of possible King-plot nonlinearities originating from the new physics.
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Introduction. Introduced by King in 1963 [1], the King plot
has been widely used as an extremely useful tool for inter-
preting the results of isotope-shift atomic experiments. After
measuring the energies of two transitions for four or more
isotopes of the same element, one can arrange the results as a
King plot, which should be—to a very high accuracy—linear.
In this way the experimental results can be cross-checked
without any further theoretical input. Moreover, the two pa-
rameters of the linear plot can be interpreted in terms of the
mass and field shifts and separately compared with theoretical
calculations [2].

Progress in quantum logic techniques and collinear spec-
troscopy achieved during the last years resulted in a dramatic
increase of experimental accuracy. In particular, measure-
ments of optical-clock transitions were demonstrated on a
few-Hz precision level [3,4]. An even higher accuracy can
be achieved by using entangled states [5] and coherent high-
resolution optical spectroscopy [6]. Naturally, a question
arises if the King plot is going to stay linear at this new level of
experimental precision. Recent experiments in strontium and
ytterbium ions [7,8] gave first indications that the linearity is
actually broken on the level of several standard deviations.

It was recently demonstrated [9–11] that the linearity of
the King plot can be used in the search for new physics,
specifically, to constrain the coupling strength of hypothet-
ical new-physics boson fields to electrons and neutrons. It
remained unclear, however, whether any actually observed
nonlinearity can be clearly interpreted as a manifestation of
new physics, since the standard-model theory can also pro-
duce effects that slightly bend the King plot. Such nonlinear
effects have been the subject of several recent studies [12–14].

The King plot is defined so that its construction does not
require any knowledge about the nuclear charge radii; only
the nuclear masses are involved. Any prediction of King-plot

nonlinearities, however, requires an experimental input in the
form of nuclear radii. One might assumed that in view of the
extreme smallness of the nonlinearities, our limited knowl-
edge of the nuclear radii should not cause any problems.
In the present Letter we will demonstrate that it is exactly
the opposite. Even very small errors in experimental nuclear
radii lead to greatly amplified uncertainties of the King-plot
nonlinearities, which bring about problems in asserting even
the order of the magnitude of the effect. This makes the King-
plot nonlinearities a very sensitive tool for studying nuclear
radii, but diminishes their valuableness in the search for new
physics.

Arbitrary atom. Let us consider the isotope shift of the
energy of the transition a between isotopes with mass numbers
Ai and A0, which will be denoted as Ei

a (the reference isotope
A0 will be implicit everywhere and suppressed in the notations
for brevity). It is convenient to introduce the so-called reduced
isotope-shift energies ni

a as

ni
a = Ei

a
m
Mi

− m
M0

, (1)

where m is the electron mass and Mk is the nuclear mass of
the isotope Ak . Within the standard formulation, the reduced
isotope-shift energy is represented as a sum of the mass-shift
and the field-shift contributions,

ni
a = Ka + Fa r (2)

i , (2)

where Ka and Fa are the mass-shift and the field-shift con-
stants, respectively, r (2)

i ≡ [R2
i

λ̄2
C

− R2
0

λ̄2
C

]/[
m
Mi

− m
M0

]
, Rk is the

root-mean-square (rms) nuclear charge radius of the isotope
Ak , and λ̄C = λC

2π
is the reduced Compton wavelength.

It is usually assumed that the isotope-shift constants Ka and
Fa depend only on the transition but not on the isotope. In this
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case, by considering two transitions, a and b, and three pairs
of isotopes (Ai, A0) with i = 1, 2, and 3, one can form the
so-called King plot [1]. It is easy to show that three points
(xi, yi ) = (n1

a, n1
b), (n2

a, n2
b), (n3

a, n3
b) lie on a straight line,

y =
(

Kb − Fb

Fa
Ka

)
+ Fb

Fa
x. (3)

It is important that the linear dependence of (ni
a, ni

b) does not
rely on a theoretical knowledge of the isotope-shift constants;
the only theoretical input is the representation of the isotope
shifts in the form of Eq. (2). This representation is remarkably
accurate, but at the level of present-day experimental precision
this accuracy may not be sufficient.

Let us now consider a generalization of Eq. (2) that takes
into account that the field shift, in addition to R2, depends also
on a higher power of R. Specifically, we write

ni
a = Ka + Fa r (2)

i + Fawar (3)
i , (4)

where r (3)
i ≡ [R3

i

λ̄3
C

− R3
0

λ̄3
C

]/[
m
Mi

− m
M0

]
and wa is an additional

isotope-shift constant, which depends on the transition but not
on the isotope. We keep in mind that r (3)

i ≈ ( R0
λ̄C

)r (2)
i � r (2)

i
since R0/λ̄C ≈ 0.01.

Obviously, the three points (ni
a, ni

b) of Eq. (4) no longer
lie on a straight line but rather on a parabola, y = a + bx +
cx2. The nonlinearity of this function is connected with the
coefficient c = 1

2 y′′(x). Evaluating the second derivative of the
exact fit of the three points (ni

a, ni
b) and neglecting r (3)

i on the
background of r (2)

i , we arrive at the following expression,

y′′ = 2
Fb

F 2
a

(wa − wb)Pnucl, (5)

where

Pnucl = r (2)
3

(
r (3)

1 − r (3)
2

)+ r (2)
1

(
r (3)

2 − r (3)
3

)+ r (2)
2

(
r (3)

3 − r (3)
1

)
(
r (2)

1 − r (2)
2

)(
r (2)

1 − r (2)
3

)(
r (2)

2 − r (2)
3

) .

(6)

It is now clear that if we would like to predict the nonlinearity
of King’s plot in the approximation of Eq. (4), we have to
calculate the field-shift constants Fa,b and wa,b and multiply
them by the nuclear factor Pnucl, which is determined by the
experimental nuclear parameters (charge radii and masses) of
the isotopes.

Let us now address the following question: To which accu-
racy can we determine the nuclear factor Pnucl basing on the
available experimental data? We consider an example of four
isotopes of tin (Z = 50) with Ai = (118, 120, 122, 124). The
nuclear radii are taken [15] as R118 = 4.6393 (1) fm, R120 =
4.6519 fm, R122 = 4.6634 (1) fm, and R124 = 4.6735 (1) fm.
Note that we keep only the relative uncertainty of the radii
with respect to the A = 120 isotope, omitting the common
systematic uncertainty of 0.0020 fm, which will be ignored
in the present context. The nuclear masses are taken from
Ref. [16]; their uncertainties do not play any role here.

We now evaluate Pnucl numerically, varying each of Ri

within their uncertainties. The result is surprising: Although
the nuclear radii are supposed to be known with a five-digit
accuracy, the results for Pnucl may vary by several orders
of magnitude. Specifically, we obtain |Pnucl,min| = 5.6×10−5

and |Pnucl,max| = 1.3×10−3. The reason for such striking be-
havior is that both the numerator and the denominator in
Eq. (6) can nearly vanish for some combinations of Ri, leading
to very small or very large values of Pnucl.

We have to conclude that regardless of the accuracy of the
theoretical calculations of the isotope-shift constants, any pre-
dictions for the nonlinearities of the King plot are problematic
because of their extreme sensitivity to errors of the experi-
mental nuclear radii. A way to circumvent this problem might
be to consider the ratio of the nonlinearities for two pairs of
transitions. We note that in Eq. (5) the nuclear part is factor-
ized out and, therefore, the ratio of the second derivatives y′′
for two pairs of transitions is free from nuclear uncertainties.
However, the exact factorization holds only for one-parameter
extensions of the standard formula such as Eq. (4).

The realistic situation is more complicated. In particular,
the field-shift constant contains terms with ln R in its expan-
sion and is modified by the nuclear-polarization effects which
often demonstrate irregular dependence on the isotope mass
number. The general expression for the reduced isotope-shift
energy can be written as

ni
a = Ki

a + F i
a r (2)

i , (7)

where the isotope-shift “constants” Ki
a and F i

a depend on the
isotope parameters; this dependence is indicated by the super-
script i. For a general atom, the theoretical predictions of the
isotope dependence of these constants are rather complicated.
In the present work we will address this problem for the
simplest case of H-like ions.

H-like ions. We now turn to examining the case of one-
electron ions. From now on, we will adopt the relativistic
units with c = h̄ = 1, which greatly simplifies the following
formulas. We start with the mass shift. The main isotope de-
pendence of the mass-shift constant comes from the quadratic
part ∼( m

M )2 of the nuclear recoil effect. Specifically, we write

Ki
a = K (1)

a + m

Mi
K (2)

a , (8)

where the first-order mass-shift constant K (1) is well known
(see, e.g., the review [17]), and K (2) is the second-order mass-
shift constant calculated in the present work. For a reference
state with quantum numbers (n jl ), the second-order mass-
shift constant is expressed as a second-order perturbation
correction induced by the relativistic recoil operator Hrec [18],

K (2)
n jl =

∑
k �=(n jl )

〈n jl|Hrec|k〉〈k|Hrec|n jl〉
εn jl − εk

, (9)

where the summation over k is performed over the complete
Dirac spectrum and

Hrec = 1

2

[
p2 − Zα

r

(
α + (α · r)r

r2

)
· p

]
. (10)

Here, p is the electron momentum and α is the vector of
Dirac matrices. We calculate K (2)

n jl in two ways: analytically,
performing the summation over the Dirac spectrum with the
help of generalized virial relations [19], and numerically, with
the finite basis set B-spline method [20]. The results obtained
by two different methods agree with each other. For light ions,
we also observe good agreement with known results for the
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first terms of the Zα expansion [17]

K (2)
n jl = − (Zα)2

2n2
+ (Zα)4

2n3

(
3

2n
− 2

2l + 1

)
+ · · · . (11)

The isotope dependence of the field-shift constant arises
from two main sources: (i) the deviation of the R dependence
of the finite nuclear size (fns) correction from the R2 form and
(ii) the effect of the nuclear polarization. The fns correction to
the energy levels �Efns is calculated numerically, by solving
the Dirac equation with the potential of an extended nuclear
charge (see Ref. [21] for details). The obtained results are
represented, factorizing out the leading R dependence [22],
as

�Efns = R2γ Gfns(Zα, R), (12)

where γ =
√

( j + 1
2 )2 − (Zα)2 and R is the nuclear rms

radius. The field-shift constant is obtained from the fns cor-
rection to the transition energy as F i

a = �Efns,a

R2 . We note that
the deviation of the R2γ term in Eq. (12) from the standard R2

factor does not cause any nonlinearity of King’s plot, because
it leads to a multiplication of F in Eq. (2) by a factor that does
not depend on the transition. So, the fns contribution to the
nonlinearity comes only from the R dependence of the func-
tion Gfns. We note that this dependence is very weak; in order
to reliably calculate it for medium-Z ions, we had to solve the
Dirac equation in the extended-precision arithmetics.

The nuclear polarization correction to the energy of a state
with quantum numbers (n jl ) is expressed as [23,24]

�Enp = −α
∑
LM

B(EL)
∑

k

|〈n jl|FL YLM |k〉|2
εk − εn jl + sgn(εk )ωL

, (13)

where B(EL) = B(EL; L → 0) are the reduced probabilities
of nuclear transitions from the excited (“L”) to the ground
(“0”) level, ωL are the nuclear excitation energies with respect
to the ground state, FL are radial functions given by Eq. (4) of
Ref. [24], YLM are the spherical harmonics, and the summation
over k is performed over the complete spectrum of electronic
states. Multipole contributions in Eq. (13) are usually sepa-
rated into two classes: contributions from the giant resonance
transitions and those from the lowest-lying nuclear rotational
transitions. Among the latter, the electrical quadrupole tran-
sition between the ground 0+ the lowest-lying 2+ state is
the dominant channel for most of the even-even nuclides.
Our calculation of the nuclear polarization correction includes
the dominant E2 nuclear rotational transition and the giant
resonance transitions with L � 3. Experimental results for the
nuclear quadrupole transition probabilities B(E2) and excita-
tion energies ωL were taken from Ref. [25]. The summation
over the Dirac spectrum was performed with help of the finite
basis set B-spline method [20]. We find good agreement with
the numerical results of Ref. [24]. A similar calculation was
recently presented in Ref. [26]; the difference is that in that
work empirical approximate formulas were used for B(E2)
and only the dominant L = 1 giant resonance was included.

The numerical results of our calculation of the nuclear
polarization correction are conveniently parametrized in terms
of the dimensionless function gnp, defined as a multiplicative
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FIG. 1. The isotope dependence of the finite nuclear size and
nuclear polarization effects, with the leading R2γ dependence factor-
ized out, for the 1s state of H-like barium (Z = 56). Black diamonds
show the finite nuclear size correction, in terms of the function Gfns

defined by Eq. (12). The red circles present results for the combined
nuclear size and nuclear polarization effect, in terms of the function
Gnucl = Gfns(1 − 1

1000 gnp). Both functions Gfns(A) and Gnucl(A) are
normalized to their values for the isotope A0 = 134.

factor to the fns correction,

�Enp = −gnp(Z, A)

1000
�Efns. (14)

We studied the nuclear polarization effect for the 1s, 2s, and
2p1/2 states; for the 2p3/2 state the corresponding correction
is very small and thus neglected. We find that gnp varies from
0.3 to 1.0 for all nuclei encountered in the present work,
Z ∈ (20, 92). It is instructive to compare the isotope depen-
dence of the fns and the nuclear polarization effects. Such
a comparison is presented in Fig. 1 for a chain of isotopes
of Ba55+. We observe that both effects yield significant con-
tributions, but the nuclear polarization is larger and, more
importantly, its isotope dependence is nonmonotonic. This is
connected with the behavior of the nuclear transition probabil-
ities B(E2), which tend to grow as the nuclide mass number
moves away from the stability region. We note that the kink
of the plot for Gfns is due to the unevenness of the dependence
of R on the mass number A.

We are now in a position to calculate the King-plot nonlin-
earities for H-like ions. We adopt the definition [12,14] of the
nonlinearity of a three-point curve as a shift of the ordinate of
the third point from the straight line defined by the first two
points,

δε3
ab =

(
m

M3
− m

M0

)[
n3

b − n1
b − n2

b − n1
b

n2
a − n1

a

(
n3

a − n1
a

)]
. (15)

The nonlinearity of the King plot for the transition pair (a, b)
is defined by symmetrizing the above expression with respect
of a and b,

�NL(ab) = 1
2

(∣∣δε3
ab

∣∣ + ∣∣δε3
ba

∣∣). (16)

The nonlinearity �NL has a dimension of energy and ap-
proximately indicates the experimental accuracy needed in
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FIG. 2. King-plot nonlinearities of H-like ions for two transition
pairs, (a, b) (top) and (b, c) (bottom), where a = 1s → 2p1/2, b =
2s → 2p1/2, and c = 2s → 2p3/2. The calculated points correspond
to the isotope chains (A0, A0 + 2, A0 + 4, A0 + 6), with the reference
(A0) isotopes: 40Ca, 64Zn, 82Kr, 92Mo, 118Sn, 132Ba, 154Gd, 166Yb,
196Hg. The dashed lines represent the variation of the nonlinear-
ities when the nuclear radii are varied within their experimental
uncertainties.

order to detect it. We note that the numerical evaluation of
�NL involves large numerical cancellations (due to multiple
subtractions of similar numbers) and needs to be performed in
an extended-precision arithmetics.

The results of our numerical calculations of the King-
plot nonlinearities for different H-like ions are presented in
Fig. 2. We studied two pairs of transitions, (a, b) and (b, c),
with a = 1s → 2p1/2, b = 2s → 2p1/2, and c = 2s → 2p3/2.
From Fig. 2 we make several conclusions which could have
been anticipated from our earlier analytical considerations.
First, we find that the calculated nonlinearities behave irregu-
larly as a function of Z , because they crucially depend on the
differences of charge radii of the nuclides. Second, we find
that the experimental errors of the nuclear radii cause tremen-
dously amplified uncertainties of the resulting nonlinearities.
Generally, only the upper bounds of the nonlinearities can be
predicted and these bounds depend crucially on the assumed
uncertainties of the nuclear radii. We would like to stress that
for our analysis we selected the nuclides with the best-known
charge radii. Specifically, the relative uncertainties of the rms
radii for the studied nuclides with Z > 40 are about 0.0001 fm
[15]. For less-known isotopes, the uncertainties of nonlineari-
ties are larger by orders of magnitude.

Although our numerical calculations were performed for
the specific choice of H-like ions, we expect that the situa-
tion remains qualitatively the same for many-electron atoms,

including the case of singly charged ions which are most
relevant from an experimental point of view. This expecta-
tion is supported by the analytical example discussed in the
first part of the present Letter. In order to obtain quantitative
results for the upper bounds for the standard-model King-plot
nonlinearities for singly charged ions, dedicated calculations
are needed for each particular element.

The observed hypersensitivity of the King-plot nonlin-
earities on the nuclear radii can be used for improving our
knowledge of the isotope differences of the nuclear charge
radii. For example, if one of the three differences of the
nuclear radii involved in the King plot is known much more
poorly than the other two, it should be possible to improve its
value basing on the measured King-plot nonlinearity.

The dependence of the predicted King-plot nonlinearities
on the nuclear radii can be significantly reduced if we study
the ratio of the nonlinearities for two transition pairs, e.g.,
�NL(ab)/�NL(bc). This can be seen from the analytical ex-
ample of Eq. (5) and also from the fact that the plots for
�NL(ab) and �NL(bc) in Fig. 2 look very similar. However,
the factorization of the nuclear degrees of freedom, exact in
the case of Eq. (5), becomes only approximate in the complete
calculation. As a consequence, we still encounter combina-
tions of nuclear radii leading to strong variations of the ratio
of the nonlinearities.

Turning to perspectives of using the King-plot nonlineari-
ties in the search for new physics beyond the standard model,
we conclude that the findings of the present Letter signifi-
cantly complicate such searches. More specifically, when an
experiment detects a nonlinearity (as, e.g., in Refs. [7,8]), it
should be very difficult to distinguish whether this is caused
by new physics or the standard atomic theory, because of
our limited knowledge of the nuclear charge radii. Therefore,
the upper bounds on the new physics derived from such an
observation will be defined by the observed nonlinearity and
any further progress in experimental precision will not im-
prove these bounds. An alternative approach would be to use
independent constraints to eliminate the possibility of new
physics [27–30] and interpret the observed nonlinearities in
terms of constraints on the nuclear radii.

Summarizing, we calculated nonlinearities of the King plot
originating from the standard-model atomic theory. The calcu-
lations were performed first analytically for a model problem
applicable for an arbitrary atom. Next, we performed a de-
tailed numerical calculation for hydrogenlike ions, taking into
account the quadratic nuclear recoil, the higher-order finite
nuclear size, and the nuclear polarization effects. We found
that the standard-model predictions of the King-plot nonlin-
earities are hypersensitive to experimental errors of nuclear
charge radii, often leading to uncertainties even in the order
of magnitude of the effect. Our restricted knowledge of the
nuclear radii leads to large ambiguities in the standard-model
predictions of the nonlinearities, thus greatly complicating an
identification of possible effects originating from new physics.
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