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Classical sensors for spectrum analysis are widely used but lack micro- or nanoscale spatial resolution. On
the other hand, quantum sensors, capable of working with nanoscale precision, do not provide precise frequency
resolution over a wide range of frequencies. Using a single spin in diamond, we present a measurement protocol
for quantum probes which enables full signal reconstruction on a nanoscale spatial resolution up to potentially
100 GHz. We achieve 58 nT/

√
Hz amplitude and 0.095 rad/

√
Hz phase sensitivity and a relative frequency

uncertainty of 10−12 for a 1.51 GHz signal within 10 s of integration. This technique opens the way to quantum
spectrum analysis methods with potential applications in electron spin detection and nanocircuitry in quantum
technologies.

DOI: 10.1103/PhysRevA.104.L020602

Spectrum analysis, whereby phase, amplitude, or fre-
quency information is extracted from periodic signals, is
a widespread tool underpinning applications ranging from
imaging and microscopy [1], chemical identification [2–4],
development of time and frequency standards [5], quantum
state tomography [6], radar detection [7], and medical diag-
nosis [8,9]. As a physical measurement is required to provide
information to spectral estimation algorithms, their ultimate
accuracy is governed by physical laws with limits given by
quantum mechanics. Detectors made up of individual atoms
thereby allow information encoded in such spectra to be
obtained at the limits of sensitivity, resolution, and noninva-
siveness.

Here, we construct a protocol which allows a single quan-
tum coherent spin to form a heterodyne detector (quantum
analog of the classical heterodyne detector) for near-resonant
fields. We extend techniques recently developed to improve
the spectral resolution at low frequencies <100 MHz based
on dynamical decoupling [10–12], to high frequencies in the
microwave regime where existing methods for microwave
detection are limited in terms of spatial or spectral resolution
[13–15]. We use single spins associated with nitrogen-
vacancy (NV) centers in diamond to perform spectroscopy
of magnetic fields oscillating at gigahertz frequencies, close
to the spin resonance frequency. At the nanoscale, single
NV centers have allowed for nuclear magnetic resonance
and electron paramagnetic resonance spectroscopy of single
molecules and nuclei to be performed [16–18]. Importantly,
by recording the frequency of the magnetic field, struc-
tural and spatial information of the sample can be obtained
[2,3,17,18]. Applications of the presented technique could be
for the detection of single electron spins [16,19], spin waves
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of magnons [20], characterization of miniaturized electric cir-
cuits for communication and quantum technologies [21], and
(Doppler) radar detection [22].

While the analogy to classical heterodyne detection is not
perfect, the protocol preserves many of the same hallmarks,
namely, (1) down-conversion of high-frequency signals to a
bandwidth within the readout bandwidth, (2) simultaneous
recording of phase, amplitude, and frequency information,
allowing for complete signal reconstruction, and (3) frequency
resolution limited by the stability of an external clock, which
is detector independent. We demonstrate each of these charac-
teristics by constructing an atomic heterodyne detector from a
single quantum coherent spin.

The idea is to tailor the sensor-signal interaction in such a
way that the result of each measurement depends on the phase
of the signal. This is done by introducing a local oscillator
which can be used to obtain a beat note with the signal. We
refer to the technique as high-frequency Qdyne (where Qdyne
stands for quantum heterodyne) due to the analogy to classical
heterodyne detection but with a quantum sensor [10]. Note
that this technique is different from recent methods requiring
dynamical decoupling as here no qubit control is performed
during the sensing duration [10,11,23,24]. Methods for low-
frequency detection rely on dynamical decoupling methods
where the sensor accumulates a phase that is transferred into
different populations. In our approach instead the signal di-
rectly drives the sensor transition. Hence, there is no need to
employ dynamical decoupling. Analogs to another technique
[23,25] can be drawn, although here we use a distinct protocol
which is immediately applicable of sensing of continuous
fields. In the present Letter we focus on the phase-resolving
capabilities and characterize the protocol’s performance for
spectrum analysis.

High-frequency Qdyne technique. The magnetic field of
a near-resonant signal is described with a time-varying
function of B(t ) = B0 cos(2πνsigt + φ0) with an unknown
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FIG. 1. Nanoscale high-frequency sensing. (a) Confocal setting for sensing with a single NV center in diamond. The right panel shows
its level structure and the lower panel the pulse sequence for high-frequency Qdyne. (1) The NV center is excited with a green laser and
the fluorescence is collected. (2) Population decay via a metastable state initializes the NV center in |0〉. (3) A DC shift can be applied to
drive the sensor out of resonance with respect to the signal. The offset is turned off for a time τ to allow interaction with the sensor. The
single sequence length of duration TL is repeated many times. (b) Working principle of the high-frequency Qdyne method. After preparation
of |+i〉 with a π/2 pulse around the x axis the final state after signal interaction depends on the signal phase φ. A signal interaction resulting
in a π/2 rotation is shown. The states are shown on the Bloch sphere in the rotating frame of the local oscillator. (c) Measurement of a
1.510 82 GHz signal. In a sampling time of 10 s, 3×106 samples are taken that correspond to 1.5×106 frequency channels in the FFT (only
every 2000th point is shown). Lower plot: Zoom around the peak. (d) Measurement with a signal being applied only during the sensing period
(top) and having a continuous signal without (center) and with a DC shift (bottom). The x axis is the absolute value δ = |δ0| of the beat note
of Eq. (5).

amplitude B0, phase φ0, and frequency νsig. In the rotating
frame the interaction Hamiltonian with a two-level system is
written as

H = h̄�

2
σz + h̄	sig

2
σφ0 , (1)

where σφ0 = cos φ0 σx + sin φ0 σy, the Pauli matrices σi, the

driving amplitude 	sig =
√

�2 + 	2
0 with detuning � =

2π (νsig − νsens), the frequency difference between the signal
and the sensor’s resonance νsens, and 	0 = γsensB0 (gyromag-
netic ratio γsens of the sensor).

To sense this signal we use a single nitrogen-vacancy (NV)
center in diamond. Its spin ground state can be effectively
described as a two-level system with states |0〉 and |1〉. Read-
out is done optically with a green laser and collecting the
spin-dependent fluorescence [see Fig. 1(a)]. After initializa-
tion in |0〉, the NV center is prepared in the superposition state
|+i〉 = 1√

2
(|0〉 + i|1〉) by a π/2 pulse around the x axis by a

reference pulse with a known phase. This state then evolves
under the action of the near-resonant signal field for some
time τ . The protocol is constructed such that the reference
pulse always has the phase φref = 0 and for every subsequent
repetition the same state |+i〉 is prepared. We note that this
is not a stringent requirement for the protocol, since it can
also be achieved with a signal generator where φref changes
according to the control frequency, but as presented here it
is mathematically streamlined, and experimentally achievable
using an arbitrary waveform generator.

In the following, if not otherwise stated, we toggle the
signal on during the τ interval, and off for the remaining
time (as performed in Ref. [23]) with a switch. However,
for many spectroscopy applications one may not have control
over the signal. To circumvent signal deterioration for contin-
uous fields (especially for strong signals) one can apply a DC
magnetic field that shifts the sensor transition out of resonance
during state preparation and readout.
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Assuming the signal interaction only occurs during τ , the
population in |1〉 of the final state is calculated to be

|c1|2 = 1

2

[
1 − �	0

	2
sig

[1 − cos(	sigτ )] sin(φ)

+ 	0

	sig
sin(	sigτ ) cos(φ)

]
, (2)

where φ = φ(t ) = 2πνsigt + φ0 is an instantaneous phase of
the signal at some time t . For the calculation of this result,
see the Supplemental Material (SM) [26]. Assuming small
detuning, � � 	0, Eq. (2) is approximated as

|c1|2 ≈ 1
2 [1 + sin(	0τ ) cos(φ)]. (3)

Experimentally, the spin population is sampled at fixed
time intervals TL such that the signal phase φ changes by a
constant increment and each outcome is stored individually.
It is this synchronization of single measurements at a rate of
1/TL, in addition to the φref , that defines the local oscillator
(LO) frequency:

νLO = round(νsensTL )

TL
= NLO

TL
. (4)

NLO = round(νsensTL ) is the rounded integer number of peri-
ods of the sensor resonance frequency νsens within TL and the
number that defines the closest local oscillator frequency to
a signal frequency that is within the linewidth of the sensor.
A detailed discussion of the local oscillator can be found in
the SM [26]. We emphasize that the local oscillator could
also be defined by a control field that is used to manipulate
the NV center at resonance with a continuously updating
phase [23,25], but then a reference phase φref �= 0 has to be
considered for each measurement.

Sampling at times Tn = nTL, the populations |c1,n|2 are cal-
culated from Eq. (2) [or (3)] with phases φn = φ0 + 2π Tnδ0

where the phase increment is determined by the beating of the
signal against the local oscillator,

δ0 = νsig − νLO. (5)

As a result, the outcome probability of each measurement
oscillates with frequency δ0.

To show the working principle, a diamond sample fabri-
cated into a solid immersion lens that is overgrown with a
100-nm-thick layer of isotopically purified 12C is used. The
high purity allows the NV center to reach dephasing times
up to 50 μs. An external magnetic field is aligned along
the NV axis to about 50 mT. The sample is mounted in a
confocal microscope setup that is controlled via the software
suite QUDI [27]. In Fig. 1(c), a 1.51 GHz signal (approximately
NV resonance frequency) is measured and a fast Fourier trans-
form (FFT) resolves the oscillation in the sampled data. After
preparing |+i〉 the signal of 6.5 μT amplitude interacts with
the NV center for 1404 ns and in an integration time of 10 s,
3×106 samples are obtained. From the local oscillator the
frequency channels of the FFT can be assigned to the scanned
spectrum.

In Fig. 1(d), we compare the measured spectrum when the
signal is toggled on and off, as opposed to applied continu-
ously. In the upper panel, the signal is only on during τ , and
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FIG. 2. Full signal reconstruction. (a), (c), (d) Signal frequency,
strength, and phase estimation. Measuring all three parameters al-
lows full reconstruction of the signal. In (a) the difference between
the estimated frequency ν and the signal frequency νsig is displayed.
(b) Linewidth (full width at half maximum) �ν = 1/T . The insets
show the uncertainty of the respective estimation (error bars) as the
95% confidence intervals of the fit parameters. (a), (b) scale with
T −3/2 and (c), (d) with T −1/2.

in the middle panel, the signal remains on continuously. In the
lower panel, the signal is applied continuously, but the NV
center is shifted out of resonance by application of a DC shift
which is only turned off during τ . The DC shift is created by
applying a constant current to the NV center control stripline
which causes a magnetic field of 1 G at the NV center and
shifts the resonance frequency by 3 MHz. As the control
π/2 pulse is much stronger than the sensing field, only the
signal is brought out of resonance by the DC shift. We find
that a continuously applied signal but with DC control gives
comparable results to one toggled on/off, while it significantly
reduces the measurement signal without DC control.

Signal reconstruction. Analysis of the discrete Fourier
transform, just as in classical heterodyne detection, allows for
full signal reconstruction. In Fig. 2, an estimation of the signal
parameters after different integration times is shown for the
same signal as shown in Fig. 1(c). Frequency and amplitude
[Figs. 2(a) and 2(c)] are estimated with a Lorentzian fit on
the peak in the FFT. The uncertainty is obtained from the
95% confidence interval of the fit. Importantly, frequency
uncertainty scales as T −3/2 as a product of reduced noise
(T −1/2) and reduced linewidth (1/T ) as a function of total
measurement time T . A precision <1 mHz is achieved after
10 s integration time, resulting in a relative frequency uncer-
tainty δν

ν
< 10−12. Ultimately, the resolution and uncertainty

are limited by the stability of the clock which times the ar-
bitrary waveform generator, i.e., the local oscillator defined
via the sequence length produced by the arbitrary waveform
generator. As the timing is given to an accuracy 10−7 the
estimated signal frequency may be systematically shifted from
the actual frequency. As a result, the analysis only includes
statistical errors and not systematic ones.
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For phase estimation due to the finite resolution in the FFT
spectrum, the signal phase is estimated from the phases at the
two frequency channels next to the estimated peak (obtained
from the argument of the complex-valued FFT). Then, with
linear interpolation the phase of the beat note is obtained, from
which the initial signal phase φ0 can be recovered because the
local oscillator’s reference is φref = 0. Note that for a detuned
signal the estimated phase can be different from the signal
phase φ0. From Eq. (2) one can see that the beat note is the
sum of a sine and cosine. The resulting oscillation has the
same frequency but not necessarily the same phase φ. In our
measurements the signal detuning � is small and this effect
can be neglected [see Eq. (3)]. In the SM [26] a detailed
analysis of this phase shift is included.

Attention has to be given to the sign of δ0 in Eq. (5). If δ0 <

0, a negative frequency is sampled. Thus, the signal phase is
the negative of the estimated one from the FFT. Furthermore,
frequency estimation might not be unique because it does not
distinguish between negative and positive frequency. The ob-
served signal has the frequency δ = |δ0| = |νsig − νLO|. This
ambiguity can be resolved with a second measurement as
outlined in the SM [26].

Spectrum analysis benchmarks. The measurement tech-
nique allows for spectrum analysis on the nanoscale as it
employs an atomic-sized sensor that can be used to estimate
signals within a wide frequency range. To understand the
capabilities that arise with the technique we investigate some
benchmarks of this protocol.

Standard quantum sensing protocols usually rely on the
pointwise accumulation of spectral information [28]. In con-
trast, this technique makes intrinsic use of the FFT mode
with a sample rate 1/TL. In this way, information over many
frequency channels is sampled over the measurement time.
This allows the sensitivity to be increased by minimizing
dead time. In Fig. 3(a) the noise floor in the FFT spectrum
of a measurement with 223 nT signal strength is shown
from which a sensitivity of 58 nT/

√
Hz is obtained (noise

floor at T = 1 s). From the data of Fig. 2 we calculate a
sensitivity of 0.095 rad/

√
Hz for phase and 0.03 Hz/Hz3/2

for frequency estimation. We want to emphasize that no
dynamical decoupling is incorporated here. High-frequency
pulsed [29] or continuous decoupling [30] offer the potential
to further increase the amplitude sensitivity to 4 nT/

√
Hz

[31].
We further investigate the spectral and dynamic range

and bandwidth of the technique. The operating range can be
extended from megahertz (or even less) to high frequency
(>GHz) by tuning the resonance of the sensor. For the NV
center a range from 1 to 5 GHz can be covered with static
magnetic fields up to 70 mT and 100 GHz are reached with
a 3.5 T field [32,33]. The upper limit to the operating range
is set by technical challenges that are involved for generating
stable high magnetic fields and handling high-frequency mi-
crowaves, the lower limit is set simply by the integration time
1/T .

The dynamic range is set by the sensor properties and in-
tegration time. An upper limit can be clearly defined because
each interaction with a signal which results in a rotation of
more than π/2 of the sensor state cannot be distinguished
from a rotation less than π/2. For that reason we set the upper
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FIG. 3. (a) Noise floor in dependence on integration time. Am-
plitude sensitivity of the measurement is obtained from a fit of slope
T −1/2 that gives a 58 nT noise floor at T = 1 s. (b) Example of signal
strength ambiguities for an interaction length τref = 31.3 ns. These
ambiguities are lifted when the interaction time is changed. (c) Sen-
sitivity in dependence on the signal frequency. Signals of strength
6.5 μT with varying frequency are detected. All other measurement
parameters are kept constant.

end of the dynamic range to the signal strength at which a π/2
rotation of the sensor within τ = T ∗

2 /2 (the sensing time for
which best sensitivity is obtained [28]) is performed, Bmax =

π
γNVT ∗

2
. With γNV = 2π×28.03 MHz/mT and T ∗

2 = 50 μs we
have Bmax = 0.36 μT. However, one always has the freedom
to increase the dynamic range by setting τ < T ∗

2 /2 at the
expense of a reduced sensitivity as is done in the measurement
of Fig. 1(c). By using multiple measurements with different
τ it is also possible to increase the dynamic range because
ambiguities for a rotation larger and smaller than π/2 get re-
solved, and with a lower trade-off in reduced sensitivity. This
is measured for three different signal strengths in Fig. 3(b)
that result in the same measurement signal for an interaction
time of τref = 31.3 ns. The lower end of the dynamic range is
simply given by the sensitivity, since this is the minimum field
strength that can be identified. The full dynamic range for a
single measurement is now 58 nT×√

T/1 s (total integration
time T ) to 360 nT for τ = T ∗

2 /2 = 25 μs.
The bandwidth is naturally given by the linewidth of the

sensor’s transition and is limited by the dephasing time �νb =
1/T ∗

2 . However, the bandwidth might be reduced if tempo-
ral overheads are involved for preparation or readout of the
sensor. In these cases a unique assignment of the frequency
within the sensor’s linewidth might not be possible, due to
undersampling. If the sequence length exceeds the dephas-
ing time, TL = τ + toverhead > T ∗

2 , the sampling rate limits the
effective bandwidth �νb = 1/TL. Note that we distinguish be-
tween positive and negative δ0 and that the sampling theorem
δmax = δ0,max = −δ0,min = 1/2TL is always satisfied. Further-
more, for a very weak signal, the condition 	0 > � may
not be satisfied, although the signal frequency lies within the
detector bandwidth. Thus the signal strength can also define
the bandwidth as 	0/2π .
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In Fig. 3(c) the sensitivity is measured in dependence of the
signal frequency while all other measurement parameters are
kept constant. The protocol is susceptible also to frequencies
outside of the sensor linewidth but with a reduced sensitivity.
In the SM [26] we present a method to overcome potential
ambiguities.

In comparison to classical spectrum analyzers this quan-
tum analog yields some specific peculiarities. While classical
devices can have better sensitivity they are much larger in
size and operate far from nanoscale spatial resolution. As an
atomic-sized defect in the diamond lattice, the NV centers (or
other appropriate quantum sensors) are able to measure small
signals on the nanoscale with nanometer spatial resolution.
In order to be sensitive to a certain frequency bandwidth, an
external magnetic field has to be adjusted correctly. Classical
frequency-swept analyzers can cover a large bandwidth by
applying band-limited electrical filters. The drawback in this
case is that the analyzer may require a long time to record
the spectrum step by step. FFT mode analyzers on the other
side yield a bandwidth that is given by the sampling rate.
Our quantum spectrum analyzer also operates in FFT mode
and the bandwidth is given by either the sensor linewidth
or the sampling rate. Applying this Qdyne technique to the
work of Chipaux et al. [13] where a magnetic field gradient
is used with an NV center ensemble, a wide frequency range
can be covered with the drawback of reducing nanoscale to
microscale resolution.

Discussion. We have presented a powerful measurement
technique that extends high-frequency resolution quantum

sensing to high-frequency oscillating fields. In analogy to
classical heterodyne detection, full signal reconstruction is
possible as frequency, amplitude, and phase information is
provided. We obtain a phase sensitivity of 0.095 rad/

√
Hz.

Detailed analyses of the spectral and dynamic range show
possibilities and limitations of spectrum analyses for dif-
ferent signals and can be adapted to various probes used
as quantum sensors. The detection of highly coherent sig-
nals will benefit from the technique especially in settings
on the nanoscale such as miniaturized integrated circuits
for communication or quantum technologies. Velocimetry
in Doppler radar detection for velocities down to a few
μm/s [34] in nano- to microscale settings will be possible
owing to the high spectral resolution and phase sensitiv-
ity. Methods to increase the spectral and dynamic range are
presented that allow one to overcome some of their limi-
tations with the help of a second measurement. Employing
NV center ensembles with a high magnetic field gradient
could be used to considerably increase the bandwidth of the
method.
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