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Implementing variational quantum algorithms with noisy intermediate-scale quantum machines of up to a
hundred qubits is nowadays considered as one of the most promising routes towards achieving a quantum
practical advantage. In multiqubit circuits, running advanced quantum algorithms is hampered by the noise
inherent to quantum gates which distances us from the idea of universal quantum computing. Based on a
one-dimensional quantum spin chain with competing symmetric and asymmetric pairwise exchange interactions,
herein we discuss the capabilities of quantum algorithms with special attention paid to a hardware-efficient
variational eigensolver. A delicate interplay between magnetic interactions allows one to stabilize a chiral state
that destroys the homogeneity of magnetic ordering, thus making this solution highly entangled. Quantifying
entanglement in terms of quantum concurrence, we argue that, while being capable of correctly reproducing
a uniform magnetic configuration, the hardware-efficient Ansatz meets difficulties in providing a detailed
description to a noncollinear magnetic structure. The latter naturally limits the application range of variational
quantum computing to solve quantum simulation tasks.
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Introduction. Combining different aspects of algorithm de-
velopment with quantum engineering is regarded nowadays as
a feasible tool to accelerate computations [1–37]. One of the
most promising classes of algorithms for noisy intermediate-
scale quantum (NISQ) devices of up to a hundred qubits are
the hybrid quantum-classical algorithms [38–40] that enjoy
a classical outer loop optimizer, where a measured objective
function is minimized iteratively, in terms of structure and
depth of the Ansatz state as well as penalty function. This
approach is based on distributing the computational routines
between a classical and quantum computer, taking into ac-
count that some of these routines can be executed on one
kind of device more efficiently than on the other. A typical
example is the variational quantum eigensolver (VQE) [38].
Given an n-qubit Hamiltonian H , this algorithm allows one to
find its lowest-lying eigenvalue and the corresponding eigen-
vector. In VQE, one uses a quantum computer for preparing
a probe state |ψ (θ)〉, which is parametrized by a set of p an-
gles θ ∈ [0, 2π )×p, and measures the expectation value of the
given Hamiltonian in this state, 〈ψ (θ)|H |ψ (θ)〉. A classical
computer, in its turn, is used to update the parameters θ by
means of some optimization method in order to minimize the
expectation value. The variational state is usually prepared
by acting with a parametrized unitary operator U (θ) on the
initial state |0〉⊗n or any other easy-to-prepare state, so that
|ψ (θ)〉 = U (θ) |0〉⊗n. The unitary U (θ) is essentially a quan-
tum circuit specified by a chosen Ansatz; in practice, unitary
coupled clusters [41,42], tensor network states [16,43], and
a hardware-efficient Ansatz [44] are among the most popular
options.
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Quantum entanglement that describes nonclassical corre-
lations between spatially separated parts of a system endows
a quantum computer with the advantage to execute multiple
computation tasks in parallel. In this respect, studying entan-
glement in quantum spin chains provides us with a unique
tool to test contemporary quantum algorithms. In practice,
one can address the relationship between families of vari-
ational quantum circuit Ansätze and families of objective
functions (Hamiltonians) these circuits can minimize. The
two most studied quantum spin models are the transverse
field Ising model [45–49] and anisotropic Heisenberg chain
[50]. In the meantime, recently it was demonstrated that the
Dzyaloshinskii-Moriya interaction (DMI) drastically modifies
the behavior of entanglement in a one-dimensional quantum
spin chain [51–58]. Indeed, DMI, derived first by Dzyaloshin-
skii on purely phenomenological grounds [59], serves as a
source of magnetic frustration resulting in neighboring mag-
netic moments being arranged in a spiral, thus making the
ground state more entangled as opposed to collinearly or-
dered. In the following, it was pointed out by Moriya that
DMI might be derived in a perturbative manner from the An-
derson’s superexchange theory provided spin-orbit coupling
is included [60].

In this Letter, we employ the numerical hardware-efficient
VQE to analyze the ground state properties of a ferromagnetic
Heisenberg chain with DMI in a transverse magnetic field.
Practically, we demonstrate that VQE underperforms when
approximating a noncollinear magnetic structure. To provide a
quantitative estimate we analyze the entanglement properties
of the VQE solution by a means of quantum concurrence,
that is purely determined by a two-qubit reduced density ma-
trix [61–63]. Last but not least, by using the VQE solution
we show how the spin configuration evolves with increas-
ing the number of layers in the Ansatz state. An interesting
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observation is that a one-layer VQE solution reproduces the
spin configuration that agrees well with an exact analytical
solution as obtained in the continuum limit.

Model system. Consider the Hamiltonian of a one-
dimensional chain of N interacting quantum spins Ŝ j labeled
by their position j along the z axis,

Ĥ = −J
∑
〈i, j〉

Ŝi · Ŝ j −
∑
〈i, j〉

Di j · (Ŝi × Ŝ j ) +
N∑

j=1

B · Ŝ j, (1)

where the first term describes the direct exchange interac-
tion which for J > 0 favors ferromagnetic ordering. Present
in magnetic structures with a lack of inversion symmetry,
DMI, specified by the second term, destroys the homogeneity
of collinear magnetic ordering by promoting spin canting
between neighboring sites. The Dzyaloshinskii vector Di j

determines the strength of DMI. The competition between
the Heisenberg exchange and DMI results in a noncollinear
ground state configuration being stabilized in a transverse
magnetic field B, the last contribution to (1) [64–66]. Note
that summation over nearest neighbors 〈i, j〉 is implied and B
is expressed in energy units. The Hamiltonian as given by (1)
provides a reliable model description to a wide class of chiral
magnets, and Cr1/3NbS2 is a practical example [67–69]. The
hexagonal structure of this compound is composed of NbS2

layers intercalated by Cr ions, thus the exchange interaction
and DMI emerge between Cr ions, belonging to two interca-
lating layers and separated by NbS2.

For spin one-half particles, Ŝ = σ̂/2, with σ̂ = (σ̂x, σ̂y, σ̂z )
specifying the Pauli vector. A two-component spinor |S〉 =
(e−iϕ/2 cos θ

2 , eiϕ/2 sin θ
2 )T , parametrized by polar θ and

azimuthal angle ϕ, represents a quantum spin state for
SU(2), so that 〈S|Ŝi|S〉 = ni/2, where a unit vector ni =
(cos ϕi sin θi, sin ϕi sin θi, cos θi ). In the following, we set the
Dzyaloshinskii vector Di j = Dêz to be aligned along the z axis
with the parameter D determining the strength of DMI, while
the magnetic field B = Bêx. Thus, in the basis |S1, S2, . . . , SN 〉
the quantum Hamiltonian (1) can be mapped to a classical
Heisenberg-type model of interacting spins,

H = −J

4

∑
〈i, j〉

ni · n j − D

4

∑
〈i, j〉

(ni × n j )z − B

2

N∑
j=1

nx
j . (2)

We further proceed with a continuous description of the
model (2) in terms of magnetization specified by a unit vec-
tor field n(z) = [cos ϕ(z) sin θ (z), sin ϕ(z) sin θ (z), cos θ (z)].
Note that the distance between a pair of neighboring spins a
determines the smallest length scale in the system, validating
thus n(z + a) ≈ n(z) + an′(z) + a2n′′(z)/2. Replacing in (2)
the summation by integrating

∑
j → 1

a

∫ L
0 dz with L standing

for the length of a spin chain, we derive in the lowest order
in a,

H = aJ

8

∫ L

0
dz

[
θ ′2 + ϕ′2 sin2 θ − k0ϕ

′ sin2 θ

+2m2 cos ϕ sin θ
]
, (3)

where k0 = D/(aJ ) is the pitch vector and m2 = 2B/(a2J ).
The lowest-energy state of the Hamiltonian (3) corresponds
thus to θ = π/2 on the condition that ϕ obeys the static

sine-Gordon equation [64–66],

ϕ′′ + m2 sin ϕ = 0, (4)

which admits a solution in the form of a chiral soliton lattice
for certain values of D and B. From the physics point of
view, the uniform magnetic field has a tendency to untwist
the helical alignment of magnetic moments, that stems from a
delicate interplay between the exchange interaction and DMI,
towards a uniform ferromagnetic ordering via the formation
of a chiral soliton lattice. Direct integration of (4) leads to

ϕ = 2 am(mz/κ, κ ), (5)

where κ is the elliptic modulus and am(u, κ ) is the Jacobi
amplitude that is determined by sn u = sin am(u, κ ), with sn u
defining the elliptic sine. The solution corresponds to a soliton
lattice with spatial periodicity,

� = 2κ

m

∫ π/2

0

dϕ√
1 − κ2 sin2 ϕ

= 2κ

m
K (κ ), (6)

where K (κ ) is the complete elliptic integral of the first kind.
Plugging (5) into expression (3), one derives the energy of a
soliton lattice over a period,

ε = am2J

2

(
2

κ2

E (κ )

K (κ )
− 1

κ2
− π

2m

k0

κK (κ )

)
, (7)

where we introduced E (κ ) = ∫ K (κ )
0 dn2zdz, the complete el-

liptic integral of the second kind. To complete the analysis,
one has to identify the value of κ that minimizes the energy ε:

πκk0 = 4mE (κ ). (8)

Note that to deduce (8) we made use of κE ′(κ ) = E (κ ) −
K (κ ) and κK ′(κ ) = E (κ )/(1 − κ2) − K (κ ). Clearly, once a
soliton lattice is stabilized, Eq. (8) possesses a real-valued
solution.

We proceed further with a quantum simulation of a spin
chain represented by the Hamiltonian (1) for a set of pa-
rameters that allows us to stabilize a chiral soliton lattice. In
particular, we inspect whether the use of variational quantum
algorithms is adequate to capture this highly entangled state.
To make the results of the numerical simulations sensible,
we make use of the parameters J = 1.88 mRy, D/J = 0.63,
B/J = 3.36 × 10−3, which translates to a transverse field of
0.74 T, and the self-consistent solution to (8) gives rise to
κ ≈ 0.256. The latter corresponds to N = �/a ≈ 10, i.e., to
properly address one period of a soliton lattice we have to use
N = 10 qubits.

Variational quantum simulation. Here, we present the nu-
merical results on the lowest-energy state of the Hamiltonian
(1) by virtue of VQE. To apply VQE, it necessitates decom-
posing the target Hamiltonian H as a sum of Pauli strings,

H =
∑

J i j···k
αβ···γ σ i

ασ
j

β · · · σ k
γ , (9)

where the upper latin indices stand for a qubit’s number and
the lower greek indices specify a Pauli operator from σ ∈
{1, X,Y, Z}. The real-valued tensor J specifies the multiqubit
coupling strength; it is easy to see that a spin chain as given
by (1) represents a special case of the generalized model (9).

To parametrize our probe state, we use the hardware-
efficient Ansatz [44]. Essentially, this kind of Ansatz contains
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FIG. 1. A quantum circuit that represents a layer of the hardware-efficient Ansatz (16 variational parameters for a set of four qubits) used
throughout our numerical simulations. The single-qubit rotation block is constituted by a sequence of X , Z , and X rotations, whereas the
entangling block is equipped with controlled Y rotations. Note that Rα (θ ) = e−ıθσ̂α (α ∈ {X,Y, Z}) with σ̂α being the corresponding Pauli
matrix, and θ j ∈ [0, 2π ). To increase the expressive power of the Ansatz, more layers can be added.

several layers of single-qubit rotations followed by a block
that entangles all qubits. In our realization, we represent
single-qubit rotations as a sequence of X , Z , and X rotations,
while the entangling block is built up from a cascade of
controlled Y rotations; see Fig. 1 for details.

In our numerical simulations, we address the expressive
power of the solution as obtained with VQE depending on
the number of layers in the hardware-efficient Ansatz. As
explained earlier, we study the Hamiltonian (1) for N = 10
qubits; this number was shown to capture one period of a chi-
ral soliton lattice as long as D/J = 0.63, B/J = 3.36 × 10−3.
The numerical results are shown in Fig. 2. A quantum cir-
cuit simulation was performed with the QISKIT package [70],
while the energy minimization within the VQE loop was im-
plemented based on the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [71]. Note that for each optimization cycle
the maximum number of iterations was restricted to 50 000.
To quantify the precision of the VQE solution, we adopt a
simple criterion discussed in Refs. [72,73]. Assume E0 and E1

are the ground state and the first excited energies as obtained,
e.g., by exact diagonalization, whereas EVQE is that evalu-
ated in VQE. For the VQE solution to be accepted one has
to meet δ = (EVQE − E0)/(E1 − E0) < 1. In our simulations,
δ ≈ 0.6841.

Studying the overlap between the ground state as obtained
with VQE and the exact one unambiguously reveals a poor
performance of VQE when approximating a highly entangled

state. In principle, entanglement properties are only deter-
mined by a many-body ground state rather than a Hamiltonian
to be minimized. To provide a quantitative estimate, we adopt
a quantum concurrence Ci j that measures entanglement be-
tween the ith and jth sites. Given a reduced density matrix
ρ

(2)
i j of two qubits i and j, one defines concurrence as

Ci j = max
{
0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (10)

where λ1 � λ2 � λ3 � λ4 are the eigenvalues of the non-
Hermitian matrix Ri j = ρ

(2)
i j ρ̃

(2)
i j in increasing order. Here,

ρ̃
(2)
i j = (σ̂y ⊗ σ̂y)ρ∗(2)

i j (σ̂y ⊗ σ̂y) is the spin-flipped density ma-
trix with the asterisk standing for complex conjugation. The
concurrence interpolates between zero and one; two sites are
completely disentangled with the rest of the system if the
concurrence equals one, otherwise the ith qubit is entangled
with the jth qubit and the other sites. In Fig. 3, we pro-
vide Ci j for the Hamiltonian (1) of N = 10 spins based on
the VQE solution. As expected, the concurrence between
nearest-neighboring spins is characterized by maximal values,
meaning that these sites are the most entangled.

Discussion and conclusion. Our numerical findings shown
in Fig. 2 reveal that VQE approaches the lowest energy of the
Hamiltonian (1) upon increasing the number of layers with a
rather tolerable accuracy. Indeed, the discrepancy between the
approximated result and the exact one does not exceed 1%.
However, VQE does not perform well when approximating
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FIG. 2. A numerical solution to the Hamiltonian (1) for N = 10 qubits as implemented by means of VQE. The ground state energy and
the overlap between the VQE state and the exact one depending on the number of layers in the Ansatz are shown in the left and right panels,
respectively. The dashed green line in the left panel marks the lowest energy as obtained by exact diagonalization. Each data point corresponds
to an average over five runs with random initial parameters of the Ansatz. The plots are supplied with error bars.
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FIG. 3. Concurrence between the ith and jth qubit, Ci j , estimated based on the VQE solution (left panel) and the exact solution (middle
panel). Shown in the right panel is the VQE concurrence relative to the exact one. The exact concurrence Cexact

i j is evaluated based on the
lowest-lying eigenstate of the Hamiltonian (1) as obtained by exact diagonalization. Clearly, this ratio significantly varies among different
regions. The VQE solution is capable of correctly keeping track of entanglement between nearest- and next-to-nearest neighboring sites,
whereas the accuracy of VQE modeling dramatically decreases for sites beyond next-nearest neighbors.

the corresponding eigenstate in terms of overlap with the exact
solution. This can be attributed to the fact that the entangle-
ment properties of a given spin configuration are specified by
the ground state exclusively, but not the Hamiltonian that VQE
is designed to minimize. To justify the statement in a more
rigorous way we evaluate entanglement as given by quantum
concurrence and shown in Fig. 3. Clearly, the VQE solution is
capable of correctly reproducing the degree of entanglement
between the nearest-neighboring sites, but in the meantime it
does not hold for spatially separated states beyond nearest-
and next-to-nearest neighbors. In contrast, a soliton solution
we worked out in this Letter is highly entangled and cannot be
captured within the VQE approach without a sufficiently large
number of layers of an Ansatz. For illustration, we show how
the magnetic texture evolves depending on the number of lay-
ers in VQE. A qubit number along the x axis in Fig. 4 selects
the corresponding lattice site, so that each arrow represents a
localized magnetic moment for a given site. Note that, in full
agreement with the analytical results, the magnetic moments
are positioned in the xy plane with the z components being
negligible. In Fig. 4, we show the spin configurations for up
to six layers in the hardware-efficient Ansatz, while the re-
sult which respects the analytical solution in continuum limit
(5) is marked analytic. Interestingly, the analytical solution
θ = π/2 and ϕ = 2 am(mz/κ, κ ) fits well a one-layer VQE
solution. Increasing the number of layers in VQE should in
principle lead to the exact solution, which, however, cannot
be achieved with shallow quantum circuits. To show that this
lack of accuracy does not arise from trainability issues, in
the Supplemental Material [74], we test the VQE with the
hardware-efficient Ansatz on different sets of parameters for
the Hamiltonian (1). Specifically, we show that for some as-
signments for D and B the ground state is found with high
precision, and the performance of VQE is dependent on the
degree of entanglement between spatially separated sites of
the spin chain. The latter naturally limits the application range
of VQE to short-range spin configurations.
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FIG. 4. A magnetic texture of N = 10 spin one-half particles
that represents one period of a chiral soliton lattice depending on
the number of layers in the hardware-efficient Ansatz. Here, each
arrow corresponds to the magnetic moment localized at a given site.
Note that z components of magnetization are negligible, which is
in agreement with analytical findings, and the spins rotate in the xy
plane from site to site. Interestingly, the analytical solution as given
by Eq. (5), that minimizes the Hamiltonian (1) in continuum limit
and is marked analytic, reproduces quite well the one-layer VQE
solution.
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