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Bragg scattering of an ultracold dipolar gas across the phase transition from Bose-Einstein
condensate to supersolid in the free-particle regime
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We present an experimental and theoretical study of the response of a dipolar supersolid to a Bragg excitation
at high-energy defined by the impulse approximation regime. We experimentally observe a continuous reduction
of the response when tuning the contact interaction from an ordinary Bose-Einstein condensate to a supersolid
state and ultimately to an incoherent array of droplets. Already in the supersolid regime, the observed reduction
is faster than the one theoretically predicted by the Bogoliubov–de Gennes theory. By comparing experiments
and theories, we are able to attribute this discrepancy to the presence of coherent phase dynamics induced by the
crossing of the phase transition. The phase variations are found to change character along the phase diagram and
become predominantly incoherent only when reaching the incoherent-droplet regime.
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Recently, supersolid states have been realized in laborato-
ries using ultracold quantum gases of dipolar atoms [1–3].
Predicted more than half a century ago [4–7] and long
searched for in helium [8], this intriguing phase of matter
spontaneously breaks two symmetries, namely the transla-
tional and the gauge symmetry. The breaking of the former
one gives rise to a periodic order in space with the system
ground state developing a density modulation, recalling a
crystalline structure, whereas the breaking of the gauge sym-
metry introduces a superfluid flow of particles.

The supersolid phase (SSP) transition is typically con-
trolled by the interaction. By varying its strength, a quantum
system may pass from an unmodulated superfluid to a fully
localized crystal state of insulating droplets (ID). Between
these two extremes, the system is supersolid, showing a co-
existence of these two apparently antithetical orders. The
interplay between localization and superfluidity has raised
lively debates [4–7]. In a seminal work, Leggett derived an
upper-bound relation for the superfluid fraction in a super-
solid [9], which directly connects the loss of superfluidity
with the increase of localization, the latter being quantified in
terms of a modulation contrast. Importantly, Leggett’s famous
formula is valid at equilibrium and requires the macroscopic
phase of the quantum system to be stationary.
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be addressed: Francesca.ferlaino@uibk.ac.at

However, in experiments, a common path to create dipo-
lar supersolids relies on interaction tuning [1–3,10–13]. The
corresponding dynamical crossing of the phase transition may
introduce excitations, which, on the one hand, naturally ques-
tions the applicability of equilibrium theories. On the other
hand, excitations typically entail phase variations, raising in-
terest in understanding their role and impact on the system
behavior, calling for the development of theoretical models
accounting for out-of-equilibrium effects.

Interestingly, phase variations across the system display
different natures. They can be coherent and deterministic, or
incoherent and random depending whether they arise from
collective dynamics or, e.g., from quantum and thermal fluc-
tuations. While experiments pointed to the existence of phase
variations in dipolar supersolids [11–13], a comprehensive
study of their characteristics and origins is lacking. Providing
access to local properties of the system, high-energy scattering
measurements may help by bridging this gap. Such scattering
protocols have been successfully used across a vast range of
disciplines, from high-energy [14–17] to condensed-matter
physics [18,19]. They allowed measurements, e.g., of the
condensate fraction in superfluid liquid helium [20] and of
beyond-mean-field effects in ultracold gases [21–27].

In this Letter, we study the response of a dipolar super-
solid to a high-energy two-photon Bragg scattering probe. As
the system crosses from the Bose-Einstein condensate (BEC)
into the SSP, we observe a strong reduction of the scatter-
ing response, that eventually vanishes in the ID regime. A
comparison with theory reveals that the response is reduced
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stronger than expected from the emergence of a density modu-
lation in the SSP. Going beyond equilibrium expectations, we
find that coherent phase variations, emerging due to the cross-
ing of the BEC-SSP transition, are the cause of the anomalous
response suppression.

We start by reviewing the description of the dynamical
response of an interacting many-body system to a weak
scattering probe within the linear-response theory [28]. The
dynamic structure factor (DSF), S(k, ω), quantifies the density
response of a system to a probe of momentum, h̄k, and energy,
h̄ω. For weak interactions at equilibrium, the DSF is related to
the excitation spectrum via the Bogoliubov amplitudes, u j and
v j , describing the excitation mode j of energy h̄ω j . It reads

S(k, ω) =
∑

j

∣∣∣∣
∫

dr
(
u∗

j (r) + v∗
j (r)

)
eikrψ0(r)

∣∣∣∣
2

× δ(h̄ω − h̄ω j ), (1)

where we neglect the creation of multiple excitations. Here,
ψ0 is the system’s macroscopic ground-state wave function.

Equation (1) gives different information depending on
the momentum and energy ranges [28]: For low-k trans-
fer, S(k, ω) is sensitive to the system’s collective response,
whereas, in the high-k and high-energy regime, the DSF is
proportional to the momentum distribution of the system,
ñ(k). Here, we focus on the latter regime to probe the im-
pact of density modulation in a superfluid state. We study
the response along the density-modulated direction, y, with
k = (0, ky, 0). In the regime of free-particle excitations (u j →
eik j y, v j → 0, ω j → h̄k2

j /2m with m the atomic mass), the
impulse approximation becomes valid and we find [28–32]

S(ky, ω) =
∑

j

ñ(0, ky − k j, 0) δ(h̄ω − h̄ω j ). (2)

On resonance, ω = ω j and ky = k j , the DSF is uniquely
determined by the system’s momentum distribution
at k = 0, independent on the probed momentum k j ,
S(k j ) ≡ S(k j, ω j ) ∝ ñ(k = 0).

To identify the free-particle regime, we calculate the
excitation spectrum. Following the Bogoliubov–de Gennes
(BdG) theory, a free-particle excitation is an elementary
excitation of plane wave character. This occurs for excita-
tions of high enough energy and single-particle character
(‖uj‖ = ∫ |u j (r)|2dr = 1 and ‖v j‖ = 0) [28,33].

In order to gain an intuition, we begin with calculating
the Bogoliubov amplitudes and S(k, ω) in the thermodynamic
limit. We consider the BdG theory for an infinitely elongated
erbium quantum gas. As shown in Figs. 1(a) and 1(b), the
supersolid spectrum exhibits a periodic structure in momen-
tum space with a period given by the reciprocal lattice vector
kc. The state develops a density modulation along the axial
direction with wavelength 2π/kc [see inset in Fig. 1(b)]. The
two lowest branches correspond to the superfluid and crystal
branches, respectively [35]. At higher energies, excitations
follow a gapped parabolic dispersion branch and a flat band
at ω ≈ 1.25 ωz (corresponding to transverse breathing modes
of single-droplets). Importantly, the excitation modes of the
parabolic branch have a free-particle character, when ‖u‖ = 1.
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FIG. 1. (a) Axial excitation spectrum of the transversely sym-
metric modes and (b) corresponding DSF of an infinitely elongated
dipolar supersolid at as = 51 a0 in a harmonic trap with ωx,y,z =
2π × (250, 0, 160) Hz. The color maps correspond to ‖u‖ and
S(k, ω), respectively. The inset shows the integrated axial den-
sity profile n(y) of the ground state with mean density 4.7 ×
103μm−1. (c) S(k) for the 3D-trapped system with ωx,y,z = 2π ×
(250, 31, 160) Hz. S(k) is calculated at k = 4.2 μm−1 ≈ 1.8 kc (grey
line) and normalized by its value at the BEC-SSP phase transition,
S∗. The atom number is varied with as to match the experimental
conditions [34]. The red (blue) line shows the result from the SIA
(DAA). (upper inset) Integrated density profile of the ground state at
as = 54.49 a0 and N = 5 × 104 atoms. (lower inset) Evolution of the
ground state’s central contrast C. For the infinite (3D-trapped) case,
kc = 2.3 μm−1(2.4 μm−1).

We now move on to the three-dimensional (3D) trapped
case for the experimentally relevant parameters. Previous
works have shown that the main spectral features qualitatively
persist when changing from the infinite to the finite sized sys-
tem [10–12,36,37]. We calculate the spectrum of excitations
as in Refs. [10,38] and extract the Bogoliubov amplitudes.
Similar to the infinite system, we find a free-particle character
for excitations with h̄ω � 0.6 h̄ωz [34]. This enables the im-
pulse approximation for the later experiments, which are done
at an exemplary momentum of k ≈ 1.8kc. Figure 1(c) shows
S(k ≈ 1.8kc), which decreases when entering the SSP from
the BEC and further reduces when lowering as. Simultane-
ously, the ground-state density develops a spatial modulation
(upper inset), whose contrast C rapidly increases (lower inset).
Note that C evolves faster with as than S(k). For instance,
at as = 53 a0, C ≈ 1, whereas S(k) reduces only by about
35 %. Here, C = (nmax − nmin)/(nmax + nmin) with nmax (nmin)
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being the central maximum (minimum) of the integrated den-
sity [34].

To gain an intuitive understanding of the density-response
reduction, we develop a 1D model [32]. Using two differ-
ent wave-function ansatzes, we evaluate S(k) in the weak
and strong density-modulation regimes. As discussed in
Refs. [39–41], for weakly modulated supersolids, with C � 1,
the ground-state wave function can be approximated by a
fully coherent sine-modulated function on top of a uniform
background. At leading order in C, it reads ψ (y) = √

n(1 +
C sin(kcy)/2), with n being the mean density. Applying this
sine ansatz (SIA) in Eq. (2), we find S(k) ∝ n(1 − C2/8).
This result shows that an increasing contrast directly causes
a suppression of the DSF. We find a similar C dependence
for the superfluid fraction derived from Leggett’s formula [9],
fSF = 1 − C2/2. Therefore, in the weakly modulated regime,
the reduction of the high-energy scattering response con-
nects to the reduction of the superfluid fraction [32]. We
benchmark our SIA results with the BdG calculations for an
equilibrium supersolid state, by evaluating C from the full
Gross-Pitaevskii equation (GPE) solution [34]. As shown in
Fig. 1(c), despite its simplicity, the SIA scaling reproduces
very well the full numerics up to C � 40 %. For larger C, as
expected, the model breaks down.

For large C, we employ a droplet-array ansatz (DAA),
describing the system as an array of ND droplets, ψ (y) =∑ND

j=1 χ (y − jd )eiθ j [3,42]. Each droplet is described by a
Gaussian function, χ (y), of size σ , separated by a distance
d > σ from its neighbours. Each droplet is allowed to have
an independent, yet uniform, phase θ j . Within the DAA, the
DSF shows the proportionality S(k) ∝ n| 1

ND

∑ND
j=1 eiθ j |2σ/d .

It decreases with both the density overlap between droplets,
set by σ/d , and the phase variance along the array. The phase
variance can not be accounted for in the ground-state GPE
theory, which describes a state possessing a uniform phase.
To benchmark the DAA results with the BdG calculations, we
thus set θ j = 0 for all j [34]. We find a very good agreement
for C > 80 %. The effect of phase variations on the scattering
response will be later studied using dynamical simulations;
see Figs. 3 and 4.

To summarize, at equilibrium, the high-energy response
decreases when the contrast increases. For a small den-
sity modulation, the response can be directly connected to
Leggett’s estimate for the superfluid fraction. Moreover, the
presence of phase variations further decreases the response,
as we explicitly show using the DAA. We now compare our
theory expectation with the experiment.

In the experiments, we access the density response of a
supersolid by performing high-energy Bragg scattering on a
166Er dipolar quantum gas, confined in an axially elongated
harmonic trap. A transverse homogeneous magnetic field ori-
ents the atomic dipoles and sets as [3]. We initially prepare
the system in the ordinary BEC phase, and enter the SSP
via interaction tuning by linearly lowering as below a critical
value, a∗

s , for which the BEC-SSP phase transition occurs.
Similar to previous experiments [3,10], a∗

s is extracted with
an interferometric technique. For the present trap and atom
numbers, N , we measure a∗

s = 54.94+28
−13 a0. Furthermore, we

observe the ID regime below as ≈ 53.9 a0, see Ref. [34].

FIG. 2. Fraction of Bragg-excited atoms as a function of ω for
various as across the BEC-SSP-ID regimes (see labels). The spectra
are vertically offset for visibility. Here and throughout the Letter,
the error bars correspond to one standard error. Solid lines show the
Gaussian fits to the data.

For the Bragg excitation, we project on the atoms an optical
lattice potential of constant depth V for a duration τ = 7 ms.
The lattice has a constant wave vector k = 4.2(3)μm−1 along
y and moves with a variable frequency ω. After the Bragg
excitation, we measure the integrated momentum distribution,
ñ(kx, ky), using a time-of-flight expansion of 30 ms. The num-
ber of excited atoms Nexc is extracted in a narrow region of
interest around k [34]. For a fixed as, we find a clear resonance
in Nexc/N as we vary ω. From a Gaussian fit we extract the
resonance peak’s amplitude, F . From linear response theory,
we expect F ∝ V 2τS(k) [43]. For the relevant as range, we

0

1

2

3

4

F
 (

%
)

5
BECSSPID

54 54.5 55 55.5 56 56.5 57
as (units of a0)

53.5

FIG. 3. Experimental F (circles) versus as across the BEC-SSP-
ID phases. For the lowest three as, we do not observe a resonance
and plot the standard deviation of the data as an error estimate.
Horizontal error bars correspond to uncertainties of the magnetic
field [34]. Theoretical F (lines) from the BdG calculations on the
ground state (grey), from the RTE simulations (black), and from the
rescaled BdG calculations that include 
� obtained from the RTE
(blue). The gray shading corresponds to the uncertainty in as of the
experimental phase transition (vertical line).
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FIG. 4. RTE simulations without Bragg excitation. (a) Time evo-
lution of the integrated in situ density of the wave function for
as = 54.04 a0. (b) 〈C〉τ (triangles) and 
� (squares) versus as.
The grey line corresponds to the central contrast obtained from the
ground-state theory. The solid blue line is a smooth interpolation
of 
�, fixed to unity at the phase transition point. The shadings
give the standard deviation obtained from five simulation runs. The
vertical line corresponds to the phase transition point. (c) Phase cuts
corresponding to the simulation shown in (a).

have checked the scaling with τ and V [34]. Figure 2 shows
examples of the Bragg-excitation spectrum for various as. In
the BEC regime until the onset of the SSP, we observe a down-
ward shift of the resonance frequency without a significant
change in F [34]. In contrast, as we enter into the SSP regime,
F undergoes a stark reduction. In the ID regime, the resonance
peak completely vanishes.

Figure 3 shows the evolution of F across the BEC-SSP-ID
phase diagram. The as extension of the three phases (see back-
ground colors), has been determined from independent mea-
surements of the phase coherence and density modulation of
the states [3,34]. When reducing as, F first slightly increases
in the BEC phase, continuously crosses at the BEC-SSP tran-
sition, and then drastically reduces to �1%, close to our
detection level, when lowering as further by ∼0.5 a0. Finally,
for as < 54 a0, we do not observe any resonant response.

We compare the experimental results with our BdG theory
for the stationary, trapped gas. While in the BEC regime, ex-
periment and theory show a good agreement, in the SSP they
start to substantially deviate from each other. The data shows a
much faster reduction of F than the one predicted by the BdG
theory. This suggests that an important ingredient is missing
in the ground-state theory. Our DAA model provides a first
intuitive explanation, showing that, not only the increasing
crystalline modulation but also phase variations can lead to
a reduction of the system response. We envision two sources
of phase variations. First, quantum and thermal fluctuations,
which are expected to dominate in the ID regime, yield phase
patterns varying from shot to shot. Second, coherent dynam-
ics, as, e. g., induced by the crossing of the BEC-SSP phase
transition, leading to reproducible phase patterns. Neither
phenomena are accounted for in the BdG calculations.

To investigate these effects, we simulate the system real-
time evolution (RTE) [44]. Our calculations reproduce the full

experimental sequence [34]. Random shot-to-shot variations
are included by adding an initial population of BdG modes
from quantum and thermal noises [34]. From the simulated
momentum distributions, we extract the excited fractions, as
done for the experimental data. Contrary to the BdG results,
the RTE simulations describe remarkably well the data both
in the BEC and SSP phase; see Fig. 3.

The impact of the changing contrast and phase variations
across SSP-ID phase can be seen from RTE without a Bragg
excitation for different holding times. As shown in Fig. 4(a),
the density profiles n(y) exhibit only a slight reduction of
the contrast with time due to atom loss. As expected, the
calculated 〈C〉τ , time averaged over the Bragg scattering du-
ration, increase with decreasing as. However, for each as, we
observe a 10–30 % lower contrast than the one extracted from
the ground-state calculations. Since a reduced contrast would
mean an increase in F , the varying contrast cannot explain the
mismatch between the BdG theory and both the experimental
and RTE results; see Fig. 3.

The RTE calculations also reveal that the phase of the wave
function, θ (y), develops a nonuniform profile. For instance
at as = 54.04 a0, θ (y) exhibits a stairlike profile with fairly
constant values within the density peaks and discrete phase
steps in between them; see Fig. 4(c). This behavior suggests
that each density peak acquires an independent phase, despite
their density links. We also observe that the phase pattern
is fairly reproducible between simulation runs and mainly
affected by the coherent dynamics arising by the crossing of
the phase transition [34].

Following the DAA model, phase variations are expected
to reduce S(k) by a factor 
� ≈ | 1

ND

∑ND
j=1〈eiθ j 〉τ |2 [28,34].

As shown in Fig. 4(b), 
� is almost unity close to the BEC-
SSP phase transition and significantly drops when lowering as

towards the ID regime, where it starts to flatten. The standard
deviation of 
� relates to the shot-to-shot reproducibility of
the phase pattern. In the SSP, the deviation remains small,
confirming that the phase variations originate from coherent
dynamics. In contrast, the deviation increases when reaching
the ID regime. This highlights the increasing effects of fluctu-
ations, showing that the phase variations ultimately become
incoherent. We empirically account for the effect of phase
variations in the BdG theory by scaling the DSF with 
� over
the whole SSP-ID regimes. As shown in Fig. 3, this simple
inclusion of 
� shows the pronounced impact of the coherent
phase variations for the experimentally observed response.

In conclusion, we demonstrate high-energy two-photon
Bragg scattering spectroscopy as a sensitive probe of density
modulations, and coherent and incoherent phase variations
in a quantum system. Accounting for the phase variations
is crucial to fully capture the behavior of supersolid states
created in experiments via a dynamical tuning of the interac-
tions. Our work provides important steps to a more complete
vision of the dipolar supersolid, including out-of-equilibrium
phenomena, and opens the door for future exploration of
critical phenomena induced by the dynamical crossing of the
BEC-SSP phase transition [45–47].
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