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Two-photon decay of the 2s state in H-like ions is investigated. We report that asymmetry in the emission of
photons with left- and right-hand circular polarizations can be observed in this transition if the initial state has a
certain polarization. This asymmetry can be used to measure the polarization of ion beams.
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Experiments with spin-polarized particles have become of
importance in atomic physics. These experiments can be used
for tests of fundamental symmetries [1–5]. This includes in-
vestigation of the parity nonconservation and search for the
electric dipole moment of electron. In particular, the parity
nonconservation effects have been experimentally investi-
gated in neutral atoms [6,7]. However, these effects are greatly
enhanced in highly charged ions. A number of experiments
have been proposed to observe the parity nonconservation
effects in highly charged ions [8], requiring polarized highly
charged ion beams being in an excited state. Experimental
investigation of the parity nonconservation effects in a highly
charged ion is limited by the absence of polarized highly
charged ion beams and the ability to measure the circular
polarization of the emitted photons. The production of polar-
ized highly charged ions is still a challenge. Several methods
were proposed for obtaining polarized beams of heavy highly
charged ions in the storage rings [2,5,9]. When the polariza-
tions of the ion beams are obtained, it will be an important
task to measure and control the polarization of the beam [10].

In the present article we show that two-photon transitions
in highly charged ions can be used to measure the ion-beam
polarization. The polarization can be observed due to the
asymmetry in the emission of the left- and right-hand photons,
arising if the initial state of the ion is polarized.

In the one-photon decay, the emission of the left- and right-
hand photons, depending on the polarizations of the initial
and final states of the ion, is easy to see. In principle, it also
could be used to measure the polarization degree. However,
in the case of heavy ions, the experimental study and use of
this dependence are limited by the absence of detectors for
polarized high-energy photons. The same goes for proposals
with two-photon cascade transitions [11]. In two-photon non-
cascade decay, this difficulty can be circumvented.
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The two-photon decay has been studied since the works
of Göppert-Mayer [12] and Breit and Teller [13]. The H-
like ions are the simplest system for the theoretical study
of two-photon decays. In particular, the total and differential
transition probabilities for the two-photon decay of the 2s state
were investigated in works [12–30]. The polarization proper-
ties of photons in the two-photon transitions were studied by
Manakov et al. [31], where only unpolarized electrons were
considered. However, for observing the asymmetry between
the left- and right-hand photons it is crucial that the initial or
final electron state is polarized.

The two-photon decay of the 2s state of an H-like ion can
be schematically depicted as

2s → 1s + γk1 + γk2 , (1)

where γk1 and γk2 denote the two emitted photons with the
momenta k1 and k2. Let us assume that the initial 2s state
of the H-like ion has a certain projection of the total angular
momentum, where the quantization axis is determined by
vector ξ directed so that the projection of the momentum onto
the vector ξ is +1/2. The final state is characterized by two
vectors of the photon momenta k1 and k2. We do not observe
the projection of the total angular momentum of the final 1s
state.

The condition for the appearance of the asymmetry in the
emission of the left- and right-hand photons can already be
seen in the geometry of the process depicted in Fig. 1. If the
vector ξ is orthogonal to the plane formed by the vectors k1

and k2, the inversion operation for this system is reduced to ro-
tation about the origin because ξ is a pseudovector and k1 and
k2 are the true vectors. In this case, the asymmetry does not
take place. However, if the vector ξ is not orthogonal to this
plane, the inversion operation cannot be reduced to rotation.
Hence, if we observe the circular polarizations of the photons,
then the probabilities of emission of the left- and right-hand
photons can be different. This effect can be expressed in
another way: If the circular polarizations of emitted photons
are fixed then the initial states with different projections of the
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FIG. 1. Geometry of the two-photon decay. The vectors k1 and k2

are the momenta of the emitted photons. The vector ξ defines the axis
of the quantization of the electron total angular momentum. The left
and right pictures show these vectors before and after the inversion
operation.

total angular momentum can give different transition proba-
bilities. Below we investigate the asymmetry in the emission
of the photons with left- and right-hand circular polarizations
and discuss the possible implementations of this effect.

The Feynman graphs corresponding to the two-photon de-
cay are presented in Fig. 2. The amplitude of the process can
be written as

U =
∑

nn,κn,mn

[
A(k2λ2 )

f n A(k1λ1 )
ni

εi − ω1 − εn
+ A(k1λ1 )

f n A(k2λ2 )
ni

ε f + ω1 − εn

]
, (2)

where indices i and f denote initial 2s and final 1s states of
the ion with the energies εi and ε f , respectively. Index n =
(nn, κn, mn) denotes the intermediate state with the principal
quantum number nn, the Dirac angular quantum number κn,
and the projection of the total angular momentum mn. Summa-
tion over n runs over the complete Dirac spectrum. Relativistic
units are used throughout this work. In Eq. (2) A(kλ)

ni denotes
the photon-emission matrix element for the photon with the
energy-momentum four-vector kμ = (ω, k) and polarization
λ.

The differential transition probability with summation over
the projections of the final state (m f ) and the certain projection
of the initial state (mi) is connected with the amplitude as

Mλ1λ2
mi

=
∑
m f

dW

dω1d�1d�2
=

∑
m f

ω2
1ω

2
2

(2π )5
|U |2. (3)

(a) (b)

FIG. 2. Feynman graphs corresponding to the direct (a) and ex-
change (b) terms of the two-photon decay. The letters i and f denote
the initial and final states of the electron. The wavy lines describe the
emitted photons with momenta k1, k2 and polarizations λ1, λ2.

Since the sum of the energies of the emitted photons is deter-
mined by the energy conservation law ω1 + ω2 = εi − ε f , it
is convenient to introduce the parameter x = ω1

ω1+ω2
.

To analytically demonstrate the presence of the asymmetry
effect in the two-photon decay we need to investigate the
dependence of the differential transition probability Mλ1λ2

mi
on

the photon emission angles. For this purpose, we can consider
the simplest case of the E1E1 emission. Moreover, it is suffi-
cient to consider either the direct or the exchange term of the
amplitude with the fixed κn of the intermediate state. Below
we consider the direct term [the first term in Eq. (2)] with
κn = 1.

In the case of the linear polarizations it is easy to show
that Mλ1λ2

mi
= Mλ1λ2−mi

for arbitrary k1 and k2. In the case of the
circular polarization the situation is different: The expression
for Mλ1λ2

mi
with λ1 = λ2 has the following form:(

M++
1/2

M++
−1/2

)
=

(
M−−

−1/2
M−−

1/2

)
∼

(
sin2

(
θ1
2

)
cos2

(
θ1
2

))(1 − cos θ1 cos θ2

− sin θ1 sin θ2 cos(ϕ2 − ϕ1)), (4)

where θ j and ϕ j are spherical angles of the wave vector k j ;
λ j = “+” and λ j = “ − ” denote right- and left-hand photons,
respectively ( j = 1, 2). It follows from Eq. (4) that, in general,
Mλ1λ2

mi
�= Mλ1λ2−mi

which explains the presence of the asymmetry
effect: the difference in the transition probabilities for differ-
ent mi and fixed λ1 and λ2.

It is convenient to describe the asymmetry effect by the
angle (α) between the normal to the plane formed by the
vectors k1 and k2 and the quantization axis. The asymmetry
effect is absent if α = 0 (i.e., θ1 = θ2 = π/2). Indeed, in this
case Eq. (4) transforms to

M++
mi

= M++
−mi

= M−−
mi

= M−−
−mi

∼ 1 − cos (ϕ2 − ϕ1), (5)

and we do not see the asymmetry effect.
In order to obtain an expression for the transition ampli-

tude as a function of the angle α, we direct z axis along the
normal to the (k1, k2) plane. Then the axis of quantization ξ is
determined by the angle α and azimuthal angle β. For β = 0
and arbitrary angle α Eq. (5) takes the following form:

M++
mi

(α) = M−−
−mi

(α)

∼ (1 − cos(ϕ2 − ϕ1))
(
1 + (−1)1/2+mi sin α

)
, (6)

where the dependence on the projection of the initial state mi

is explicitly presented. We introduce the asymmetry parameter
� as

� = M++
−1/2(α) − M++

1/2 (α)
1
2

(
M++

−1/2(α) + M++
1/2 (α)

)
= M−−

1/2 (α) − M++
1/2 (α)

1
2

(
M++

1/2 (α) + M−−
1/2 (α)

) . (7)

From Eq. (6) it follows that the effect of asymmetry is present
in the direct term and that � ∼ sin α. The analogous result
is obtained for the exchange term. The interference between
these terms also makes a contribution to the asymmetry and
leads to its strong dependence on the energies of the emitted
photons.
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FIG. 3. The differential transition probability for uranium ion as
a function of the angle between the momenta of the emitted photons.
The left and right columns correspond to x = 0.5 and x = 0.25,
respectively. The upper and lower rows demonstrate differential
transition probability for two different angles α: 45◦ and 90◦. The
black solid curves present the results for initial projection mi = −1/2
and photon polarizations λ1 = λ2 = “+” (or mi = +1/2, λ1 = λ2 =
“ − ”). The red dashed curves gives the results for mi = +1/2 and
λ1 = λ2 = “+” (or mi = −1/2, λ1 = λ2 = “ − ”).

The main results obtained from this analysis are confirmed
by the exact numerical calculation, where Mλ1λ2

mi
(α) takes into

account both the direct and exchange terms in the amplitude
as well as the higher multipoles of the emitted photons and
full summation over the Dirac spectrum. The summation over
the Dirac spectrum was performed using the finite basis set
constructed from B splines [32,33]. The summation over the
angular quantum numbers of the intermediate electron states
was limited to terms with ln � 4, where ln is the orbital
angular momentum. The atomic nucleus was described by a
homogeneously charged sphere. Partial wave expansion was
employed for the photon wave functions.

We performed the calculation of the differential transition
probability for certain projections of the total angular momen-
tum of the initial state and certain polarizations of the emitted
photons. Below we consider the tilted quantization axis with
azimuth angle β = 0 and two polar angles α = 45◦ and 90◦.

In Fig. 3 we present the differential transition probability
Mλ1λ2

mi
(α) as a function of the angle θ between the emitted

photon momenta for uranium ion and x = 0.5 and x = 0.25.
The difference between the black solid and red dashed curves
shows explicitly the effect of asymmetry: the difference in
contributions from different projections of the initial state
with the fixed photon polarizations λ1 = λ2 = “+”. From
Eq. (7) it follows that the same difference takes place be-
tween the left- and right-hand photon emissions for the fixed
initial projection mi. The effect of asymmetry is more notice-
able for α = 90◦ than for 45◦ what is in agreement with an
estimate (6).

In Fig. 4 we present the asymmetry parameter � for ura-
nium ion as a function of θ . One can see that � strongly
increases for small θ . However, the transition probability be-
comes small in this region of angles.

FIG. 4. The parameter of the asymmetry � [see Eq. (7)] for
uranium ion as a function of the angle between the momenta of the
emitted photons. The left and right plots correspond to x = 0.5 and
x = 0.25, respectively.

In the case of the considered 2s → 1s transition, the
asymmetry is a relativistic effect. In Fig. 5 we present the
asymmetry parameter as a function of the atomic number (Z)
for x = 0.25 and α = θ = 90◦. We can see that the asymme-
try parameter � ∼ Z2 being equal to 0.1%, 34%, and 51%
for boron, uranium, and oganesson ions, respectively. In this
figure we also present the result of calculation where only
the E1E1 emission is taken into account. Despite the fact that
higher multipoles make a minor contribution to the transition
probability, they make a significant contribution to the asym-
metry.

The asymmetry effect can have important implementa-
tions. For the described geometry the left- and right-hand
photons are emitted differently by ions with different polar-
izations that can be used in the measurement of the ion-beam
polarizations. The detection of circularly polarized high-
energy photons is connected with technical difficulties. It
can be circumvented utilizing the following features of the
two-photon decay. First, the asymmetry effect takes place
even if we sum over the polarization of one of the photons.
Second, the photon emission spectrum is continuous. Thus,
we propose to measure the ion-beam polarization by measur-
ing the polarization of only the low-energy photon, leaving
the polarization of the high-energy photon unresolved. This
implies the application of the experimental photon-photon
coincidence technique in the case of highly charged ions [34].
In the work of Dunford [35], it was proposed to measure
the asymmetry of the emission of one polarized photon in
a two-photon transition, caused by the parity-violating weak
interaction of electrons with the atomic nucleus in He-like
ions.

FIG. 5. The parameter of the asymmetry � as a function of the
atomic number of the ion Z for x = 0.25, θ = 90◦, and α = 90◦.
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FIG. 6. The differential transition probability Mλ1
mi

(α) [see
Eq. (8)] for uranium ion as a function of the angle between the
momenta of the emitted photons. The black solid curve presents the
results for angle α = 90◦, initial projection mi = +1/2, x = 0.003
(ω1 = 306 eV), and photon polarization λ1 = “+”. The red dashed
curve shows the same, but for λ1 = “ − ”.

We introduce the differential transition probability where
only one emitted photon has certain polarization,

Mλ1
mi

(α) =
∑
λ2

Mλ1λ2
mi

(α). (8)

In Fig. 6 we compare differential transition probabilities
M+

1/2(90◦) and M−
1/2(90◦) for uranium ion as a function

of θ for x = 0.003 (ω1 = 306 eV). The figure shows
a considerable difference in the corresponding transition
probabilities.

We assume that the experiment measures the relative
number of photon pairs n− and n+ = 1 − n−, in which the
low-energy photons have left- and right-hand polarizations,
respectively. They are connected with the relative number of
ions (nmi ) with certain projection mi as

n± = n1/2

M±
1/2

M+
1/2 + M−

1/2

+ n−1/2

M±
−1/2

M+
−1/2 + M−

−1/2

, (9)

where Mλ
mi

≡ Mλ
mi

(α). Then the degree of the ion-beam polar-
ization expresses as

λion = n1/2 − n−1/2

n1/2 + n−1/2
= (n+ − n−)

M+
1/2 + M−

1/2

M+
1/2 − M−

1/2

, (10)

where we used M−
mi

= M+
−mi

.
We note that the asymmetry effect can be found in the

reverse process where it is referred to as circular dichroism.
The final 2s state can obtain polarization if the H-like ion
initially being in the unpolarized ground state is excited by
two photons one or two of which have certain circular po-
larizations. Compared to the one-photon excitation, the two-
(or more) photon excitation requires polarized photons with
much lower energies. In principle, this effect can be used
to obtain polarized ion beams. In the case of heavy highly
charged ions, the application of this method leads to technical
difficulties, such as the need for high intensity or high energy
lasers. Hence, it can be limited to the light ions and the heavy
many-electron ions.

FIG. 7. The differential transition probability [given by Eq. (11)]
as a function of x for uranium ion and α = 90◦. The black solid curve
presents the results for initial projection mi = −1/2 and photon
polarizations λ1 = λ2 = “+” (or mi = +1/2, λ1 = λ2 = “ − ”). The
red dashed curve gives the results for mi = +1/2 and λ1 = λ2 = “+”
(or mi = −1/2, λ1 = λ2“ − ”).

Finally, we would like to show how the asymmetry mani-
fests itself in the energy distribution. In Fig. 7 the differential
transition probability,

dW λ1λ2
mi

dω1d�1 sin θ2dθ2
=

∫ π

0
dϕ2 Mλ1λ2

mi
(α) sin ϕ2, (11)

as a function of x is presented for λ1 = λ2 = “+”. We con-
sider the geometry, where the first photon is emitted along
the x axis, the second photon is emitted in the xy plane and
integration over the azimuth angle of the second photon ϕ2 is
performed. The difference between the black solid and dashed
red curves demonstrates the effect of asymmetry. If we set
α = 0, then both curves would coincide and would be sym-
metric about the center of the allowed photon energy range.
At a nonzero angle α, the asymmetry takes place. However,
the sum of these curves is symmetric about the center and
gives the energy distribution for unpolarized ions. The total
transition probability can be obtained as

W = 8π2
∑
λ1λ2

∫ 1
2 (ω1+ω2 )

0
dω1

dW λ1λ2
mi

dω1d�1 sin θ2dθ2
. (12)

We note that W depends neither on the angle α nor on the
projection mi.

In summary, we have investigated the asymmetry of the
emission of the left- and right-hand photons in the two-photon
transition, which arises in the special geometry of the process.
This effect can be used for the measurement of the ion-beam
polarization. The observation of the described effect of asym-
metry in multiphoton processes, as well as in systems with a
larger number of electrons, such as many-electron ions, atoms,
and molecules, requires additional study.
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