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Detection loophole in quantum causality and its countermeasures

Zhu Cao*

Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education,
East China University of Science and Technology, Shanghai 200237, China

(Received 6 January 2021; accepted 6 July 2021; published 19 July 2021)

Quantum causality violates classical intuitions of cause and effect and is a unique quantum feature different
from other quantum phenomena such as entanglement and quantum nonlocality. In order to avoid the detection
loophole in quantum causality, we initiate the study of the detection efficiency requirement for observing
quantum causality. We first show that previous classical causal inequalities require detection efficiency at least
95.97% (89.44%) to show violation with quantum (nonsignaling) correlations. Next we derive a classical causal
inequality I222 and show that it requires lower detection efficiency to be violated, 92.39% for quantum correla-
tions and 81.65% for nonsignaling correlations, hence substantially reducing the requirement on detection. Then
we extend this causal inequality to the case of multiple measurement settings and analyze the corresponding
detection efficiency. After that, we show that previous quantum causal inequalities require detection efficiency at
least 94.29% to violate with nonsignaling correlations. We subsequently derive a quantum causal bound J222 that
has a lower detection efficiency requirement of 91.02% for violation with nonsignaling correlations. Our work
paves the way towards an experimental demonstration of quantum causality and shows that causal inequalities
significantly differ from Bell inequalities in terms of the detection efficiency requirement.
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Introduction. The identification of cause and effect is of
paramount importance for scientific discovery. However, tra-
ditional statistical methods are unable to capture a causal
relationship. In one aspect, from two correlated events alone,
it is impossible to distinguish which is the cause and which is
the effect. For example, for the two events “rain” and “wet,”
one cannot distinguish the causal relation “rain causes wet”
from “wet causes rain” by statistical evidence aloneAnother
aspect and perhaps more seriously, correlated events may have
no causal relation at all, arising just from a common cause.
For example, the events “green” and “oxygen” do not have a
causal relationship but are positively correlated because of a
common cause “plant.” To deal with the incapability of tradi-
tional statistical methods to capture causal relations, Pearl and
his co-workers have developed a comprehensive mathematical
framework of causality [1,2]. The tools of causality have since
been applied to a wide variety of scientific fields [3–6].

In the quantum regime, the theory of causality is dramat-
ically different, which is referred to as quantum causality.
One of the two fundamental cornerstones of classical causal-
ity, “local realism” and “free will,” cannot both hold in the
quantum regime due to the violation of Bell inequalities [7].
This has spurred a large body of works that examine quantum
nonlocality in various causal networks [8–24]. In a recent
breakthrough, it is shown that quantum causality is a concept
more general than quantum nonlocality [25]. Even in causal
setups where no Bell inequalities can be violated [26], certain
classical causal inequalities can still be violated by quantum
correlations [25]. Therefore, quantum causality illuminates
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the foundation of quantum theory from a new angle and helps
to deepen our understanding of quantum theory.

In quantum nonlocality, it is known that imperfect detec-
tion efficiency may destroy quantum nonlocality [27]. Indeed,
the detection loophole caused by insufficient detection effi-
ciency has been identified as one of the main bottlenecks
for experimental observation of quantum nonlocality [28].
This leads us to a natural question: Does imperfect detection
efficiency also prevent the observation of quantum causal-
ity? And if so, what is the minimum detection efficiency
requirement for observing quantum causality? These ques-
tions are very relevant from an experimental point of view,
since realistic detectors do not have perfect detection effi-
ciency. In addition, the experimental observation of quantum
causality not only validates the theoretical prediction of quan-
tum causality, but also facilitates the practical applications of
quantum causality (to be discussed more later).

From a theoretical perspective, the detection efficiency re-
quirement of quantum causality is also important due to two
reasons. First, it may give a separation between quantum non-
locality and quantum causality, showing a second difference
between these two concepts. Second, for a given bipartite
quantum state, the minimum detection efficiency requirement
for this state to violate causal inequalities can be used as
a measure of its quantum causality, or more generally, its
quantumness.

Despite its importance, the detection efficiency require-
ment for observing quantum causality has been elusive, partly
due to the lack of tools in the emerging topic of quantum
causality. In this work, we initiate the study of the detection
efficiency requirement for observing quantum causality, by
borrowing tools from quantum nonlocality. As in the Bell
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FIG. 1. (a) The detection efficiency requirements for quantum and nonsignaling correlations to violate classical and quantum causal
bounds. Here, “Old” refers to the causal bounds in Ref. [25], and “New” refers to the causal bounds I222 and J222 derived in this Letter.
(b) Illustration of the sets of classical correlations (C), quantum correlations (Q), and nonsignaling correlations (NS).

scenario, here we assume that the detection efficiency can
be manipulated by an adversary Eve. Note that if the effi-
ciency loss is a trusted component, then simply dividing the
probability of obtaining an outcome of a detector by the de-
tector’s detection efficiency suffices to correct the probability
distortion caused by imperfect detection efficiency. The more
difficult scenario is the case of untrusted efficiency loss, which
we consider here.

We first analyze the detection efficiency requirement for
showing quantum violation of the classical causal bound used
in Ref. [25], and show it to be 95.97%. Next, in an extension
of quantum theory, called the nonsignaling theory, we show
that the corresponding detection efficiency needs to be at
least 89.44%. As these efficiency requirements are quite high,
compared to the efficiency requirement 66.7% for bipartite
Bell violation with two measurement settings per party [27],
we next aim to find an alternative classical causal bound that
is less demanding on the detection efficiency. We manage to
find a classical causal inequality I222 which can be violated
by quantum correlations and nonsignaling correlations with
lower detection efficiency. Then we extend our new inequality
I222 to the case of m measurement settings. After that, we
examine the detection requirement for nonsignaling violation
of the quantum causal bound used in Ref. [25], and show it to
be 94.29%. Finally, we derive a new quantum causal bound
that has a lower detection requirement of 91.02% to violate.
These results are summarized in Fig. 1(a). All violations of
causal bounds can be understood through the facts that clas-
sical correlations are contained in quantum correlations and
quantum correlations are contained in nonsignaling correla-
tions, as illustrated in Fig. 1(b).

From a theoretical perspective, our work gives an alter-
native proof that quantum causality and quantum nonlocality
are two different physical concepts by showing that the detec-
tion efficiency requirement for observing quantum causality is
bounded away from zero (recall the counterpart for quantum
nonlocality can be arbitrarily close to zero [29,30]). From an
experimental perspective, our work provides guidance for the
experimental observation of quantum causality and in addi-
tion reduces the efficiency requirement on detectors with our
causal bounds I222 and J222. We hope our work will stimu-
late further theoretical and experimental research on quantum
causality.

Causal setup. As mentioned in the Introduction, whether a
random variable A implies another random variable B cannot
simply be deduced from the fact that they have a positive
correlation. The positive correlation may also result from a
common cause of A and B, denoted by �. Our goal is to sep-
arate the causal influence A → B from what can be explained
by a potential common cause �. To this end, one commonly

used method is intervention [1], which sets A to a value a by
force and examine the probability distribution of B, denoted
by {p[B = b|do(A = a)]}b. To measure causality, we use the
average causal effect (ACE) [1], which is defined as

ACE = max
b,a,a′

[p(b|do(a)) − p(b|do(a′))]. (1)

This quantity measures the maximum change of B’s distribu-
tion when A’s value is altered.

However, intervention cannot always be performed. For
example, when a clinician wishes to examine the effect of
smoking on people’s health, he/she cannot just force one
group of people to smoke and the other group not to because
this is unethical. In these cases, only indirect estimation of
ACE can be performed. One indirect method is to introduce
a third variable X , called the instrumental variable, which is
independent of the common cause � and directly causes A but
not B. The relations between �, A, B, and X are illustrated in
the left panel of Fig. 2. By these relations, we can express the
probability of observing A = a and B = b given X = x as

p(a, b|x) =
∑

λ

pA(a|x, λ)pB(b|a, λ)p(λ), (2)

and the probability of observing B = b when fixing A = a by
force as

p(b|do(a)) =
∑

λ

pB(b|a, λ)p(λ). (3)

It has been shown that for this setup, no Bell inequalities can
be violated [26].

In the quantum setting, the common cause for A and B is
replaced by a quantum state ρAB. The random variables A and

FIG. 2. Illustration of the causal setup. Left: The random variable
� is the common cause of two random variables A and B. The
random variable X has a causal influence on A, and A has a causal
influence on B. Right: Mapping of the causal scenario to the Bell
scenario. In the Bell scenario, the random variable B is causally
influenced by a random variable Y instead of A. Identification of A
and Y recovers the causal scenario.
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B perform local measurements Mx
a and Na

b , respectively, on
ρAB oto obtain their outcomes. Here, Mx

a and Na
b use x and a,

respectively, to choose their measurement settings and output
a and b, respectively. Hence, in the quantum setting, we can
express the probability of observing A = a and B = b given
X = x as

p(a, b|x) = tr
[(

Mx
a ⊗ Na

b

)
ρAB

]
, (4)

and the probability of observing B = b when fixing A = a by
force as

p(b|do(a)) = tr
[(
1 ⊗ Na

b

)
ρAB

]
. (5)

We can further extend the quantum setting to the nonsignal-
ing theory, where correlations are only constrained by the
nonsignaling condition. To explain the nonsignaling condition
in the causal scenario, we first map the causal probability
distribution to a Bell probability distribution as

p(a, b|x) = pBell(a, b|x, a), ∀a, b, x,

p(b|do(a)) =
∑

a′
pBell(a

′, b|x, a), ∀a, b, x, (6)

where pBell (p) denotes the Bell (causal) probability distribu-
tion and pBell(a, b|x, y) denotes a bipartite Bell scenario with
inputs x, y and outputs a, b.

The mapped Bell scenario is illustrated in the right panel
of Fig. 2. The nonsignaling condition is then∑

a′
pBell(a

′, b|x1, y) =
∑

a′
pBell(a

′, b|x2, y), ∀y, b, x1, x2,

∑
b′

pBell(a, b′|x, y1) =
∑

b′
pBell(a, b′|x, y2), ∀x, a, y1, y2,

where x1, x2, x, y1, y2, y are the inputs and a, b, a′, b′ are the
outputs of the Bell test.

Model of detection efficiency. For trusted detectors, we as-
sume their detection efficiency is a fixed value independent of
the state to be detected. This assumption is physically justified
as the detection efficiency of polarization-encoded qubits by
photon detectors is independent of the polarization [31]. In
later analysis, we will show that even when restricting to the
use of trusted detectors, quantum correlations are still able to
violate classical causal bounds.

For untrusted detectors, their detection efficiency is not
assumed to be independent of the input state. However, these
untrusted detectors are enforced to have the same overall
probability of detection as trusted detectors, namely,

1∑
a,b=0

p(a, b|x) = η2, ∀x, (7)

where η is the detection efficiency of trusted detectors. If
this condition is violated, we can easily detect the malicious
behavior of the detectors and terminate the test of quantum
causality. In later analysis, we will show that even with un-
trusted detectors, classical causal bounds are still obeyed by
classical correlations. The proofs are quite different from the
case of perfect detection efficiency, which is the only case that
previous work has considered [25,32].

Detection efficiency of quantum violation of classical
bound. With the problem setup in place, we now consider the

FIG. 3. Illustration of the classical causality lower bound in
Ref. [25]. Because of the condition a = y, only the entries in the
red boxes can appear in a causal inequality.

following classical causal lower bound which first appeared in
Ref. [32] and was first compared against quantum correlations
in Ref. [25]:

ACE � 2p(0, 0|0) + p(1, 1|0) + p(0, 1|1) + p(1, 1|1) − 2,

(8)
where p(a, b|x) is defined as in Eqs. (2) and (4) for classical
correlations and quantum correlations, respectively. An illus-
tration of this bound is shown in Fig. 3.

We start by examining the required detection efficiency
for quantum correlations to violate this bound. The result
is summarized in the following theorem (see Supplemental
Material Sec. I for its proof [33]).

Theorem 1. When the detection efficiency η is larger than√
2/(5 − 2

√
2) ≈ 95.97%, quantum correlations can violate

the classical causal bound Eq. (8), the maximal violation of
which is 3 − 2

√
2.

From this result, we have two observations. First, imperfect
detectors suffice for showing quantum violation of classical
causal bounds as long as their efficiency exceeds the thresh-
old specified in the theorem. Second, the detection efficiency
requirement of the causal inequality Eq. (8) to be violated
by quantum correlations is much higher than Clauser-Horne-
Shimony-Holt inequality [34], although they have a similar
form.

Detection efficiency of nonsignaling violation of classical
bound. Next, we consider the efficiency bound of the causal
inequality Eq. (8) for the nonsignaling theory. The result is
given by the following theorem (see Supplemental Material
Sec. II for its proof [33]).

Theorem 2. When the detection efficiency η is larger than√
4/5 ≈ 89.44%, nonsignaling correlations can violate the

classical causal bound Eq. (8), the maximal violation of which
is 1/2.

From this theorem, we observe two facts. Firstly,
nonsignaling correlations are able to violate the classical
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bound more than which is capable by quantum correlations,
as 1/2 > 3 − 2

√
2. Secondly, the efficiency requirement for

nonsignaling correlations to violate the classical bound is
lower than the one for quantum correlations. This suggests
that in the search for classical bounds with a lower detection
efficiency requirement, it is useful to start by examining the
detection efficiency requirement for nonsignaling violation of
these classical bounds, which we turn to next.

Causal inequality with lower efficiency requirement for
nonsignaling violation. As can be seen from the proof of
Theorem 2, the main restriction of the detection efficiency
is the constant term −2 in the causal inequality Eq. (8). In
order to reduce the detection efficiency requirement, it suffices
to shrink this constant term. To this end, we consider the
following quantity:

I222 = 2p(0, 0|0) + p(1, 1|0) + p(0, 1|1) + p(1, 1|1)

−1 − η2,

and a causal inequality

ACE � I222. (9)

The three subscripts of I222 represent the range of values for
X , A, and B, respectively. With this causal inequality at hand,
we are able to show the following theorem (see Supplemental
Material Sec. III for its proof [33]).

Theorem 3. The detection efficiency needs to be at least√
2/3 ≈ 81.65% for nonsignaling correlations to violate the

classical causal bound Eq. (9), the maximal violation of which
is 1/2.

The result of this theorem hints that the detection require-
ment of the quantum case can be reduced as well, which we
turn to next.

New causal inequality with lower efficiency requirement for
showing quantum violation. To reduce the detection efficiency
requirement for showing quantum violation of classical causal
bounds, we consider the causal inequality Eq. (9) in the quan-
tum scenario. The result is summarized in the following theo-
rem (see Supplemental Material Sec. IV for its proof [33]).

Theorem 4. The detection efficiency needs to be at least√
1/(4 − 2

√
2) ≈ 92.39% for quantum correlations to violate

the classical causal bound Eq. (9), the maximal violation of
which is 3 − 2

√
2.

The fact that quantum violation of causality inequalities
requires near unit detection efficiency stands in stark contrast
to the Bell scenario. In the Bell case, the detection efficiency
requirement of bipartite Bell violation with quantum correla-
tions can approach 0 with a large quantum system dimension
and an exponential number of measurement settings with re-
spect to the quantum system dimension [29]. Alternatively,
the upper bound on the quantum efficiency requirement for
Bell violation for the n-partite case with n measurement set-
tings per party is 2/(n + 1) [30], which also approaches 0
as n goes to infinity. This large discrepancy of the detec-
tion efficiency requirement between the causal scenario and
the Bell scenario shows that quantum causality is different
from quantum nonlocality. The main obstacle for reducing
the detection efficiency requirement for showing quantum
violation of causal inequalities lies in the fact that a causal
inequality can only contain the terms of the form p(a, b|x) =

FIG. 4. Illustration of classical causal bounds with M measure-
ment settings for (a) M = 3 and (b) M = 4.

pBell(a, b|x, a) while a Bell inequality can contain all terms of
the form pBell(a, b|x, y).

Nonsignaling violation of causal bounds with more than
two measurement settings. Then we generalize the causal
inequality to multiple measurement settings. In more detail,
suppose a, b ∈ {0, 1} and x ∈ {0, . . . , M − 1}. We consider
the following quantity:

IM22 = M

M − 1
p(0, 0|0) + 1

M − 1
p(0, 1|1)

+ 1

M − 1

M−1∑
x=0

p(1, 1|x) − 1 − η2

M − 1
. (10)

An illustration of I322 and I422 is shown in Fig. 4. The causal
inequality we examine is

ACE � IM22. (11)

The detection efficiency requirement of this causal inequal-
ity is summarized in the following theorem (see Supplemental
Material Sec. V for its proof [33]).

Theorem 5. When system A has M measurement
settings, as long as the detection efficiency exceeds√

(2M − 2)/(2M − 1), nonsignaling correlations can violate
the classical bound Eq. (11), the maximal violation of which
is 1/(2M − 2).

It can be seen that an increase in the measurement settings
leads to a smaller violation of the causal inequality and a
higher detection requirement. This fact also differs from the
Bell scenario where more measurement settings will result in
a larger violation and a lower detection requirement [35].

Detection efficiency of nonsignaling correlations to violate
quantum causal bound. It has been postulated that quantum
theory cannot fully explain phenomena in ultra-high-density
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objects such as black holes or in ultra-small scales such as a
Planck length, and an extension of quantum theory is needed
in these regimes [36]. To witness such a theory, we consider
the task of violating quantum causal bounds.

As shown in Ref. [25], quantum correlations obey a causal
lower bound

ACE �
∑

x=0,1

[p(0, 0|x) + p(1, 1|x)] − ξ − 1, (12)

where

ξ = min±

√√√√ ∏
a=0,1

{
1 ±

∑
x=0,1

(−1)x[p(a, 0|x) − p(a, 1|x)]

}
.

To witness a theory more general than quantum theory such
as the nonsignaling theory, we consider its violation of this
bound. The result is summarized in the following theorem (see
Supplemental Material Sec. VI for its proof [33]).

Theorem 6. When the detection efficiency η is larger than
94.29%, nonsignaling correlations can violate the quantum
bound Eq. (12), the maximal violation of which is 1/2.

This result has two implications. First, it shows that indeed
the nonsignaling theory can be witnessed through its violation
of a quantum causal bound. Second, even with imperfect
detection efficiency, the quantum causal bound can still be
violated.

New quantum causal bound with a lower efficiency re-
quirement. To lower the detection efficiency requirement for
nonsignaling violation of quantum causal bounds, we consider
the following quantity:

J222 = [p(0, 0|0) + p(1, 1|0) − p(0, 1|1) − p(1, 0|1) − ξ ]/η,

ξ = min±

√√√√ ∏
a=0,1

{
1 ±

∑
x=0,1

(−1)x[p(a, 0|x) − p(a, 1|x)]

}
,

and the following inequality

ACE � J222. (13)

Here, the subscripts of J222 have similar meanings with that
of I222. The property of the inequality Eq. (13) is given in the
following theorem (see Supplemental Material Sec. VII for its
proof [33]).

Theorem 7. When the detection efficiency η is larger than
91.02%, nonsignaling correlations can violate the quantum
causal bound Eq. (13), the maximal violation of which is 1/2.

This result shows that a higher detection efficiency is
needed for nonsignaling correlations to violate a quantum
causal bound than a classical causal bound.

Applications. Similar to quantum nonlocality, quantum
causality without loopholes has applications to a wide range of
device-independent protocols. In particular, even in scenarios
where no Bell inequalities can be violated (i.e., the resource
of quantum nonlocality is not available), device indepen-
dence can still be guaranteed by exploiting quantum causality.
Consider the following application of quantum causality

to device-independent quantum random number generation.
When a classical causal bound, such as Eq. (8), is maximally
violated, the outcome b of the variable B must be generated by
a quantum process. Hence, the value b is genuinely random by
Born’s rule. We leave a more detailed analysis of this protocol,
including its random number generation rate as a function of
the value of violation, to future work. As another example, we
apply quantum causality to device-independent quantum key
distribution (DI-QKD). As the maximal violation of a causal
inequality certifies the presence of an entangled state between
A and B, an entanglement-based quantum key distribution
procedure combined with occasionally testing the violation
of the causal inequality suffices to achieve DI-QKD. We also
leave a more detailed analysis of this protocol, including its
key rate as a function of the violation, to future work.

Conclusion. Quantum causality provides a distinct new
lens to understand the foundation of quantum theory. In this
work, we have analyzed the detection efficiency requirements
for quantum correlations and nonsignaling correlations to vi-
olate the causal inequalities. We have shown that quantum
violation requires detection efficiency at least 95.97% and
nonsignaling violation requires detection efficiency at least
89.44% in previous causal bounds. To lower the efficiency
requirement, we have proposed a causal inequality I222. We
have shown that both nonsignaling correlations and quantum
correlations can violate this inequality with lower detection
efficiency. In addition, we have generalized this causal in-
equality to multiple measurement settings. We have examined
the detection requirement for nonsignaling violation of the
quantum causal bound derived in Ref. [25]. We have also
proposed a quantum causal bound J222 that is less demanding
on detection efficiency for showing nonsignaling violation.

Our work advances the emerging field of quantum
causality both experimentally and theoretically. From an ex-
perimental perspective, our work provides guidance for the
selection of experimental parameters and hence paves the
way towards experimental observation of quantum causality.
From a theoretical perspective, our work shows that quan-
tum causality differs from quantum nonlocality in terms of
the detection efficiency requirement (one is bounded away
from zero, while the other can approach 0). This deepens
our understanding of quantum causality and consequently the
foundation of quantum theory.

Our work opens a few prospective avenues for future
research. On the experimental side, it would be interesting
to experimentally demonstrate the quantum violation of our
causal bounds. On the theoretical side, extending the quantum
violation of causal inequalities to the case of more than two
parties and examining the corresponding detection efficiency
requirement are interesting open problems.
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