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Comment on “Nonlocality claims are inconsistent with Hilbert-space quantum mechanics”

Justo Pastor Lambare
Facultad de Ciencias Exactas y Naturales, Ruta Mcal. J. F. Estigarribia, Km 11 Campus de la UNA, San Lorenzo-Paraguay

(Received 17 February 2021; accepted 1 December 2021; published 20 December 2021)

The view exists that the Bell inequality is a mere inconsistent application of classical concepts to a well-
established quantum world. In the article, “Nonlocality claims are inconsistent with Hilbert-space quantum
mechanics” [Phys. Rev. A 101, 022117 (2020)], R. B. Griffiths advocates for quantum theory’s locality. Although
Griffiths presents valuable insights in favor of quantum mechanics’ local character, he argues the Bell inequality
is an inconsistent application of classical physics to quantum mechanics. We explain why a correct assessment
of the Bell inequality does not, in fact, conflict with Griffiths’ views of quantum locality and, on the contrary, it
already contemplates them. Hence, Bell inequality inconsistency is not necessary for Griffiths’s quantum locality
to hold.
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I. INTRODUCTION

The Bell inequality transcends the field of purely philo-
sophical interest and quantum foundations. Far from being
an obsolete subject, it is an active component of present and
future quantum information technology. Hence, its correct
assessment is indeed relevant.

In Ref. [1], Griffiths advocates for the local character of
quantum theory. He bases his arguments on two concepts:
his measurement framework (consistent histories) and the no-
signaling principle.

Those arguments can be accepted or rejected but are not
themselves incorrect. These kinds of apparent ambiguities are
common when addressing a highly controversial subject, such
as quantum-mechanics interpretation.

Griffiths’s views of quantum locality reject the very hy-
potheses that underlie the Bell theorem. For that reason, the
inequality violations do not pose any threat to Griffiths’s views
of locality.

We purport to show how Griffiths’s measurement frame-
work and the no-signaling principle coherently fit into Bell’s
perspective of nonlocality.

Bell theorem’s hypotheses concern physical concepts, such
as locality and freedom, equally applicable to classical physics
and quantum mechanics. The concept of locality relevant to
the discussion of the Bell inequality is what Bell called local
causality [2]. We will refer to this locality concept as Bell-
local causality (BLC).

On the other hand, we will see that Griffiths upholds two
different notions of locality: one is a no-signaling locality
(NSL), and the other is coincident with BLC. As we an-
ticipated, although both locality concepts are different, they
involve no inconsistencies between quantum mechanics and
Bell’s formulation.

First, we review the meaning of the Bell inequality then
go over Griffiths’s arguments. We make clear that we do
not advocate for quantum nonlocality, neither we consider

Griffiths’s arguments of quantum locality as erroneous. Our
intention is to stress why it is misleading to consider the Bell
inequality as an inconsistent application of classical physics
to Hilbert-space quantum mechanics.

II. MEANING OF THE BELL INEQUALITY

Bell first conceived his theorem in 1964 [3] as a con-
tinuation of the Einstein-Podolski-Rosen [4] argument. Bell
investigated the possibility to locally explain the existence
of perfect correlations predicted by quantum mechanics. We
will consider the Clauser, Horne, Shimony, Holt (CHSH) [5]
generalization of the Bell inequality.

In 1975 [2], Bell gave a formulation that rests on two
hypotheses; BLC and freedom.1 Hence, violation of the
inequality implies the violation of, at least, one of those as-
sumptions.

BLC and freedom are either true or false. They apply to
natural phenomena irrespective of the theory explaining them.
They cannot hold consistently true in a quantum sense and at
the same time be classically false or vice versa.

Jarret [10] proved that BLC is the conjunction of two
conditions usually known as parameter independence and
outcome independence. Freedom usually appears under the
measurement independence or statistical independence hy-
pothesis. Whether statistical independence is necessary for
freedom is another debate that does not concern us here
[11,12].

1Note the absence of metaphysical assumptions, such as coun-
terfactual definiteness, elements of physical reality, incompatible
experiments, etc. Although Bell never used them, they are more
obviously irrelevant in his 1975 formulation. All these metaphysical
extravaganzas are related to the unnecessary and inconsistent use of
counterfactual reasoning, see Refs. [6–9].
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For our purposes, we do not need to elaborate more on
those concepts. The interested reader can find detailed expla-
nations in the literature, for instance, Ref. [11].

III. NONCOMMUTING OPERATORS

Here we analyze the claim that violations of the Bell in-
equality only prove the nonexistence of commuting operators
and have nothing to do with nonlocal effects on distant parti-
cles.

To prove his thesis, Griffiths conceived an experiment with
neon atoms violating a Bell-type inequality where locality is
not an issue.

In Griffiths’s ingenious experiment, only one particle pro-
duces a Bell-type inequality, so obviously, locality is not
an issue. Although locality is not an issue when measuring
only one particle, it certainly is when simultaneously mea-
suring two different particles far apart. Thus, if Griffiths’s
point is to prove the Bell inequality emerges under different
circumstances having interpretations that are not related to
locality, his example is, indeed, correct. However, that does
not prove locality cannot be involved in other contexts where
the inequality arises, for instance, a CHSH spin-correlation
experiment.

Interestingly, other authors have proposed similar ideas for
interpreting the inequality violations trying to escape from
the grip of the Bell inequality. For instance, Khrennikov [13]
proposes the same interpretation as Griffiths’s but applied in a
CHSH context. According to Khrennikov, “We demonstrate
that the tests on violation of the Bell-type inequalities are
simply statistical tests of local incompatibility of observables.”
Khrennikov shows that the Bell operator,

B = A0B0 + A0B1 + A1B0 − A1B1 (1)

satisfies

B2 = 4I − [A0, A1][B0, B1], (2)

(2) means that when, at least, one commutator on the right-
hand side vanishes, we obtain the Bell inequality. Let CO
stand for the existence of, at least, one pair of commuting
operators, then according to (2), Khrennikov proved that

CO → BI. (3)

If SI stands for statistical independence, Bell proved that

BLC ∧ SI → BI. (4)

Although, in Griffiths’s example, (4) does not make sense, in
a CHSH experiment where (3) and (4) are both applicable,
Khrennikov suggests that by proving (3), he has disproved
(4). Such arguments ignore the logical fact that a statement
may have different, sometimes unrelated, sufficient condi-
tions. None of them disproves the validity of the others as a
sufficient condition. Of course, when analyzing (3), nonlocal-
ity is not an issue. Likewise, when analyzing (4), operators’
commutativity is not an issue.

According to (3), a Bell inequality violation means that
[A0, A1] �= 0 and [B0, B1] �= 0. At the same time, according
to (4), either BLC or SI is false.

No matter what other inequality interpretations we may
find, they do not invalidate the locality implications of a
CHSH singlet state correlation experiment [8,14].

For instance, some have pointed out that Boole first discov-
ered the Bell inequality in the mid-1800s [15]. Boole showed
that a Bell-type inequality is a necessary condition for the
existence of a joint probability (JP),

JP → BI. (5)

Then again, the argument goes, violations of the Bell inequal-
ity are nothing else than proofs of the nonexistence of a joint
distribution for the experiment’s probabilities.

Whereas the previous interpretation is correct, the prob-
lem resides in the “nothing else” clause. They also prove the
nonexistence of commuting operators and invalidates the con-
junction of Bell local causality and statistical independence
when these concepts are applicable.

In the past, many researchers have observed the possibil-
ity of deriving the Bell inequality without assuming locality,
hidden variables, or causality and then erroneously jumped
to conclude the Bell inequality irrelevance regarding those
matters [14].

IV. CLASSICAL HIDDEN VARIABLES

Equation (24) of Griffiths’s paper reproduces the factoriza-
tion condition necessary to derive the Bell inequality,

Pr(A, B|a, b) =
∑

λ

Pr(A|a, λ)Pr(B|b, λ)Pr(λ). (6)

Griffiths presents a detailed explanation of what is wrong with
(6). He summarizes the argument in the final sentence of the
corresponding section of his paper:

“Thus, the usual derivations of CHSH and other Bell inequal-
ities employ classical physics to discuss quantum systems, so
it is not surprising when these inequalities fail to agree with
quantum predictions or the experiments that confirm these
predictions.”

Griffiths, and usually quantum localists [16,17], consider
the presence of the λ common causes variables in (6) as a
hallmark of classical physics. Although many nonlocalists
[18–21] seem to contend such interpretation, we agree with
Griffiths, and, in general, with quantum localists, that the
inclusion of additional parameters foreign to quantum me-
chanics in (6) is a sign of “classicality.”

However, discussing the classical nature of (6) avoids the
real problem that gave it origin. Really, in 1975, Bell [2] gave
a modified and improved version of the original 1964 [3] pre-
sentation of his theorem. In his new formulation, Bell defined
the BLC concept and explained that quantum mechanics is
nonlocal because it violates BLC, not because it violates his
inequality.

Indeed, BLC is based on Reichenbach Common Cause
Principle [22], i.e., locality requires correlations to be ex-
plained by a complete determination of the common causal
past “λ” of the measuring events,

Pr(A, B|a, b, λ) = Pr(A|a, λ)Pr(B|b, λ). (7)
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Testing quantum mechanics against BLC for the singlet state
correlations only requires putting λ = |ψ〉 in (7), where |ψ〉
represents the quantum singlet state. Then setting A = 1, B =
1, a = b, quantum mechanics predicts

Pr(1, 1|a, a, |ψ〉) = Pr(1|a, λ)Pr(1|a, |ψ〉) (8)

0 = 1

2

1

2
= 1

4
. (9)

Since 0 �= 1/4, and we did not introduce additional variables
foreign to quantum theory or invoked any particular interpre-
tation of the wave function, then as Bell said [2]:

Ordinary quantum mechanics, even quantum field theory, is
not locally causal in the sense of (2).

(2) refers in Bell’s paper to BLC.2 Thus, when quantum
mechanics is considered complete, it becomes notoriously
nonlocal in the BLC sense.

Note that Bell did not even mention his inequality to
prove that ordinary quantum mechanics is not locally causal.
Then the question arises, what is the use of the Bell in-
equality? Well, to be sure, the Bell inequality does not
prove that quantum mechanics is not locally causal. It only
proves that it is not possible to introduce common causes,
satisfying the statistical independence assumption, to find
locally causal explanations of quantum-mechanics strong
correlations.

Claiming that quantum mechanics appears nonlocally
causal only because (6) is a classical equation is untenable.
The last point is an endemic inconsistency affecting quantum
localists’ arguments who pretend to reject only the “realism”
part of the compound expression local realism.3 The issue
generated longstanding debates [16–21].

Respecting Griffiths’s views, there is a coherent way to re-
ject the implications of (7), and it is not the classical character
of (6). Griffiths clearly rejects no-signaling effects as being
nonlocal influences:

“To be sure, those who claim that instantaneous nonlocal
influences are present in the quantum world will generally
admit that they cannot be used to transmit information; this
is known as the ‘no-signaling’ principle, widely assumed in
quantum information theory. This means that such influences
(including wave-function collapse) cannot be directly detected
in any experiment. The simplest explanation for their lack of
influence is that such influence do not exist.”

That constitutes a rejection of Bell’s local causality. BLC
given by (7) is the conjunction of two conditions: parameter

2Bell did not use equations. He contented with a rather qualitative
argument similar to the one Einstein gave in 1927 [23].

3Although realism is an obscure concept [18], there is one way in
which its rejection makes sense. It is when it means the presence
of a causal mechanism. Accepting that strong correlations do not
need causal explanations, there would be no need for the existence
of superluminal interactions [24]. Note that this rational meaning
of realism has nothing to do with metaphysical concepts, such as
elements of physical reality, counterfactual definiteness, etc. It is
incorrect to ascribe such blunders to Bell.

independence and outcome independence [25]. Griffiths re-
jection of no-signaling effects as nonlocal influences implies
the rejection of outcome independence and the acceptance of
uncontrollable nonlocality. Hence, (7) is not applicable, and
quantum theory becomes a local theory according to NSL.

In conformity with NSL, (6) does not apply, and its classi-
cal character is not an issue. The issue at stake is whether we
accept or reject outcome independence as a token of nonlocal-
ity. Thus, when (6) is correctly interpreted, it is unjustified to
consider it an inconsistent application of classical physics to
quantum mechanics.

V. QUANTUM COMMON CAUSES

According to Griffiths, we can explain quantum-mechanics
locality through the presence of quantum common causes
(QCC) instead of classical common causes (CCC). He ex-
plains the role of QCC:

“Experiments that test Bell inequalities using entangled photon
pairs already assume a common cause in the sense that pairs
of photons produced at the source in the same, rather than
a different, down conversion event are identified using their
arrival times. All that is needed in addition is an argument that
the polarizations measured later were also created in the same
(local) event.”

Griffiths’s above argument sounds very much like a clas-
sical causal explanation of the kind Bell and Einstein would
have wanted. Therefore, the role of his QCC would be the
same as the CCC represented by λ in Bell’s formulation.

The difference between CCC and QCC is, according to
Griffiths, the violation of statistical independence since he
says “...where proper use was made of a genuinely quantum
‘hidden variable’ λ, as an example of a ‘quantum cause,’ in
the same sense as that employed here.” Then he explains
very clearly that his quantum common causes violates the
statistical independence hypothesis: “To summarize, the fun-
damental difficulty with the factorization condition (24) [(6)
in this Comment]is that it assumes a single sample space of
mutually exclusive possibilities, independent of a and b, with
elements labeled by λ.”

He is correct, the “single sample space” is equivalent to a
joint probability [26]. It means that when Alice’s and Bob’s
settings are ai, bk ; i, k ∈ {1, 2}, we should have

Pr(λ|ai, bk ) = Pr(λ), (10)

(10) is the statistical independence hypothesis related to the
freedom assumption in Bell’s framework. Hence, according to
Griffiths, common causes that violate statistical independence
are quantum common causes instead of classical common
causes.

However, there are two issues with Griffiths’s view on
common causes. First, given that the inequality rests on the
two hypotheses, BLC, and statistical independence, rejecting
the last one allows to retain the first, and NSL becomes su-
perfluous. Thus, here Griffiths switches from a no-signaling
position to accepting BLC.

Second, the rejection of statistical independence and the
admission of additional parameters foreign to quantum theory
is widely considered an ontological position that is adverse
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to orthodox quantum mechanics [27]. So this correct solution
of quantum nonlocality contradicts Griffiths’s views of main-
taining the Hilbert-space quantum mechanics as opposed, and
incompatible with classical physics.

VI. CONCLUSIONS

The lesson to be learned from the Bell inequality regarding
the local character of quantum mechanics is that we have
two options for understanding quantum baffling correlations
without implying “spooky” actions at a distance. Either we
reconsider local causality rejecting BLC and accepting NSL
or we accept BLC rejecting statistical independence returning
to classical notions of causality.

Relativity has taught us that simultaneity is baffling be-
cause we do not have a direct intuition of it. According to
Poincaré, “If we think we have this intuition, this is an illusion”
[28]. Perhaps quantum mechanics is teaching us a similar
lesson with regard to locality. We do not have a direct intuition
of nonlocal influences. So, maybe we do not need a return to
classical ideas if we reject BLC and accept no signaling as
the correct concept of locality compatible with relativity and
quantum mechanics.

However, the issue is not closed. There exists the other
view: the rejection of statistical independence [11,12,27] with
an eventual return to classical physics.4

In any case, Bell asked relevant questions concerning
quantum-mechanics interpretation. The Bell theorem is a
meaningful insight more pertinent than the naive tautological
statement “quantum is not classical.” It helps us probing into
quantum-mechanics’ nature and has implications for quantum
technologies. Thus, when correctly interpreted and stripped
away of unnecessary metaphysical burden, it does not re-
duce to a mere inconsistent application of classical physics
to Hilbert-space quantum mechanics.

Finally, it is worth highlighting the irony in the widespread
belief sustaining that, to retain local causality, it suffices to
forgo classical realism. Quite the contrary, as we have seen,
retaining quantum locality (in the BLC sense) requires a re-
gression to classical physics and the acceptance of spooky
hidden variables instead of spooky action at a distance.

4There is a third position advocated, for instance, by Tim Maudlin
[29], Travis Norsen [18], and Bohmians, considering that nature is
irremediably nonlocal.
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